(Joint work with Henry Stone, Eddie O'Sullivan and Xiaolan Jin)

University of South Carolina

Seminar in Partition Theory, q-Series and Related Topics Michigan Technological University arXiv:2511.16039

2 Main Results

Outline

3 Filtrations

Proofs

- Motivation and Tools
- 2 Main Results
- 6 Filtrations
- 4 Proofs

Let $z \in \mathbb{H}$ and $q = e^{2\pi i z}$. We define

Outline

$$\eta(z)=q^{1/24}\prod_{n\geq 1}(1-q^n)$$
 (a weight $1/2$ cusp form with eta-multiplier)

$$\begin{split} \Delta(z) &= \eta(z)^{24} \in \mathcal{S}_{12}(\Gamma_0(1)), \\ &= \sum_{n \geq 1} \tau(n) q^n \ = \ q - 24q^2 + 252q^3 - 1472q^4 + \cdots \end{split}$$

Let $z \in \mathbb{H}$ and $q = e^{2\pi i z}$. We define

Outline

$$\eta(z)=q^{1/24}\prod_{n\geq 1}(1-q^n)$$
 (a weight $1/2$ cusp form with eta-multiplier)

$$\begin{split} \Delta(z) &= \eta(z)^{24} \in S_{12}(\Gamma_0(1)), \\ &= \sum_{n \geq 1} \tau(n) q^n \ = \ q - 24q^2 + 252q^3 - 1472q^4 + \cdots \end{split}$$

Conjecture (Lehmer) For all $n \ge 1$, we have $\tau(n) \ne 0$.

Motivation

Outline

Let
$$z\in\mathbb{H}$$
 and $q=e^{2\pi iz}.$ We define

$$\eta(z)=q^{1/24}\prod_{n\geq 1}(1-q^n)$$
 (a weight $1/2$ cusp form with eta-multiplier)

$$\begin{split} \Delta(z) &= \eta(z)^{24} \in S_{12}(\Gamma_0(1)), \\ &= \sum_{n \geq 1} \tau(n) q^n \ = \ q - 24q^2 + 252q^3 - 1472q^4 + \cdots \end{split}$$

Conjecture (Lehmer) For all $n \ge 1$, we have $\tau(n) \ne 0$.

Ramanujan, Wilton, Kolberg, Ashworth, Lehmer For primes $\ell \in \{2, 3, 5, 7, 23, 691\}$,

$$\tau(n) \equiv c \cdot \sigma_{\nu}(n) \pmod{\ell^m}.$$

Motivation

Let $z \in \mathbb{H}$ and $q = e^{2\pi i z}$. We define

$$\eta(z)=q^{1/24}\prod_{n\geq 1}(1-q^n)$$
 (a weight $1/2$ cusp form with eta-multiplier)

$$\begin{split} \Delta(z) &= \eta(z)^{24} \in S_{12}(\Gamma_0(1)), \\ &= \sum_{n \geq 1} \tau(n) q^n \ = \ q - 24q^2 + 252q^3 - 1472q^4 + \cdots \end{split}$$

Conjecture (Lehmer) For all $n \ge 1$, we have $\tau(n) \ne 0$.

Ramanujan, Wilton, Kolberg, Ashworth, Lehmer For primes $\ell \in \{2,3,5,7,23,691\}$,

$$\tau(n) \equiv c \cdot \sigma_{\nu}(n) \pmod{\ell^m}.$$

Serre-Swinnerton-Dyer (1973)

Congruences for normalized Hecke eigenforms in $S_k(\Gamma_0(1)) \cap \mathbb{Z}[[q]]$. (**Key insight**) Use of modular Galois representations (Deligne-Serre).

Theorem (Deligne)

Outline

Let $k \geq 2$ be an integer and $f = \sum_{n \geq 1} a(n)q^n \in S_k(\Gamma_0(N), \chi)$ be a normalized eigenform with ℓ -adic integer coefficients. Then for each prime ℓ , there exists a continuous homomorphism

$$ho_{\ell,f}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{GL}_2(\mathbb{Z}_\ell)$$

such that for every prime $p \nmid N\ell$, the characteristic polynomial of $\rho_{\ell,f}(\operatorname{Frob}_p)$ is

$$X^2 - a(p)X + \chi(p) p^{k-1}.$$

Write $\bar{\rho}_{\ell,f}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathsf{GL}_2(\mathbb{F}_{\ell})$, for the reduction of $\rho_{\ell,f}$ modulo ℓ .

Theorem (Deligne)

Outline

Let $k \ge 2$ be an integer and $f = \sum_{n \ge 1} a(n)q^n \in S_k(\Gamma_0(N), \chi)$ be a normalized eigenform with ℓ -adic integer coefficients. Then for each prime ℓ , there exists a continuous homomorphism

$$ho_{\ell,f}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{GL}_2(\mathbb{Z}_\ell)$$

such that for every prime $p \nmid N\ell$, the characteristic polynomial of $\rho_{\ell,f}(\operatorname{Frob}_p)$ is

$$X^2 - a(p)X + \chi(p) p^{k-1}$$
.

Write $\bar{\rho}_{\ell,f}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathsf{GL}_2(\mathbb{F}_{\ell})$, for the reduction of $\rho_{\ell,f}$ modulo ℓ .

Exceptional primes Let $\ell > 3$ be a prime. We say that ℓ is exceptional for f iff

 $\operatorname{Im}(\bar{\rho}_{\ell,f})$ does not contain $\operatorname{SL}_2(\mathbb{F}_{\ell})$.

Classification of exceptional primes

Let ℓ be an exceptional prime for a level-1 eigenform f with nebentypus χ . Let $G=\operatorname{Im} \bar{\rho}_{f,\ell}\subseteq \operatorname{GL}_2(\mathbb{F}_\ell)$ and let H be its projective image.

① If G is contained in a Borel subgroup, then ℓ is Type I. For all $n \geq 1$ with $(n,\ell)=1$,

$$a(n) \equiv n^m \, \sigma_{k-1-2m}(n) \pmod{\ell}.$$

Examples: $\tau(n) \equiv n\sigma_1(n) \pmod{5}$, $\tau(n) \equiv \sigma_{11}(n) \pmod{691}$.

Classification of exceptional primes

Let ℓ be an exceptional prime for a level-1 eigenform f with nebentypus χ . Let $G = \operatorname{Im} \bar{\rho}_{f,\ell} \subseteq \operatorname{GL}_2(\mathbb{F}_{\ell})$ and let H be its projective image.

