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1. An overview
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Signed partitions

Definition

Let f : N — {0,£1}. For any partition m = (a1, a2, ..., ax) of any n, set
f(ﬂ') = f(a]_)f(a2) s f(ak),

so that f(m) € {0,£1}. The f-signed partition numbers are

p(nf):= Y f(x),

weM[n]

the sum being taken over the set MN[n] of all partitions of n.

First observations:
e p(n,1) = p(n), the “ordinary” partitions.
e p(n,14) =pa(n) for A C N. When clear, write p(n, A).
e Certainly —p(n,1) < p(n,f) <p(n,1).
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Classical partition asymptotics

e (Hardy and Ramanujan, 1918)
p(na 1) ~ (4\/§)_1 exp(’%ﬁ)v K= 2/3

o (Erdds, 1942) Let A C N; suppose gcd(A) =1 and
op = limy wNN}' exists. One has §4 > 0 if and only if

log p(n, A) ~ k+/dan.
o @ := {n: nsquarefree}, then 6o = 6/7% ~ 0.601, so
logp(n, Q) ~ 2v/n.

@ (Roth and Szekeres, 1954) With P the set of primes, one has

log p(n,P) ~ k+/2n/ log n.
These sequences are all asymptotic.
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Some “tricky” signed partition asymptotics

al ,.ar

If n= pi*p5®--- pfr with distinct p;, then

(=1)" ifallaj=1,
0 otherwise.

A(n) = (~1) 7 and p(n) = {

Theorem (D., 2023)
Let k:=my/2/3. For alle >0, as n — oo one has

p(n, p) < €MV and p(n,\) < elzFtaVa,
In addition, for n = 2k, as k — oo one has

log p(2k, 1) ~ V/2k and log p(2k, A) ~ %K\/ﬂ

The behavior for both on odd n is delicate; more-so for \.
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Plot of p(n, i) for n < 100
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o logsc p(n, p)
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Plot of logscp(n, p) for n < 100

logsc(x) := sgn(x) log(|x| + 1)

o logse p(n, pt)
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Plot of logscp(n, ) for n < 10°

logsc(x) := sgn(x) log(|x| + 1)
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2. Legendre-signed partitions
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Legendre-signed partition numbers

Let f : N — {0,£1}. For any partition m = (a1, a, ..., ax) of any n, set
f(r) = f(a1)f(az)--- f(ak),
so that f(m) € {0, £1}. The f-signed partition numbers are

p(n,f):= Z f(m),

weM[n]

the sum being taken over the set N[n] of all partitions of n.

For an odd prime p, let xp(n) be the Legendre symbol (1), namely

+1 nis a quadratic residue (mod p),
Xp(n) = ¢ —1 nis a quadratic nonresidue (mod p),
0 pln
Ask: “Which p(n, xp) have ‘nice’ asymptotic behavior?”
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Legendre-signed partition numbers

For an odd prime p, let x,(n) be the Legendre symbol (g) namely

+1 nis a quadratic residue (mod p),
Xp(n) = ¢ —1 nis a quadratic nonresidue (mod p),

0 pln
Ask: “Which p(n, xp) have ‘nice’ asymptotic behavior?”
logp(n,1) ~ ky/n  and log p(2k, A) ~ Lk+/n.

Theorem (D., 2024)

If p is an odd prime such that p #5 and p # 1 (mod 8), then

logp(n, xp) ~ 3ry /(L= D)n (v =7/2]3).

These sequences are asymptotic.
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Finer asymptotics

Keep k = m/2/3 and note that p(n,1) < n~!exp(k+/n).
Corollary [to next slide] (D., 2024)

If p=5 (mod 8) and p # 5, then as n — oo one has

p(n, xp) < n—3/% exp(%m (1- %)n).

While p(2k, xp) for p =1 (mod 8) behaves similarly, the case of odd
inputs requires case-dependent consideration.

Theorem (D., 2024)

Let L1(xp) = L(1,xp). If p= 3 (mod 4), then as n — oo one has

p(n, xp) < nvPLi(xp)/4m—3/4 exp(%m/(l = I—l))n).
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Why is p = 5 so special? A quick look at circle method

For f : N — C with |f| <1 let
O(z,f) == [JA=F(n)z")"1 =D p(nHz" (2| <1).
n=1 n=0

Compare with

H(l —z")~fn “weighted partition numbers”.

n=1
By Cauchy's theorem we have

1

_ = —n—1
p(n, f) = 5 /|Z|:p ®(z,f)z dz

forall 0 < p < 1.
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A plot of |®(z,1)| [a finite truncation of-]
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A plot of |®(z,1)]
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A plot of |(z, x13)]
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A plot of |®(z, xs)|

ylor Daniels (Purdue Univ.) Signed partition numbers March 14, 2024



A more precise formula when p =1 (mod 4)

