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Two papers dedicated to Srinivasa Ramanujan

G.E. Andrews, Rogers-Ramanujan identities for two-color partitions, Indian
Journal of Mathematics, 29 (1987), 117–125.



Hardy-Ramanujan Journal with special volumes 43–44



(Restricted) Two-color partition

Two-color partitions are formed from two copies of the integers, in red and
green, respectively.

There are five two-color partitions of 2:

2r , 2g , 1r + 1r , 1r + 1g , 1g + 1g .

Let n ≥ 0 and d ≥ 1 be integers. Following Andrews, we define Ld(n) to be
the set of two-color partitions of n into numerically distinct parts such that the
following three conditions are satisfied:

1. each red part is at least d larger than the next largest part;
2. each green part is at least d + 1 larger than the next largest part;
3. neither 1g nor (d − 1)g is allowed as a part.

We use Ld(n) to denote the cardinality of Ld(n).

As remarked by Lovejoy, certain restricted two-color partitions are essentially
overpartitions.
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Two-color partitions in the literature (sampler)

P. Hammond and R. Lewis, Congruences in ordered pairs of partitions, Int.
J. Math. Math. Sci., (2004).

F.G. Garvan, Biranks for partitions into 2 colors, in Ramanujan
rediscovered, Ramanujan Math. Soc. Lect. Notes Ser. 14, (Ramanujan
Math. Soc., Mysore, 2010).

W.Y.C. Chen and B.L.S. Lin, Congruences for bipartitions with odd parts
distinct, Ramanujan J., (2011).

G.E. Andrews and P. Paule, MacMahon’s pratition analysis XIII: Schmidt
type partitions and modular forms, J. Number Theory, (2021).

G.E. Andrews and W. Keith, A general class of Schmidt theorems, J.
Number Theory, (2023).



Three theorems of Andrews

Theorem (L1)
L1(n) equals the number of two-color partitions of n in which parts with the
same color are distinct and green parts are all even numbers.

Theorem (L2)
L2(n) equals the number of basis partitions of n.

Theorem (L3)
L3(n) equals the number of partitions of n into distinct parts.

Remark
To be precise, the original statements of Theorems L1 and L3 in Andrews’
paper are different from what we give here, but it suffices to use Euler’s
celebrated “Odd-distinct Theorem” to bridge the gap. The definition of basis
partition is a bit involved and will be given later.
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Andrews’ original proofs

To prove his three theorems on two-color partitions, Andrews bounded the
largest part and utilized Abel’s lemma to derive the generating functions for
L1(n), L2(n) and L3(n).

Lemma
If limn→∞ an = L, then

lim
x→1−

(1 − x)
∑
n≥0

anxn = L.

Then he resorted to appropriate q-series identities (such as Lebesgue identity
and Sylvester identity) and standard manipulations to make connections.
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A refinement of Theorem L1

Definition
Let Ld(n, k, ℓ) (resp. Ld(n, k, ℓ)) denote the set (resp. the number) of two-color
partitions in Ld(n) with k red parts and ℓ green parts.

Let A(n, k, ℓ) (resp. A(n, k, ℓ)) be the set (resp. the number) of two-color
partitions of n, each of which is consisted of k + j distinct red parts and ℓ
distinct even green parts for a certain non-negative integer j, wherein exactly k
red parts are larger than ℓ.

Theorem (R1)
For non-negative integers n, k, ℓ, we have L1(n, k, ℓ) = A(n, k, ℓ).

Example
Taking (n, k, ℓ) = (7, 1, 1), we see that

L1(7, 1, 1) = {6g + 1r , 5g + 2r , 5r + 2g , 4r + 3g },

and
A(7, 1, 1) = {4g + 2r + 1r , 4r + 2g + 1r , 4g + 3r , 5r + 2g }.
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Durfee square and basis partition

(3, 3 + 1, 2 + 2)

Fig.: Durfee square and triple notation of λ = 5 + 5 + 3 + 3 + 1.

G. E. Andrews, Basis partition polynomials, overpartitions and the
Rogers-Ramanujan identities, J. Approx. Theory 197 (2015), 62–68.

H. Gupta, The rank-vector of a partition, Fibonacci Quart. 16 (1978),
548–552.
J. M. Nolan, C. D. Savage and H. S. Wilf, Basis partitions, Discrete Math.
179 (1998), 277–283.



A refinement of Theorem L2

Theorem (R2)
The number of basis partitions λ = (k + ℓ, π, σ) of n such that π has exactly ℓ
distinct parts, is given by L2(n, k, ℓ).

Example
For (n, k, ℓ) = (15, 1, 2), there are six basis partitions meeting the requirements:

(3, 3 + 1 + 1 + 1, ϵ), (3, 2 + 2 + 1 + 1, ϵ), (3, 2 + 1 + 1 + 1 + 1, ϵ),
(3, 3 + 2, 1), (3, 3 + 1, 2), (3, 2 + 1, 3).

On the other hand, one checks that

L2(15, 1, 2) = {10g +4g +1r , 9g +5g +1r , 8g +5g +2r , 9g +4r +2g , 8g +5r +2g , 8r +5g +2g }.
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A refinement of Theorem L3

Theorem (R3)
L3(n, k, ℓ) equals the number of partitions of n into k + 2ℓ distinct parts such
that the Durfee square is of side k + ℓ.