① If G is contained in a Borel subgroup, then ℓ is Type I. For all $n \ge 1$ with $(n,\ell)=1$,

$$a(n) \equiv n^m \, \sigma_{k-1-2m}(n) \pmod{\ell}.$$

Examples: $\tau(n) \equiv n\sigma_1(n) \pmod{5}$, $\tau(n) \equiv \sigma_{11}(n) \pmod{691}$.

2 If H is dihedral, then ℓ is Type II. For primes $n \nmid \ell$ with $\left(\frac{n}{\ell}\right) = -1$,

$$a(n) \equiv 0 \pmod{\ell}$$
.

Example: If $\left(\frac{n}{23}\right) = -1$, then $\tau(n) \equiv 0 \pmod{23}$.

Let ℓ be an exceptional prime for a level-1 eigenform f with nebentypus χ . Let $G = \operatorname{Im} \bar{\rho}_{f,\ell} \subseteq \operatorname{GL}_2(\mathbb{F}_{\ell})$ and let H be its projective image.

1 If G is contained in a Borel subgroup, then ℓ is Type I. For all $n \geq 1$ with $(n, \ell) = 1$

$$a(n) \equiv n^m \sigma_{k-1-2m}(n) \pmod{\ell}.$$

Examples: $\tau(n) \equiv n\sigma_1(n) \pmod{5}$, $\tau(n) \equiv \sigma_{11}(n) \pmod{691}$.

2 If H is dihedral, then ℓ is Type II. For primes $n \nmid \ell$ with $\left(\frac{n}{\ell}\right) = -1$,

$$a(n) \equiv 0 \pmod{\ell}$$
.

Example: If $(\frac{n}{22}) = -1$, then $\tau(n) \equiv 0 \pmod{23}$.

3 If $H \cong A_4, S_4$, or A_5 , then ℓ is Type III. If $H \cong S_4$, for primes $p \nmid N\ell$,

$$\frac{a(p)^2}{\chi(p) \, p^{k-1}} \equiv 0, 1, 2, 4 \pmod{\ell}.$$

Example: For $f = E_4 \Delta$, $\ell = 59$ is Type III.

Ribet (1975, 1985)

Extended Swinnerton-Dyer results to newforms of arbitrary weight k and level N > 1. In general,

exceptional prime (small image) \implies exceptional congruence

Known results

Ribet (1975, 1985)

Extended Swinnerton-Dyer results to newforms of arbitrary weight k and level N > 1. In general,

exceptional prime (small image) \implies exceptional congruence

Martin (1996)

Proved there are only finitely many eta-quotients newforms and gave a complete classification.

Ribet (1975, 1985)

Extended Swinnerton-Dyer results to newforms of arbitrary weight k and level N > 1. In general,

exceptional prime (small image) \implies exceptional congruence

Martin (1996)

Proved there are only finitely many eta-quotients newforms and gave a complete classification.

Boylan (2003)

Classify and prove all congruences of Type III for eta-quotient newforms.

Ribet (1975, 1985)

Extended Swinnerton-Dyer results to newforms of arbitrary weight k and level N>1. In general,

exceptional prime (small image) \implies exceptional congruence

Martin (1996)

Proved there are only finitely many eta-quotients newforms and gave a complete classification.

Boylan (2003)

Classify and prove all congruences of Type III for eta-quotient newforms.

Goal:

- Classify and prove Type I and Type II congruences for eta-quotient newforms modulo a prime.
- Extensions to prime powers.

- 1 Motivation and Tools
- 2 Main Results
- 6 Filtrations
- 4 Proofs

Framework for Type I congruences

Let $f = \sum a(n)q^n \in S_k(\Gamma_0(N), \chi)$ be an eta-quotient newform.

The form f satisfies Type I congruence provided \exists real-valued $\psi, \phi \mod N$ and $m' \geq m$ s.t.

$$a(p) \equiv \psi(p)p^m + \phi(p)p^{m'} \pmod{\ell}, \quad \psi(p)\phi(p)p^{m'+m} \equiv \chi(p)p^{k-1} \pmod{\ell}.$$

Main Results 000000000

Framework for Type I congruences

Let $f = \sum a(n)q^n \in S_k(\Gamma_0(N), \chi)$ be an eta-quotient newform.

The form f satisfies Type I congruence provided \exists real-valued ψ,ϕ mod N and $\mathit{m'}>\mathit{m}$ s.t.

$$a(p) \equiv \psi(p)p^m + \phi(p)p^{m'} \pmod{\ell}, \quad \psi(p)\phi(p)p^{m'+m} \equiv \chi(p)p^{k-1} \pmod{\ell}.$$

Theorem (Sullivan, Stone, S., Jin)

Let f and ψ be as defined above. Then

1 If $3 \le m' - m + 1 \le \ell - 2$, then we have

$$\theta(f\otimes 1_N)\equiv \theta^{m+1}(G_{m'-m+1}\otimes \psi 1_N)\pmod{\ell}.$$

Moreover, we have $\ell < k$ or $\ell \mid (a(p) - \psi(p) \sigma_{k-1}(p))$ for all primes $p \nmid N$.

2 If $m' - m + 1 \in \{2, \ell - 1\}$, then we have

$$\theta(f \otimes 1_N) \equiv \theta^{m+1}(G_{\ell+1} \otimes \psi 1_N) \pmod{\ell}.$$

Further, we have $\ell < k$.

List of Type I congruences

Values of parameters in Theorem 2

f(z)	Type I					
	ℓ	m	m′	ψ	(k, N)	
	3	0	1			
$\Delta(z)$	5	1	2	1	(12, 1)	
$\Delta(2)$	7	1	4	11	(12, 1)	
	691	0	11			
	2	0	1			
(_)8(2_)8	3 5	0	1	1	(8, 2)	
$\eta(z)^8\eta(2z)^8$	5	1	2	12	(0, 2)	
	17	0	7			
	2	0	1	13		
$\eta(z)^6\eta(3z)^6$	2	0	1	$\left(\frac{\cdot}{3}\right)$	(6, 3)	
	13	0	5	1_3	, ,	
(2-)12	2	0	1	14	(6.4)	
$\eta(2z)^{12}$	3	0	1	14	(6, 4)	
	2	0	1	15		
$\eta(z)^4\eta(5z)^4$	5	0		$\left(\frac{\cdot}{5}\right)$	(4, 5)	
7() 7(-)	5 13	0	3	1_5	, ,	