Again let L1(xp) = L(1, xp). Recall
p(n, 1) = (4V3)"n L exp(y/m) [ 1+ O(n /%))
Theorem (D., 2024)

Let p # 5 and suppose that p =1 (mod 4). As n — oo one has
p(n.xp) = apn~¥*exp (3 /(1 = D) ) [+ (=1)7, + O(n15)],

where k = m4/2/3,

ap =27 /4374 (p7t — p7) Y exp(L/BL1(Xp)),

and

b _{1 p =1 (mod 8),
P exp(—y/PL1(xp)) P =5 (mod 8) and p # 5.

Li(xp) > 0 for all p, so b, <1 when p=5 (mod 8) and p # 5.
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A plot of |(z, x13)]
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A plot of |®(z, xs)|
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Why is p = 5 so special?

e We “rank” singularities based on their exponential factor exp(cr+/n).

@ Most ®(z, xp) have two principal singularities. ®(z, x5) has four.

Theorem (D., 2024)
Let K =m4/2/3. As n — oo one has

p(n, xs5) = a5n_% eXP(%KJ\/ %”)

X [1 + (—1)"bs + 95 cos(3n — 75) + O(n_%)},

345\ V4 3-5
a5:< ;’6(‘)/_) , b= 2\/_, and 05 =1/2(5 — V5).
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The “signed” term &(n)
o= 1+ (173 ‘f) /25— vB) cos(2n— 5).

so that p(n, xs) = asn~ /4 exp(%ﬁ; %n)@(n).

Computing the values of S(n) for 1 < n < 10, it is surprising to find that
6(2)=0 and S(n) #0 for 1 < n <10 with n# 2.

Indeed, since

COSs E ——1 5_\/5
10/ 2 2

we have

_ 5—/5)2
6(2):52\@_ (2 ¥

Does this mean that p(10m + 2, x5) = 0? There is an error term...
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3. General circle method tools

Taylor Daniels (Purdue Uni Signed partition numbers March 14, 2024



Analytic tools; the circle method

A simple generating function is

o(z,1) = H(l 1zn) =z (<)

n=1
For f : N — C with |f| <1 let

¢(z,f):—ﬁ(1_f ) anf)z (2] < 1).

n=1

By Cauchy's theorem we have

1 —n—1
p(n,f)= 5 /|z|_p d(z)z dz

forall 0 < p < 1.
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A plot of |®(z,1)|
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The saddle point

Zooming in on |®(z)z=""1| with n = 5. We take the radius p ~ 0.626.

o
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Dividing [0, 1) into arcs

We now examine the integral(s)

p(n,f) = L /: d(z)z7 "1 dz:p"/o ®(pe(a))e(—na) da.

2ri

Want to split [0,1) into principal-, major-, and minor- “arcs”.
@ Principal arcs are the “dominant” arcs, usually near 0 and 1. For
p(n, xp) the arc about o = 1/2 is also principal.

@ Major arcs are around reduced rationals a/q € [0,1) with g < Q.

@ Minor arcs are everything else (near a/q with ¢ > Q). Error term.

V(z,f)=V(z Zka(n )2k (2] < 1)

k=1 n=1
d(z) = expV(z)
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What do we need to study p(n, f)?

A “program” described by Gafni for studying p(n,14) which works for us:
@ For the principal arcs, need to know about ) f(n)n™*.

@ For the major arcs, need to know about “residue” sums

Y f(n)  (with (a,q) =1).
n=a (mod q)
@ For the minor arcs, need to know about exponential (“Weyl") sums
> f(n)e(na).
n<X
Gafni's “program” is essentially f(n) := 1,4, giving

Zn_s, Z 1, and Z e(na).

ncA ncA nel[l. X]NA
n=a (mod q)
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A general minor arc result

Theorem (Montgomery and Vaughan, 1977)
Suppose that | — a/q| < g2, (a,q) =1, and 2 < R < g < X/R. Then
X log®? R

Z f(n)e(na) < <is gX S

n<X

uniformly for all multiplicative f with |f]| < 1.

