Signed partition numbers

Taylor Daniels

Purdue Univ.

March 14, 2024

MTU Seminar in Partition Theory, q-series, and Related Topics

1. An overview

- 2. Legendre-signed partitions
- 3. General circle method tools
- 4. The vanishing of $\mathfrak{p}(10j+2,\chi_5)$
- 5. (Bonus) Biasymptotics

Definition

Let $f:\mathbb{N} o \{0,\pm 1\}$. For any partition $\pi=(a_1,a_2,\ldots,a_k)$ of any n, set

$$f(\pi):=f(a_1)f(a_2)\cdots f(a_k),$$

so that $f(\pi) \in \{0, \pm 1\}$. The *f*-signed partition numbers are

$$\mathfrak{p}(n,f):=\sum_{\pi\in\Pi[n]}f(\pi),$$

the sum being taken over the set $\Pi[n]$ of all partitions of n.

First observations:

- $\mathfrak{p}(n,1) = \mathfrak{p}(n)$, the "ordinary" partitions.
- $\mathfrak{p}(n, \mathbf{1}_A) = \mathfrak{p}_A(n)$ for $A \subset \mathbb{N}$. When clear, write $\mathfrak{p}(n, A)$.
- Certainly $-\mathfrak{p}(n,1) \leq \mathfrak{p}(n,f) \leq \mathfrak{p}(n,1)$.

Classical partition asymptotics

• (Hardy and Ramanujan, 1918)

$$\mathfrak{p}(n,1) \sim (4\sqrt{3})^{-1} \exp(\kappa \sqrt{n}), \qquad \kappa := \pi \sqrt{2/3}.$$

• (Erdős, 1942) Let
$$A \subset \mathbb{N}$$
; suppose $gcd(A) = 1$ and
 $\delta_A = \lim_N \frac{|A \cap \{1, \dots, N\}|}{N}$ exists. One has $\delta_A > 0$ if and only if
 $\log \mathfrak{p}(n, A) \sim \kappa \sqrt{\delta_A n}$.

• $Q := \{n : n \text{ squarefree}\}$, then $\delta_Q = 6/\pi^2 \approx 0.601$, so $\log \mathfrak{p}(n, Q) \sim 2\sqrt{n}.$

• (Roth and Szekeres, 1954) With $\mathbb P$ the set of primes, one has $\log \mathfrak{p}(n,\mathbb P) \sim \kappa \sqrt{2n/\log n}.$

These sequences are all asymptotic.

Some "tricky" signed partition asymptotics

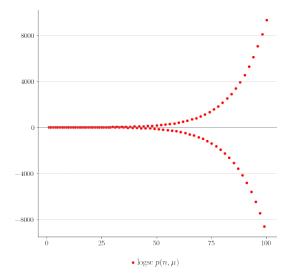
If
$$n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 with distinct p_i , then
 $\lambda(n) = (-1)^{a_1 + \dots + a_r}$ and $\mu(n) = \begin{cases} (-1)^r & \text{if all } a_i = 1, \\ 0 & \text{otherwise.} \end{cases}$

Theorem (D., 2023)

Let
$$\kappa := \pi \sqrt{2/3}$$
. For all $\varepsilon > 0$, as $n \to \infty$ one has
 $\mathfrak{p}(n,\mu) \ll e^{(1+\varepsilon)\sqrt{n}}$ and $\mathfrak{p}(n,\lambda) \ll e^{(\frac{1}{2}\kappa+\varepsilon)\sqrt{n}}$.
In addition, for $n = 2k$, as $k \to \infty$ one has
 $\log \mathfrak{p}(2k,\mu) \sim \sqrt{2k}$ and $\log \mathfrak{p}(2k,\lambda) \sim \frac{1}{2}\kappa\sqrt{2k}$.

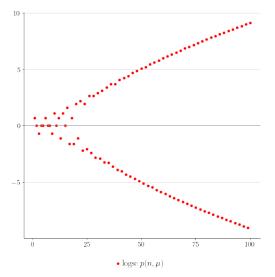
The behavior for both on odd *n* is delicate; more-so for λ .