List of Type I congruences

Values of parameters in Theorem 2

								_			
f(z)	Type I		f(z)	ℓ	m	m'	ψ	(k, N)			
	ℓ	m	m'	ψ	(k, N)	$\eta(z)^2 \eta(2z)^2 \eta(3z)^2 \eta(6z)^2$	2	0	1	1_6 $1_2\left(\frac{\cdot}{3}\right)$	(4, 6)
	3	0	1			$\eta(2) \eta(22) \eta(32) \eta(02)$	5	0	3	$12 (\overline{3})$	(4, 0)
$\Delta(z)$	5 7	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	2 4	11	(12, 1)	$\eta(3z)^{8}$	2	0	1	19	(4, 9)
	691	0	11			$\frac{\eta(z)^2\eta(11z)^2}{\eta(z)^2\eta(11z)^2}$	5	0	1	$1_3\left(\frac{\cdot}{3}\right)$ 1_{11}	(2, 11)
	2	0	1			$\eta(z) \eta(112)$ $\eta(z) \eta(2z) \eta(7z) \eta(14z)$	2	0	1	114	(2, 11)
$\eta(z)^8 \eta(2z)^8$	3 5	0	1 2	1_2	(8,2)	$\eta(z)\eta(3z)\eta(5z)\eta(15z)$	2	0	1	115	(2, 15)
	17	0	7	_		$\eta(2z)^2\eta(10z)^2$	2	0	1 1	1 ₂₀	(2, 20)
	2	0	1	13		$\eta(3z)^2\eta(9z)^2$	3	0	1	$1_9\left(\frac{\cdot}{3}\right)$	(2, 27)
$\eta(z)^6\eta(3z)^6$	3 13	0	1 5	$\left(\frac{\cdot}{3}\right)$	(6, 3)	$\eta(6z)^4$	2	0	1 1	1_{36} $1_{12} \left(\frac{\cdot}{3}\right)$	(2, 36)
		Ť		13							
$\eta(2z)^{12}$	2 3	0	1 1	$egin{array}{c} 1_4 \ 1_4 \end{array}$	(6, 4)						
$\eta(z)^4\eta(5z)^4$	2 5 13	0 0 0	1 3 3	$\begin{pmatrix} 1_5 \\ \left(\frac{\cdot}{5}\right) \\ 1_5 \end{pmatrix}$	(4, 5)						

Remarks:

1 No congruences of type I for f with non-trivial character χ .

Remarks:

- 1 No congruences of type I for f with non-trivial character χ .
- When $\ell \mid N$, we use $\eta(\ell z) \equiv \eta(z)^{\ell} \pmod{\ell}$ to obtain an eta-quotient newform g with with ℓ -free level s.t. $g \equiv f \pmod{\ell}$.

Remarks:

Outline

- 1 No congruences of type I for f with non-trivial character χ .
- When $\ell \mid N$, we use $\eta(\ell z) \equiv \eta(z)^{\ell} \pmod{\ell}$ to obtain an eta-quotient newform g with with ℓ -free level s.t. $g \equiv f \pmod{\ell}$.
- 3 We can associate the elliptic curve $E: y^2 y = x^3 x$, to the eta-quotient newform $f(z) = \eta(z)^2 \eta(11z)^2$, whose coefficients obey the congruence

$$a_E(p) \equiv p+1 \pmod 5$$
 for $p \nmid 55$ $p+1-\#E(\mathbb{F}_p) \equiv p+1 \pmod 5$ $\#E(\mathbb{F}_p) \equiv 0 \pmod 5$.

Exceptional Congruences for Eta-Quotient Newforms

Remarks:

Outline

- 1 No congruences of type I for f with non-trivial character χ .
- 2 When $\ell \mid N$, we use $\eta(\ell z) \equiv \eta(z)^{\ell} \pmod{\ell}$ to obtain an eta-quotient newform g with with ℓ -free level s.t. $g \equiv f \pmod{\ell}$.
- 3 We can associate the elliptic curve $E: y^2 y = x^3 x$, to the eta-quotient newform $f(z) = \eta(z)^2 \eta(11z)^2$, whose coefficients obey the congruence

$$\begin{split} a_E(p) &\equiv p+1 \pmod 5 \text{ for } p \nmid 55 \\ p+1-\#E(\mathbb{F}_p) &\equiv p+1 \pmod 5 \\ \#E(\mathbb{F}_p) &\equiv 0 \pmod 5. \end{split}$$

4 (Combinatorial Interpretation) Let

$$\sum_{n>0} v(n)q^n = \prod_{n>1} (1-q^n)^2 (1-q^{11n})^2.$$

Then we have $v(n) = v_e(n) - v_o(n)$. Hence, we obtain for all (n, 11) = 1,

$$v(n-1)\equiv a_{11}(n)\pmod 5$$
 where $a_{11}(n)=\sum_{\substack{d\mid n\\gcd(d,11)=1}}d.$

イロト イ刷ト イラト イラト

Framework for Type II congruences

The form f satisfies a Type II congruence provided for all primes p with $\left(\frac{p}{\ell}\right)=-1$,

$$a(p) \equiv 0 \pmod{\ell}$$
.

Main Results

Theorem (Sullivan, Stone, S., Jin)

Let $f \in S_k(\Gamma_0(N), \chi)$ be an eta-quotient newform and let ℓ be an exceptional prime of Type II for f. Then we have

$$\Theta^{\frac{\ell+1}{2}}(f\otimes 1_N)\equiv \Theta(f\otimes 1_N)\pmod{\ell},$$

and we have $\ell < k$ or

$$\ell = \begin{cases} 2k - 1 & \text{if} \quad f \mid U_{\ell} \not\equiv 0 \pmod{\ell} \\ 2k - 3 & \text{if} \quad f \mid U_{\ell} \equiv 0 \pmod{\ell} \end{cases}.$$

	// A/\	
		χ
23	(12, 1)	1_1
3	(8, 2)	12
3	(6,3)	13
3	(6,4)	12
11	(6, 16)	12
7	(5,4)	(=4)
<i>'</i>	(5,64)	$\left(\frac{-4}{\cdot}\right)$
3	(3,7)	$\left(\frac{-7}{\cdot}\right)$
3		
5	(4, 9)	13
7		
2	(3, 12)	$\left(\frac{-3}{\cdot}\right)$
3	(3, 48)	$\begin{pmatrix} \frac{-3}{\cdot} \\ \frac{-3}{\cdot} \end{pmatrix}$
3	(2, 14)	114
	(0.15)	(-4)
3		$\begin{pmatrix} -4 \\ -4 \end{pmatrix}$
	(3,64)	(-4)
1	(2, 20)	1
3	(2,20)	1 ₂₀
	(2.36)	1.
3		16
	(2, 144)	1 ₁₂
	3 3 11 7 3 3 5 7 3 3 3 3	23 (12,1) 3 (8,2) 3 (6,3) 3 (6,4) 7 (5,4) (5,64) 3 (3,7) 3 (3,12) (3,48) 3 (2,14) 3 (3,16) (3,64) 3 (2,20)

Exceptional Congruences for Eta-Quotient Newforms

Remarks on Type II Congruences

1 We recall that a form f has CM by $\chi = \left(\frac{D_K}{\cdot}\right)$ associated to K if and only if $f \otimes \chi = f$. Serre's (1985) work implies

$$f$$
 is a CM newform $\implies \lim_{X \to \infty} \frac{\#\{0 \le n \le X : a(n) \ne 0\}}{X} = 0$

When ℓ is exceptional of Type II for one of CM forms, its coefficients vanish modulo ℓ for a set of Dirichlet density >1/2. We further remark that if f is a newform with odd weight and real coefficients, then Corollary 1.2 of Schutt (2009) asserts that f has quadratic nebentypus character ψ and it has CM by this character.