Theorem (D., 2024)

Suppose « is such that: if | — a/q| < 1/(qgX?/3) and (a,q) = 1, then
q > X3, Writing p = e /X, as X — oo one has

V(pe(a),f) < X/log X

uniformly for multiplicative f with |f| < 1.
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4. The vanishing of p(10/ + 2, x5)
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Two curious vanishings

n

Keep xs5(n) = (), and for m = (a1, a2,...,ax) let

Xb(r) = (=1)*xs(a1)xs(2) - - xs(ak) = [xs]()-

Theorem (D., 2024)

One has
n =2 (mod 10),

n=6 (mod 10).

p(”v X5) =0
p(n,xt) =0
and

p(n,xs) = p(n,xt) n =0 (mod 10),

p(n,xs) = —p(n,x) ~ n=8 (mod 10)
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g-series methods

To examine p(n, xs5) and p(n, XI-,) let

[e.e]

(z:9) = (z:9)00 = [ J(1 — 2¢"),

n=0
(z1,---52mi q) = (21:9) - - - (Zm3 9),
and
X(q) :=(q.-9*,-¢°,q% ¢°) and Y(q):=(—-q.9>¢* —q* q°)
so that

1 - 1 - i
w7 =2 p(nxs)a” and == p(n,x})a".
X(q) “= (m:x3) Y(o) 4 (7:5)

Taylor Daniels (Purdue Univ.) Signed partition numbers March 14, 2024



Again
X(q)=(q,—¢°,—¢>,q%¢°) and Y(q):=(-9,4°,¢°>,—q": q°)
Euler's product
©(q):==(q:q) and  om:=p(q").
Using these, we have
X(q)Y(q) = ©(d"%)/¢(q°) = ¢10/ 02,
and thus

30 _ Y ()¢t and 30 _ X(q)SOZfo.

X(q) P2 Y(q) P2
From here, we need 10-dissections of Y (q)¢3o, X(q)¢7o, and 1/¢o.
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g-series methods

An m-dissection of f(q) is

f(q) = ¢°f(q™) + a*f(q™) + -+ ¢" Hmo1(q™).

The Rogers-Ramanujan continued fraction

1 4. 5
R(q) = (qz,q3,q5)_
(4%, % %)
Let Rs := R(q°). From (Hirschhorn, eq. 8.4.4) we have

1 5
S (R;“ +qR: % +2¢?Rs 2 + 3¢°Rs ! + 54
¥ ¥s

~3¢°Rs +29°RE — 4'RE + ¢°RY),

then substitute g with ¢°.
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5. (Bonus) Biasymptotics
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Back to p(n, i) and p(n, A)

A plot of [®(z, u)|.
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Back to i and A

(nf)= > f(r with  f(m) = f(a1)f(a2) - - - f(ak)-

weM[n]

If n= pi*p3?--- p2r with distinct pj, then

A(n) = (—1)31+"'+a’ and pu(n) = {(1)r if all a; =1,

0 otherwise.

Theorem (D., 2023)
Let k :=m+/2/3. For alle >0, as n — oo one has

p(n, ) < €AV and p(n, ) < elzrtaVa,
In addition, for n = 2k, as k — oo one has

log p(2k, u) ~ v2k and log p(2k, A) ~ %m/ﬂ
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Plots for n < 250

logsc x := sgn(x) log(|x| + 1)
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Plots for n < 10°

logsc x := sgn(x) log(|x| + 1)
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The question of odd n is delicate, and is explored in its own paper.

Suppose sup{Re(p) : {(p) = 0} < 1. This is almost certainly unnecessary.

Theorem (Rough statement)

Under above assumption p(n, i) infinitely oscillates between arbitrarily
long streaks where p(n, ) ~ eV1te(Vn) and arbitrarily long streaks of
behaving (—1)"eV™t°(V")  We say p(n, 1) is biasymptotic.

Some difficulties:
e Some p(n,pu) =0.
e For small n, say 50 < n < 10000, one has p(n, p) ~ (—1)"eV".
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What about p(n, A)?

If either Riemann or Simplicity fail, then p(n, \) is biasymptotic too, but
with exponential term exp(3r+/n).

Theorem (D., 2023)

Suppose Riemann and Simplicity hold, and additionally that |('(p)| < C|p|
for all zeros p = % + iy. There is some ¢ > 0 such that: if C < ¢, then

(—1)"logscp(n, A) ~ 2rv/n (k = m/2/3).
Namely p(n, \) is “asymptotic” and p(n,\) = (—1)"exp(3x\/n + o(y/n)).

Moreover, it holds that ¢ > 1017881

The quantity 101781 is nowhere near “optimal’.
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How to “efficiently” compute p(n, f)

With p(0) := 1, for all n one has

=

= Z where o(k) = Z d.

k=0 d|k
Easy generalization
1 n—1
== _ - k/d
p(n,f) == ;)p(k ,F)&(n—k,f), where &(k,f): % f(d)*/4d.

Recursively computing p(n, f) using GP/Pari takes about 9-12 seconds (on
my computer) for n < 10%; about 11 minutes for n < 10°.

Taylor Daniels (Purdue Univ.)

Signed partition numbers March 14, 2024



My thanks for attending!
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