Example
For (n, k, ℓ) = (18, 2, 1), the following are the ten strict partitions meeting the
requirements,

10 + 4 + 3 + 1, 9 + 5 + 3 + 1, 8 + 6 + 3 + 1, 8 + 5 + 4 + 1, 7 + 6 + 4 + 1,
9 + 4 + 3 + 2, 8 + 5 + 3 + 2, 7 + 6 + 3 + 2, 7 + 5 + 4 + 2, 6 + 5 + 4 + 3.

On the other hand, one checks that L3(18, 2, 1) contains ten partitions as well:

13g + 4r + 1r , 12g + 5r + 1r , 12r + 5g + 1r , 11g + 6r + 1r , 11r + 6g + 1r ,

10r + 7g + 1r , 11g + 5r + 2r , 10g + 6r + 2r , 10r + 6g + 2r , 9r + 6r + 3g .
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Analytic proof of R1

Recall the standard q-rising factorial notations:

(a)n = (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1),
(a)∞ = (a; q)∞ = lim

n→∞
(a; q)n, and (a)0 = 1.

We claim the following two generating functions for L1(n, k, ℓ) and A(n, k, ℓ),
respectively. ∑

n,k,ℓ≥0

L1(n, k, ℓ)x ky ℓqn =
∑
m≥0

(−yq/x)mxmq(m+1
2 )

(q)m
, (1)

∑
n,k,ℓ≥0

A(n, k, ℓ)x ky ℓqn =
∑

k,ℓ≥0

x ky ℓq(k+ℓ+1
2 )+(ℓ+1

2 )
(q)k(q)ℓ

. (2)
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Proof of (2)

Recall that a partition in A(n, k, ℓ) is consisted of k + j distinct red parts and ℓ
distinct even green parts for a certain non-negative integer j, wherein exactly k
red parts are larger than ℓ.

k red parts larger than ℓ: x kq(ℓ+1)+(ℓ+2)+···+(ℓ+k)

(q)k
= x kqkℓ+(k+1

2 )
(q)k

;

remaining red parts: (1 + q) · · · (1 + qℓ) = (−q)ℓ;

the ℓ green even parts: y ℓq2+4+···+2ℓ

(q2; q2)ℓ
= y ℓqℓ(ℓ+1)

(q)ℓ(−q)ℓ
.

So collectively we have∑
n,k,ℓ≥0

A(n, k, ℓ)x ky ℓqn =
∑

k,ℓ≥0

x ky ℓq(k+ℓ+1
2 )+(ℓ+1

2 )
(q)k(q)ℓ
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Standard manipulation

q-binomial theorem:
∑∞

n=0
(a)ntn

(q)n
= (at)∞

(t)∞
, for |q| < 1, |t| < 1.

∑
k,ℓ≥0

x ky ℓq(k+ℓ+1
2 )+(ℓ+1

2 )
(q)k(q)ℓ

=
∑
m≥0

xmq(m+1
2 )

(q)m

m∑
ℓ=0

(qm−ℓ+1)ℓ

(q)ℓ

(y
x

)ℓ

q(ℓ+1
2 )

=
∑
m≥0

xmq(m+1
2 )

(q)m

m∑
ℓ=0

(q−m)ℓ

(q)ℓ

(
−yqm+1

x

)ℓ

=
∑
m≥0

xmq(m+1
2 )

(q)m

(−yq/x)∞

(−yqm+1/x)∞
(by q-binomial theorem)

=
∑
m≥0

xmq(m+1
2 )

(q)m
(−yq/x)m,

which is the right hand side of (1), as desired.
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Bijective proof of R1–I: Lebesgue identity

Andrews’s original proof of Theorem L1 relies on the following identity of
Lebesgue: ∑

n≥0

(−zq; q)n

(q; q)n
q(n+1

2 ) = (−q; q)∞(−zq2; q2)∞.

J. Dousse and B. Kim, An overpartition analogue of q-binomial
coefficients, II: Combinatorial proofs and (q, t)-log concavity, J. Combin.
Theory Ser. A 158 (2018), 228–253.

D. P. Little and J. A. Sellers, New proofs of identities of Lebesgue and
Göllnitz via tilings, J. Combin. Theory Ser. A 116 (2009), 223–231.

I. Pak, Partition bijections, a survey, Ramanujan J. 12 (2006), 5–75.



Bijective proof of R1–II: profile word
The profile of an integer partition is the south-west to north-east border path in
its Ferrers graph.

As we trace out the profile, we label the steps according to
the following rules.

1. the two consecutive steps EN forming the corner cell of a certain red part
are labeled together as x ;

2. the three consecutive steps EEN forming the last two cells of a certain
green part are labeled together as z;

3. all remaining east steps are labeled as y .

ϕ
x z x y x z y y z

Fig.: the profile of partition λ = 12g + 8g + 6r + 4r + 3g + 1r .
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The profile of an integer partition is the south-west to north-east border path in
its Ferrers graph. As we trace out the profile, we label the steps according to
the following rules.