1 We recall that a form f has CM by $\chi = \left(\frac{D_K}{\cdot}\right)$ associated to K if and only if $f \otimes \chi = f$. Serre's (1985) work implies

$$f$$
 is a CM newform $\implies \lim_{X \to \infty} \frac{\#\{0 \le n \le X : a(n) \ne 0\}}{X} = 0$

Main Results 0000000000

When ℓ is exceptional of Type II for one of CM forms, its coefficients vanish modulo ℓ for a set of Dirichlet density > 1/2. We further remark that if f is a newform with odd weight and real coefficients, then Corollary 1.2 of Schutt (2009) asserts that f has quadratic nebentypus character ψ and it has CM by this character.

2 Suppose that ℓ is exceptional of Type I with $m'-m=\frac{\ell-1}{2}$. Then we have, for all primes $p \nmid N\ell$,

$$a(p) \equiv \rho^m (1 + \rho^{m'-m}) \equiv \rho^m \left(1 + \rho^{\frac{\ell-1}{2}}\right) \equiv \rho^m \left(1 + \left(\frac{\rho}{\ell}\right)\right) \equiv \begin{cases} 2\rho^m, & \left(\frac{\rho}{\ell}\right) = 1\\ 0, & \left(\frac{\rho}{\ell}\right) = -1 \end{cases}$$

Hence, ℓ is exceptional of Type II.

Exceptional Congruences for Eta-Quotient Newforms

Extensions of Type I to prime powers

Swinnerton-Dyer extends his congruence results on ${\it N}=1$ to prime power modulus.

$$\begin{split} \tau(n) &\equiv 1537 \, \sigma_{11}(n) \pmod{2^{12}} \text{ if } n \equiv 5 \pmod{8} \\ \tau(n) &\equiv n^{-30} \, \sigma_{71}(n) \pmod{5^3} \text{ if } \gcd(n,5) = 1. \\ \tau(n) &\equiv n^{-610} \, \sigma_{1231}(n) \left\{ \begin{array}{c} \pmod{3^6} \text{ if } n \equiv 1 \pmod{3}, \\ \pmod{3^7} \text{ if } n \equiv 2 \pmod{3}. \end{array} \right. \end{split}$$

Exceptional Congruences for Eta-Quotient Newforms

Swinnerton-Dver extends his congruence results on N=1 to prime power modulus.

$$\begin{split} \tau(n) &\equiv 1537 \, \sigma_{11}(n) \pmod{2^{12}} \text{ if } n \equiv 5 \pmod{8} \\ \tau(n) &\equiv n^{-30} \, \sigma_{71}(n) \pmod{5^3} \text{ if } \gcd(n,5) = 1. \\ \tau(n) &\equiv n^{-610} \, \sigma_{1231}(n) \left\{ \begin{array}{c} \pmod{3^6} \text{ if } n \equiv 1 \pmod{3}, \\ \pmod{3^7} \text{ if } n \equiv 2 \pmod{3}. \end{array} \right. \end{split}$$

Our next result is a N > 1 analogue of these congruences.

Theorem (Sullivan, Stone, S., Jin)

Let ℓ be an exceptional prime of Type I for an eta-quotient newform f. Let t>1 and let $0 \le m < m' \le \phi(\ell^t)$ with $m + m' \equiv k - 1 \pmod{\phi(\ell^t)}$. The following table gives congruences of the form.

$$a(p) \equiv p^m + p^{m'} \pmod{\ell^t}$$
 for all $p \equiv b \pmod{d}$. (1)

Parameter values in Theorem 4

<i>((</i>)	10	()		1	-
f(z)	ℓ	(m, m')	t	Ь	d
$\eta(z)^8\eta(2z)^8$	2	(0,7)	6	all residue classes	64
1/(2) 1/(22)	3	(12,13)	3	all residue classes	27
	2	(0,5)	4	5, 7, 11, 19	24
$\eta(z)^{6}\eta(3z)^{6}$	2	(0,5)	5	13, 17, 23	24
	2	(0,5)	6	1	24
	2	(0,5)	8	3	8
	2	(0,5)	9	7	8
$\eta(2z)^{12}$	2	(0,5)	10	5	8
	2	(0,5)	11	1	8
	3	(1,4)	2	2, 5	9
		(1,4)	3	8, 17, 26	27
$\eta(z)^4\eta(5z)^4$	5	(1,2)	2	1, 6, 7, 11, 16, 18, 21, 24	25
	2	(0,1)	2	3	4
$\eta(3z)^8$	3	(0,3)	4	${3n+1:0\leq n\leq 26}\cup{26,53,80}$	81
$\eta(z)^2 \eta(2z)^2 \eta(3z)^2 \eta(6z)^2$	2	(0,1)	2	all residue classes	4
$\eta(z)^2\eta(11z)^2$	5	(0,1)	2	1, 6, 11, 16, 21	25
$\eta(z)\eta(2z)\eta(7z)\eta(14z)$	3	(0,1)	2	1, 4, 7	9
$\eta(z)\eta(3z)\eta(5z)\eta(15z)$	2	(0,1)	3	all residue classes	8
$\eta(3z)^2\eta(9z)^2$	3	(0,1)	3	1, 10, 19, 26	27

Extensions of Type II to prime powers

Theorem (Sullivan, Stone, S., Jin)

Let ℓ be an exceptional prime of Type II for an eta-quotient newform f. Let t be a positive integer. The following table gives all congruences of the form

Main Results 000000000

$$f\otimes 1_\ell \equiv f\otimes \left(rac{\cdot}{\ell}
ight)\pmod{\ell^t}.$$

f(z)	ℓ	t
$\eta(2z)^{12}$	3	1, 2, 3
$\eta(3z)^8$	3	≥ 1
$\eta(2z)^3\eta(6z)^3$	3	≥ 1
$\eta(3z)^2\eta(9z)^2$	3	≥ 1
η (6z) ⁴	3	≥ 1