Plot of $\mathfrak{p}(n,\mu)$ for $n \leq 100$



Plot of logsc $\mathfrak{p}(n,\mu)$ for $n \leq 100$

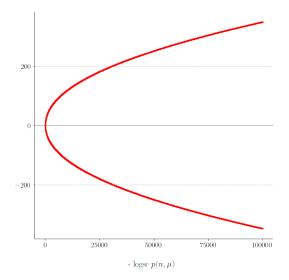
 $\mathsf{logsc}(x) := \mathsf{sgn}(x) \, \mathsf{log}(|x|+1)$



Taylor Daniels (Purdue Univ.)

Plot of logsc $\mathfrak{p}(n,\mu)$ for $n \leq 10^5$

 $\mathsf{logsc}(x) := \mathsf{sgn}(x) \, \mathsf{log}(|x|+1)$



1. An overview

- 2. Legendre-signed partitions
- 3. General circle method tools
- 4. The vanishing of $\mathfrak{p}(10j+2,\chi_5)$
- 5. (Bonus) Biasymptotics

Legendre-signed partition numbers

Definition

Let $f:\mathbb{N} \to \{0,\pm 1\}$. For any partition $\pi = (a_1,a_2,\ldots,a_k)$ of any n, set

$$f(\pi):=f(a_1)f(a_2)\cdots f(a_k),$$

so that $f(\pi) \in \{0, \pm 1\}$. The *f*-signed partition numbers are

$$\mathfrak{p}(n,f):=\sum_{\pi\in\Pi[n]}f(\pi),$$

the sum being taken over the set $\Pi[n]$ of all partitions of n.

For an odd prime p, let $\chi_p(n)$ be the Legendre symbol $\left(\frac{n}{p}\right)$, namely

$$\chi_p(n) = \begin{cases} +1 & n \text{ is a quadratic residue (mod } p), \\ -1 & n \text{ is a quadratic nonresidue (mod } p), \\ 0 & p \mid n. \end{cases}$$

Ask: "Which $\mathfrak{p}(n, \chi_p)$ have 'nice' asymptotic behavior?"

Legendre-signed partition numbers

For an odd prime p, let $\chi_p(n)$ be the Legendre symbol $(\frac{n}{p})$, namely

$$\chi_p(n) = \begin{cases} +1 & n \text{ is a quadratic residue (mod } p), \\ -1 & n \text{ is a quadratic nonresidue (mod } p), \\ 0 & p \mid n. \end{cases}$$

Ask: "Which $p(n, \chi_p)$ have 'nice' asymptotic behavior?"

$$\log \mathfrak{p}(n,1) \sim \kappa \sqrt{n}$$
 and $\log \mathfrak{p}(2k,\lambda) \sim \frac{1}{2} \kappa \sqrt{n}$.

Theorem (D., 2024)

If p is an odd prime such that $p \neq 5$ and $p \not\equiv 1 \pmod{8}$, then

$$\log \mathfrak{p}(n,\chi_p) \sim \frac{1}{2}\kappa \sqrt{(1-\frac{1}{p})n} \qquad (\kappa = \pi \sqrt{2/3}).$$

These sequences are *asymptotic*.

Keep
$$\kappa = \pi \sqrt{2/3}$$
 and note that $\mathfrak{p}(n,1) \asymp n^{-1} \exp(\kappa \sqrt{n})$.

Corollary [to next slide] (D., 2024)

If $p \equiv 5 \pmod{8}$ and $p \neq 5$, then as $n \rightarrow \infty$ one has

$$\mathfrak{p}(n,\chi_p) \asymp n^{-3/4} \exp\left(\frac{1}{2}\kappa \sqrt{(1-\frac{1}{p})n}\right).$$

While $\mathfrak{p}(2k, \chi_p)$ for $p \equiv 1 \pmod{8}$ behaves similarly, the case of odd inputs requires case-dependent consideration.