1. the two consecutive steps EN forming the corner cell of a certain red part
are labeled together as x ;
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Bijective proof of R1–III: parameter j

Let A = {x , y , z} be our alphabet, and A∗ stands for the free monoid
generated by the letters from A. We denote W the set of words in A∗ that are
either empty or end with x or z. For each word u = u1u2 · · · um ∈ W, we define
its weight to be

ω(u) :=
m∑

i=1

χ(ui ̸= y) · (i + |{j ≤ i : uj = z}|),

where χ(S) = 1 if the statement S is true and χ(S) = 0 otherwise. For the
word u = xzxyxzyyz in Fig. 2, one checks that ω(u) = 34. We denote
W(n, k, ℓ) the set of words in A∗ having weight n, wherein the letter x appears
k times and the letter z appears ℓ times.

Definition
For a word u = u1u2 · · · um ∈ A∗, we say a letter ui = z is odd (resp. even) if
for all 1 ≤ j < i , there is an odd (resp. even) number of uj being a y or an odd
z. For each 0 ≤ j ≤ ℓ, we denote W(n, k, ℓ, j) the set of words in W(n, k, ℓ)
that contain j odd z’s.
For the word u = xzxyxzyyz in Fig. 2, from left to right, the first and the last z
are even while the middle z is odd, hence u ∈ W(34, 3, 3, 1).
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Bijective proof of R1–IV: the bijection ψ
Theorem (R1+)
There exists a bijection ψ : W(n, k, ℓ, j) → A(n, k, ℓ, j).
Here for 0 ≤ j ≤ ℓ, A(n, k, ℓ, j) is the set of partitions in A(n, k, ℓ) with
precisely j red parts no greater than ℓ.

证明.
Take any word u = u1u2 · · · um ∈ W(n, k, ℓ, j), we aim to derive a partition pair
ψ(u) := (π, σ), where π is a distinct partition into k + j parts while σ is a
distinct partition into ℓ even parts.

Step 1 Screen the word u R-to-L looking for letter z, and suppose they
are us1 , us2 , . . . , usℓ in u with s1 > s2 > · · · > sℓ.

Step 2 For i = 1, 2, . . . , ℓ, we let

σi := si − |{t ≤ si : ut = x}| + |{t ≤ si : ut is an even z}|,

vi :=
{

x , if usi is an odd z,
y , if usi is an even z,

û := v1v2 · · · vℓu′, u′(z → y),
set π := ϕ−1(û) and σ := σ1 + σ2 + · · · + σℓ.
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Bijective proof of R1–V: the inverse mapping ψ−1

Example
Given a two-color partition λ ∈ A(50, 3, 4, 2),

λ = 10r +10g +8g +6r +5r +4r +4g +2g +1r = (10+6+5+4+1)r +(10+8+4+2)g ,

we show how to recover its preimage ψ−1(λ) ∈ W(50, 3, 4, 2).

x
y y x

x
x

y y y x
ϕ

π = û = xyyx︸︷︷︸
v

xxyyyxyy . . .︸ ︷︷ ︸
u′

Fig.: the profile word of π = 10 + 6 + 5 + 4 + 1, with infinitely many y’s appended.
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u′ = x x y y y x y y y y y y . . .
↓

x x y z y x y y y y y y . . .
↓

x x y z z x y y y y y y . . .
↓

x x y z z x y y z y y y . . .
↓

x x y z z x y y z y z = u

One checks that u ∈ W(50, 3, 4, 2) indeed.



Analytic counterpart?

Question
Recall our first proof of Theorem R1, where we have derived the generating
function (2) for A(n, k, ℓ). The same analysis readily gives us:∑

n,k,ℓ,j≥0

A(n, k, ℓ, j)x ky ℓz jqn =
∑

k,ℓ≥0

(−zq; q)ℓ

(q; q)k(q2; q2)ℓ
x ky ℓq(k+ℓ+1

2 )+(ℓ+1
2 ).

Therefore, it might be interesting to find the generating function for
|W(n, k, ℓ, j)|, so as to give an analytic counterpart of Theorem R1+.



Bijective proof of R2: main idea

Seeing that n2 = 1 + 3 + · · · + (2n − 1), we can rearrange the cells consisting
the Durfee square to have 2-indented Ferrers graph.

Fig.: n2 = 1 + 3 + · · · + (2n − 1).
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A curious conjecture

Directly from definitions, we see that

L1(n) ≥ L2(n) ≥ L3(n).

Let B(n) be the number of basis partitions of n, pk(n) be the number of
k-regular partitions of n, i.e., partitions in which no part is divisible by k.

Then
by Andrews’ three theorems, we have

p4(n) ≥ B(n) ≥ p2(n).

Conjecture (Andrews, 2021)
p3(n) ≥ B(n) with strict inequality if n > 3.
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Thank you all for listening!
talk based on my paper:
Combinatorial proofs and refinements of three partition theorems of Andrews,
Ramanujan J, (2023).


	(Restricted) Two-color partitions
	Andrews' three theorems and our refinements
	Proofs of refinements R1 and R2