Filtrations
•0000

- Motivation and Tools
- 2 Main Results
- 3 Filtrations
- 4 Proofs

Modular forms mod ℓ

• Let $\ell \geq 5$ be prime, and let $N \geq 1$. For $k \geq 0$,

$$M_k(\Gamma_0(N),\chi)_{(\ell)} := \{ f \in M_k(\Gamma_0(N),\chi) : q\text{-exp}(f) \in \mathbb{Z}_{(\ell)}[[q]] \}.$$

• We define $\widetilde{M}^{(\ell)}(\Gamma_0(N)) := \{\widetilde{f} : f \in M_k(\Gamma_0(N), \chi)_{(\ell)}\} \subset \mathbb{F}_{\ell}[[q]].$

Modular forms mod ℓ

• Let $\ell \geq 5$ be prime, and let $N \geq 1$. For $k \geq 0$,

$$M_k(\Gamma_0(N),\chi)_{(\ell)}:=\big\{f\in M_k(\Gamma_0(N),\chi)\ :\ q ext{-exp}(f)\in\mathbb{Z}_{(\ell)}[[q]]\,\big\}.$$

- We define $\widetilde{M}^{(\ell)}(\Gamma_0(N)) := \{\widetilde{f} : f \in M_k(\Gamma_0(N), \chi)_{(\ell)}\} \subset \mathbb{F}_{\ell}[[q]].$
- For $\tilde{f} \neq 0$,

Outline

$$w_{\ell}(\widetilde{f}) := \min \left\{ k' \geq 0 : \exists g \in M_{k'}(\Gamma_0(N), \chi)_{(\ell)} \text{ with } \widetilde{g} = \widetilde{f} \right\}, \qquad w_{\ell}(0) := -\infty.$$

Modular forms mod ℓ

• Let $\ell \geq 5$ be prime, and let $N \geq 1$. For $k \geq 0$,

$$M_k(\Gamma_0(N), \chi)_{(\ell)} := \{ f \in M_k(\Gamma_0(N), \chi) : q - \exp(f) \in \mathbb{Z}_{(\ell)}[[q]] \}.$$

- We define $\widetilde{M}^{(\ell)}(\Gamma_0(N)) := \{\widetilde{f} : f \in M_k(\Gamma_0(N), \chi)_{(\ell)}\} \subset \mathbb{F}_{\ell}[[q]].$
- For $\tilde{f} \neq 0$,

Outline

$$w_{\ell}(\widetilde{f}) := \min \left\{ k' \geq 0 : \exists g \in M_{k'}(\Gamma_0(N), \chi)_{(\ell)} \text{ with } \widetilde{g} = \widetilde{f} \right\}, \qquad w_{\ell}(0) := -\infty.$$

• If $0 \neq f \in M_k(\Gamma_0(N), \chi)_{(\ell)}$, then

$$w_\ell(\widetilde{f}) \equiv k \pmod{\ell-1}$$
 since $\widetilde{E}_{\ell-1} = 1$.

• For t>1, the filtration modulo ℓ^t is well defined up to $(\ell-1)\ell^{t-1}$.

Exceptional Congruences for Eta-Quotient Newforms

Sturm Bound

• Sturm's theorem provides a method to test whether two modular forms with ℓ -integral coefficients are congruent modulo a prime ℓ .

Sturm Bound

- Sturm's theorem provides a method to test whether two modular forms with ℓ -integral coefficients are congruent modulo a prime ℓ .
- Let $\operatorname{ord}_{\ell}(f(z)) = \min\{n \geq 0 : a(n) \neq 0 \pmod{\ell}\}.$
- Buzzard showed that Sturm Bound for forms with non-trivial Nebentypus agrees with Sturm bound for $\Gamma_0(N)$.

Exceptional Congruences for Eta-Quotient Newforms

- Sturm's theorem provides a method to test whether two modular forms with ℓ-integral coefficients are congruent modulo a prime ℓ.
- Let $\operatorname{ord}_{\ell}(f(z)) = \min\{n \geq 0 : a(n) \neq 0 \pmod{\ell}\}.$
- Buzzard showed that Sturm Bound for forms with non-trivial Nebentypus agrees with Sturm bound for $\Gamma_0(N)$.

Theorem

Outline

Let $N \geq 1$, let ℓ be prime and let $f(z), g(z) \in M_k(\Gamma_0(N), \chi)_{(\ell)}$. Assume that

$$\operatorname{ord}_{\ell}(f-g) > \frac{k}{12}[\Gamma_0(1):\Gamma_0(N)] \ \text{ where } \ [\Gamma_0(1):\Gamma_0(N)] = N \prod_{p \ prime \ : \ p \mid N} \left(1 + \frac{1}{p}\right).$$

Then we have $\operatorname{ord}_{\ell}(f(z)-g(z))=\infty.$

The same bound works modulo ℓ^t for t > 1.

Ramanujan's Theta operator mod ℓ

Ramanujan Theta operator

$$\theta := q \frac{d}{dq} = \frac{1}{2\pi i} \frac{d}{dz}, \qquad \theta \left(\sum_{n \geq 0} a(n) q^n \right) = \sum_{n \geq 0} n \, a(n) \, q^n.$$

Although θ does not preserve modularity, but it behaves nicely mod ℓ .

$$\theta:\ \widetilde{M}_k^{(\ell)}(\Gamma_0(1))\longrightarrow \widetilde{M}_{k+\ell+1}^{(\ell)}(\Gamma_0(1)) \text{ for } \ell\geq 5.$$

- Filtration behavior: $w_{\ell}(\theta \widetilde{f}) = w_{\ell}(\widetilde{f}) + \ell + 1 \alpha(\ell 1), \quad \alpha = 0 \text{ if } \ell \nmid w_{\ell}(\widetilde{f}).$
- (Chen-Kiming) For $\ell \geq 5, t > 1$ and $\ell \nmid N$, the theta operator induces

$$\theta: \ \widetilde{M}_k^{(\ell^t)}(\Gamma_1(N)) \longrightarrow \widetilde{M}_{k+k(t)}^{(\ell^t)}(\Gamma_1(N)), \qquad k(t) = 2 + 2\ell^{t-1}(\ell-1).$$

(Katz-Gross) Extended these constructions to levels N > 4.

Filtrations

Theorem (Sullivan, Stone, S., Jin)

Let $N \ge 1$ and let $\ell \in \{2,3\}$. We define

$$j=j_{\ell,t}=\begin{cases} 2+\phi(2^t), & \text{if } \ell=2 \text{ and } t\geq 4\\ 2+\phi(3^t), & \text{if } \ell=3 \text{ and } t\geq 2. \end{cases}$$

Then there exists an Eisenstein series $F_{\ell,t}(z) \in M_i(\Gamma_0(\ell^{t-1}))$ such that

$$E_2(z) \equiv F_{\ell,t}(z) \pmod{\ell^t}$$
.

Theta Operator modulo powers of 2 and 3

Theorem (Sullivan, Stone, S., Jin)

Let $N \ge 1$ and let $\ell \in \{2,3\}$. We define

$$j=j_{\ell,t}=\begin{cases} 2+\phi(2^t), & \text{if } \ell=2 \text{ and } t\geq 4\\ 2+\phi(3^t), & \text{if } \ell=3 \text{ and } t\geq 2. \end{cases}$$

Then there exists an Eisenstein series $F_{\ell,t}(z) \in M_j(\Gamma_0(\ell^{t-1}))$ such that

$$E_2(z) \equiv F_{\ell,t}(z) \pmod{\ell^t}$$
.

Consequently, for every $f \in M_k(\Gamma_0(N), \chi)$ one has the congruence

$$\theta f = \vartheta f - \frac{k}{12} E_2 f \equiv \vartheta f - \frac{k}{12} F_{\ell,t} f \pmod{\ell^t}$$

Hence, we have $\theta f \in M_{i+k}(\Gamma_0(\ell^{t-1}N), \chi) \pmod{\ell^t}$.

- 1 Motivation and Tools
- 2 Main Results
- 6 Filtrations
- Proofs

Sketch of Proof of Theorem 2

• Let N > 1, and let k > 2 be even. We recall that f satisfies a Type I congruence if and only if the following holds:

$$a(p) \equiv \psi(p)p^m + \phi(p)p^{m'} \pmod{\ell}, \ \psi(p)\phi(p)p^{m'+m} \equiv \chi(p)p^{k-1} \pmod{\ell}.$$
 (2)

• Let ψ, ϕ be real-valued char. mod N and let $\chi = 1_N$. Let $\ell > 3$ be prime and $\ell \nmid N$. By Dirichlet's Theorem on primes in AP in (2), it follows that

$$m+m'\equiv k-1\pmod{\ell-1},\quad \psi\phi=1_N\quad \text{and}\quad m\neq m'.$$
 (3)

• Let $N \ge 1$, and let $k \ge 2$ be even. We recall that f satisfies a Type I congruence if and only if the following holds:

$$a(p) \equiv \psi(p)p^m + \phi(p)p^{m'} \pmod{\ell}, \ \psi(p)\phi(p)p^{m'+m} \equiv \chi(p)p^{k-1} \pmod{\ell}.$$
 (2)

• Let ψ, ϕ be real-valued char. mod N and let $\chi = 1_N$. Let $\ell \geq 3$ be prime and $\ell \nmid N$. By Dirichlet's Theorem on primes in AP in (2), it follows that

$$m+m'\equiv k-1\pmod{\ell-1},\quad \psi\phi=1_N\quad \text{and}\quad m\neq m'.$$

- We prove the result in case of $3 \le m' m + 1 \le \ell 2$.
- We note that since $f \in S_k(\Gamma_0(N),\chi)$ is a normalized Hecke eigenform, we have

$$a(m)a(n) = \sum_{d \mid \gcd(m,n)} \chi(d)d^{k-1}a\left(\frac{mn}{d^2}\right). \tag{4}$$

Proof (Continued)

• Let $E = G_{m'-m+1} \otimes \psi 1_N$. For all primes $p \nmid N\ell$, using (2) and (3), we have

$$a(p) \equiv p^m \, \psi(p)(1+p^{m'-m}) \equiv p^m \, \psi(p) \, \sigma_{m'-m}(p) \pmod{\ell}.$$

• Multiplying both sides of by $p1_N(p)$, we have

$$p \, 1_N(p) \, \mathsf{a}(p) \equiv p^{m+1} \, 1_N(p) \, \psi(p) \, \sigma_{m'-m}(p) \pmod{\ell} \, \forall \, p.$$

• Let $E = G_{m'-m+1} \otimes \psi 1_N$. For all primes $p \nmid N\ell$, using (2) and (3), we have

$$a(p) \equiv p^m \, \psi(p)(1+p^{m'-m}) \equiv p^m \, \psi(p) \, \sigma_{m'-m}(p) \pmod{\ell}.$$

• Multiplying both sides of by $p1_N(p)$, we have

$$p \, 1_N(p) \, a(p) \equiv p^{m+1} \, 1_N(p) \, \psi(p) \, \sigma_{m'-m}(p) \pmod{\ell} \, \forall p.$$

• Since f and E are normalized Hecke eigenforms for all T_p , using multiplicativity (4) and applying induction on n gives:

$$n \, 1_N(n) \, a(n) \equiv n^{m+1} \, 1_N(n) \, \psi(n) \, \sigma_{m'-m}(n) \pmod{\ell}.$$

We recall that the Eisenstein series has q-expansion

$$G_{m'-m+1}(z) = 1 - \frac{2(m'-m+1)}{B_{m'-m+1}} \sigma_{m'-m}(n) q^n \in M_{m'-m+1}(\Gamma_0(1)).$$

Therefore, we have

$$\theta(f \otimes 1_N) \equiv \theta^{m+1}(E) \pmod{\ell}.$$

• By induction on j, it follows that for all $0 \le j \le m$, we have

$$w_{\ell}(\theta^{j}E) = w_{\ell}(E) + j(\ell+1) \not\equiv 0 \pmod{\ell}.$$

• By induction on j, it follows that for all $0 \le j \le m$, we have

$$w_{\ell}(\theta^{j}E) = w_{\ell}(E) + j(\ell+1) \not\equiv 0 \pmod{\ell}.$$

This implies that

Outline

$$w_{\ell}(\theta^{m+1}E) = w_{\ell}(\theta^mE) + \ell + 1 = m' - m + 1 + (m+1)(\ell+1).$$

• On the other hand, we have

$$w_{\ell}(\theta(f \otimes 1_N)) \leq k + \ell + 1.$$

• By induction on j, it follows that for all $0 \le j \le m$, we have

$$w_{\ell}(\theta^{j}E) = w_{\ell}(E) + j(\ell+1) \not\equiv 0 \pmod{\ell}.$$

• This implies that

Outline

$$w_{\ell}(\theta^{m+1}E) = w_{\ell}(\theta^{m}E) + \ell + 1 = m' - m + 1 + (m+1)(\ell+1).$$

• On the other hand, we have

$$w_{\ell}(\theta(f \otimes 1_N)) \leq k + \ell + 1.$$

- Thus, we deduce that $m'+m\ell+1 \le k$. If $m \ne 0$ then $m'>m \ge 1$ implies that $\ell \le k-3 < k$.
- For m = 0, we have m' = k 1, and one can show that either $\ell < k$ or the following holds:

$$f \otimes 1_N \equiv G_k \otimes \psi 1_N \pmod{\ell}$$

implying that $\ell \mid (a(p) - \psi(p)\sigma_{k-1}(p))$.

Sketch of Proof of Theorem 7

• Let $\ell=3$, let $t\geq 2$, let $j=2+\phi(3^t)$ and let j'=2. Since $j\equiv j'\pmod{\phi(3^t)}$, by Kummer's congruence, we have

$$(\ell^{j-1}-1)\frac{B_j}{j} + \frac{1-\frac{1}{\ell}}{j} - j \equiv B_{j'} + \frac{1-\frac{1}{\ell}}{j'} - j \pmod{\ell^t}.$$
 (5)

• Using Clausen-Von Staudt Theorem, we deduce that

$$v_{\ell}\left(\ell^{j-1}\frac{B_{j}}{j}\right) = \phi(\ell^{t}) \ge t. \tag{6}$$

Sketch of Proof of Theorem 7

• Let $\ell=3$, let $t\geq 2$, let $j=2+\phi(3^t)$ and let j'=2. Since $j\equiv j'\pmod{\phi(3^t)}$, by Kummer's congruence, we have

$$(\ell^{j-1}-1)\frac{B_j}{j} + \frac{1-\frac{1}{\ell}}{j} - j \equiv B_{j'} + \frac{1-\frac{1}{\ell}}{j'} - j \pmod{\ell^t}.$$
 (5)

• Using Clausen-Von Staudt Theorem, we deduce that

$$v_{\ell}\left(\ell^{j-1}\frac{B_{j}}{j}\right) = \phi(\ell^{t}) \ge t. \tag{6}$$

• Substituting (6) in (5), and simplifying gives

$$\frac{-2(2+\phi(3^t))}{B_{2+\phi(3^t)}} \equiv \frac{2}{B_2} \pmod{3^t}.$$

Sketch of Proof of Theorem 7

• Let $\ell=3$, let $t\geq 2$, let $j=2+\phi(3^t)$ and let j'=2. Since $j\equiv j'\pmod{\phi(3^t)}$, by Kummer's congruence, we have

$$(\ell^{j-1}-1)\frac{B_j}{j} + \frac{1-\frac{1}{\ell}}{j} - j \equiv B_{j'} + \frac{1-\frac{1}{\ell}}{j'} - j \pmod{\ell^t}.$$
 (5)

• Using Clausen-Von Staudt Theorem, we deduce that

$$v_{\ell}\left(\ell^{j-1}\frac{B_{j}}{j}\right) = \phi(\ell^{t}) \ge t.$$
 (6)

Substituting (6) in (5), and simplifying gives

$$\frac{-2(2+\phi(3^t))}{B_{2+\phi(3^t)}} \equiv \frac{2}{B_2} \pmod{3^t}.$$

Hence, we conclude that

$$E_{2+\phi(3^t)}(z) = E_2^{1_1,1_3}(z) = -\frac{1}{2}E_2(z)|(1-3V_3) \pmod{3^t}. \tag{7}$$

• Acting with the operator $(1-3V_3)^{-1}$ on both sides of (7) gives the desired result.

Let $f(z) = \sum a(n)q^n = \eta(z)^8 \eta(2z)^8 \in S_8(\Gamma_0(2))$, and let $(\ell, t) = (3, 3)$.

From Table 16, we have

$$a(p) \equiv p^{12} + p^{13} \equiv p^{12}(1+p) \equiv p^{12}(1+p^{19}) \pmod{27} \ \forall \text{ primes } p \notin \{2,3\}.$$

Let $f(z) = \sum a(n)q^n = \eta(z)^8 \eta(2z)^8 \in S_8(\Gamma_0(2))$, and let $(\ell, t) = (3, 3)$.

From Table 16, we have

$$a(p) \equiv p^{12} + p^{13} \equiv p^{12}(1+p) \equiv p^{12}(1+p^{19}) \pmod{27} \ \forall \text{ primes } p \not\in \{2,3\}.$$

• Multiplying both sides by $p^3 1_2(p)$, we obtain

$$p^3 \ 1_2(p) \ a(p) \equiv p^{15} \ 1_2(p) \ (1+p^{19}) \pmod{27} \ \forall$$
 primes p .

Let
$$f(z) = \sum a(n)q^n = \eta(z)^8 \eta(2z)^8 \in S_8(\Gamma_0(2))$$
, and let $(\ell, t) = (3, 3)$.

From Table 16, we have

Outline

$$a(p) \equiv p^{12} + p^{13} \equiv p^{12}(1+p) \equiv p^{12}(1+p^{19}) \pmod{27} \ \forall \text{ primes } p \notin \{2,3\}.$$

• Multiplying both sides by $p^3 1_2(p)$, we obtain

$$p^3 1_2(p) a(p) \equiv p^{15} 1_2(p) (1 + p^{19}) \pmod{27} \ \forall \text{ primes } p.$$

• Using (4) and induction on n gives the following relation for all $n \ge 1$:

$$1_2(n) n^3 a(n) \equiv 1_2(n) n^{15} \sigma_{19}(n) \pmod{27}$$

· Hence, we conclude that

$$\theta^3(f\otimes 1_2)\equiv \theta^{15}(G_{20}\otimes 1_2)\pmod{27}.$$

Let
$$f(z) = \sum a(n)q^n = \eta(z)^8 \eta(2z)^8 \in S_8(\Gamma_0(2))$$
, and let $(\ell, t) = (3, 3)$.

From Table 16, we have

Outline

$$a(p) \equiv p^{12} + p^{13} \equiv p^{12}(1+p) \equiv p^{12}(1+p^{19}) \pmod{27} \ \forall \text{ primes } p \not\in \{2,3\}.$$

• Multiplying both sides by $p^3 1_2(p)$, we obtain

$$p^3 \ 1_2(p) \ a(p) \equiv p^{15} \ 1_2(p) \ (1+p^{19}) \pmod{27} \ \forall \quad \text{primes } p.$$

• Using (4) and induction on n gives the following relation for all $n \ge 1$:

$$1_2(n) n^3 a(n) \equiv 1_2(n) n^{15} \sigma_{19}(n) \pmod{27}$$

Hence, we conclude that

$$\theta^3(f\otimes 1_2)\equiv \theta^{15}(G_{20}\otimes 1_2)\pmod{27}.$$

• Using Theorem 7, we obtain that $\theta^3(f \otimes 1_2) \in S_{68}(\Gamma_0(36))$ and $\theta^{15}(G_{20} \otimes 1_2) \in S_{320}(\Gamma_0(36))$. Since $E_{18} \equiv 1 \pmod{27}$, to prove that

$$\theta^3(f \otimes 1_2) E_{18}^{14} \equiv \theta^{15}(G_{20} \otimes 1_2) \pmod{27}$$

in $S_{320}(\Gamma_0(36))$, using Theorem 6, it suffices to check coefficients of index $n \le 1920$.

Sketch of Proof of Type II Congruences

Let $\ell > 3$ be an exceptional prime of Type II for an eta-quotient newform f. Then for all primes $p \nmid N\ell$, we have $a(p) \equiv 0 \pmod{\ell}$.

We compute

$$p\left[\left(rac{p}{\ell}
ight)-1
ight]$$
 $a(p)\equiv 0\pmod{\ell}\ orall\ ext{primes}\ p.$

Sketch of Proof of Type II Congruences

Let $\ell > 3$ be an exceptional prime of Type II for an eta-quotient newform f. Then for all primes $p \nmid N\ell$, we have $a(p) \equiv 0 \pmod{\ell}$.

We compute

Outline

$$p\left[\left(rac{p}{\ell}
ight)-1
ight] \mathit{a}(\mathit{p})\equiv 0\pmod{\ell}\ orall\ \mathrm{primes}\ \mathit{p}.$$

• Multiplying both sides by $p 1_N(p)$ gives

$$p^{\frac{\ell+1}{2}} \cdot 1_N(p) \cdot a(p) \equiv p \cdot 1_N(p) \cdot a(p) \pmod{\ell}.$$

• Since f is a normalized eigenform for all T_p , using (4), induction on $n \ge 0$ gives

$$n^{\frac{\ell+1}{2}} \cdot 1_N(n) \cdot a(n) \equiv n \cdot 1_N(n) \cdot a(n) \pmod{\ell}.$$

Sketch of Proof of Type II Congruences

Let $\ell > 3$ be an exceptional prime of Type II for an eta-quotient newform f. Then for all primes $p \nmid N\ell$, we have $a(p) \equiv 0 \pmod{\ell}$.

We compute

Outline

$$p\left[\left(rac{p}{\ell}
ight)-1
ight]$$
 $a(p)\equiv 0\pmod{\ell}\ orall\ ext{primes}\ p.$

Multiplying both sides by $p 1_N(p)$ gives

$$p^{\frac{\ell+1}{2}} \cdot 1_N(p) \cdot a(p) \equiv p \cdot 1_N(p) \cdot a(p) \pmod{\ell}.$$

• Since f is a normalized eigenform for all T_p , using (4), induction on $n \ge 0$ gives

$$n^{\frac{\ell+1}{2}} \cdot 1_N(n) \cdot a(n) \equiv n \cdot 1_N(n) \cdot a(n) \pmod{\ell}.$$

Hence, we conclude that

$$\theta^{\frac{\ell+1}{2}}(f\otimes 1_N)\equiv \theta(f\otimes 1_N)\pmod{\ell}.$$

To see that $\ell < 2k$, we argue by contradiction, and use $w_\ell(\theta^{\frac{\ell+1}{2}}(f\otimes 1_N)) = w_\ell(f\otimes 1_N))$ to obtain $\ell\in\{\pm 1\}$, which isn't possible.

To see that $\ell < 2k$, we argue by contradiction, and use $w_{\ell}(\theta^{\frac{\ell+1}{2}}(f\otimes 1_N))=w_{\ell}(f\otimes 1_N))$ to obtain $\ell\in\{\pm 1\}$, which isn't possible.

Let $k < \ell < 2k$. Then we have

- $f \mid U_{\ell} \equiv 0 \pmod{\ell} \implies \ell = 2k 3$
- $f \mid U_{\ell} \not\equiv 0 \pmod{\ell} \implies \ell = 2k-1$

To see that $\ell < 2k$, we argue by contradiction, and use $w_{\ell}(\theta^{\frac{\ell+1}{2}}(f\otimes 1_N))=w_{\ell}(f\otimes 1_N))$ to obtain $\ell\in\{\pm 1\}$, which isn't possible.

Let $k < \ell < 2k$. Then we have

Outline

- $f \mid U_{\ell} \equiv 0 \pmod{\ell} \implies \ell = 2k 3$
- $f \mid U_{\ell} \not\equiv 0 \pmod{\ell} \implies \ell = 2k-1$

We note that $\ell - k + 1 \le \frac{\ell+1}{2} \le \ell - 2$. We compute

$$\begin{aligned} k + \ell + 1 &= w_{\ell}(\theta f) = w_{\ell}(\theta^{\frac{\ell+1}{2}} f) = k + \frac{\ell+1}{2} (\ell-1) - \alpha(\ell-1) \\ &= \begin{cases} k + \frac{\ell+1}{2} (\ell-1) - (\ell-k+2)(\ell-1) \text{ if } f \mid U_{\ell} \equiv 0 \pmod{\ell} \\ k + \frac{\ell+1}{2} (\ell-1) - (\ell-k+1)(\ell-1) \text{ if } f \mid U_{\ell} \not\equiv 0 \pmod{\ell} \end{cases} \end{aligned}$$

To see that $\ell < 2k$, we argue by contradiction, and use $w_{\ell}(\theta^{\frac{\ell+1}{2}}(f\otimes 1_N)) = w_{\ell}(f\otimes 1_N))$ to obtain $\ell\in\{\pm 1\}$, which isn't possible.

Let $k < \ell < 2k$. Then we have

Outline

- $f \mid U_{\ell} \equiv 0 \pmod{\ell} \implies \ell = 2k 3$
- $f \mid U_{\ell} \not\equiv 0 \pmod{\ell} \implies \ell = 2k-1$

We note that $\ell-k+1 \leq \frac{\ell+1}{2} \leq \ell-2$. We compute

$$\begin{aligned} k + \ell + 1 &= w_{\ell}(\theta f) = w_{\ell}(\theta^{\frac{\ell+1}{2}} f) = k + \frac{\ell+1}{2} (\ell-1) - \alpha(\ell-1) \\ &= \begin{cases} k + \frac{\ell+1}{2} (\ell-1) - (\ell-k+2)(\ell-1) \text{ if } f \mid U_{\ell} \equiv 0 \pmod{\ell} \\ k + \frac{\ell+1}{2} (\ell-1) - (\ell-k+1)(\ell-1) \text{ if } f \mid U_{\ell} \not\equiv 0 \pmod{\ell} \end{cases} \end{aligned}$$

Hence, we conclude that

$$\ell \in \begin{cases} 2k - 3 \text{ if } f \mid U_{\ell} \equiv 0 \pmod{\ell} \\ 2k - 1 \text{ if } f \mid U_{\ell} \not\equiv 0 \pmod{\ell} \end{cases}$$

Thank you for your time.

Questions?