Theorem (D., 2024)

Let
$$L_1(\chi_p) = L(1,\chi_p)$$
. If $p \equiv 3 \pmod{4}$, then as $n \to \infty$ one has

$$\mathfrak{p}(n,\chi_p) \asymp n^{\sqrt{p}L_1(\chi_p)/4\pi-3/4} \exp\left(\frac{1}{2}\kappa\sqrt{(1-\frac{1}{p})n}\right).$$

Why is p = 5 so special? A quick look at circle method

For $f:\mathbb{N}
ightarrow\mathbb{C}$ with $|f|\leq 1$ let

$$\Phi(z,f) := \prod_{n=1}^{\infty} (1-f(n)z^n)^{-1} = \sum_{n=0}^{\infty} \mathfrak{p}(n,f)z^n \qquad (|z|<1).$$

Compare with

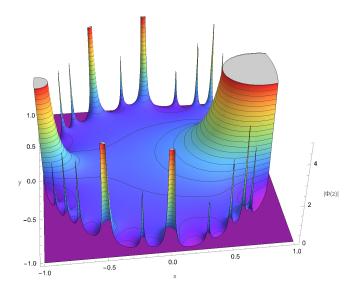
$$\prod_{n=1}^{\infty} (1-z^n)^{-f(n)}$$
 "weighted partition numbers".

By Cauchy's theorem we have

$$\mathfrak{p}(n,f) = \frac{1}{2\pi i} \int_{|z|=\rho} \Phi(z,f) z^{-n-1} dz$$

for all $0 < \rho < 1$.

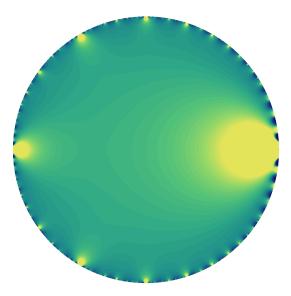
A plot of $|\Phi(z,1)|$ [a finite truncation of-]



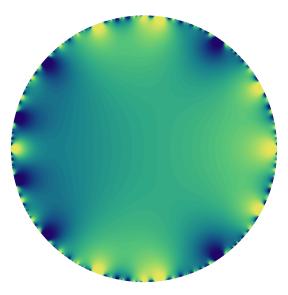
Based on a figure from Flajolet and Sedgewick's Analytic Combinatorics

Taylor Daniels (Purdue Univ.)

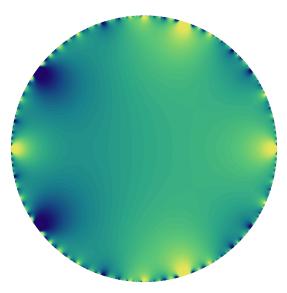
A plot of $|\Phi(z,1)|$



A plot of $|\Phi(z,\chi_{13})|$



A plot of $|\Phi(z, \chi_5)|$



A more precise formula when $p \equiv 1 \pmod{4}$

Again let
$$L_1(\chi_p) = L(1,\chi_p)$$
. Recall

$$\mathfrak{p}(n,1) = (4\sqrt{3})^{-1} n^{-1} \exp(\kappa \sqrt{n}) \left[1 + O(n^{-1/5}) \right]$$

Theorem (D., 2024)

Let $p\neq 5$ and suppose that $p\equiv 1 \pmod{4}.$ As $n\rightarrow\infty$ one has

$$\mathfrak{p}(n,\chi_p) = \mathfrak{a}_p n^{-3/4} \exp\left(\frac{1}{2}\kappa \sqrt{(1-\frac{1}{p})n}\right) \left[1+(-1)^n \mathfrak{b}_p + O(n^{-1/5})\right],$$

where $\kappa = \pi \sqrt{2/3}$,

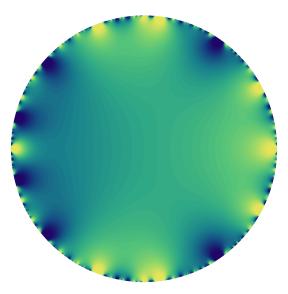
$$\mathfrak{a}_{p} = 2^{-7/4} 3^{-1/4} (p^{-1} - p^{-2})^{1/4} \exp(\frac{1}{4}\sqrt{p} L_{1}(\chi_{p})),$$

and

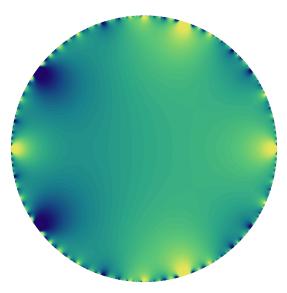
$$\mathfrak{b}_{p} = \begin{cases} 1 \qquad p \equiv 1 \pmod{8}, \\ \exp(-\sqrt{p}L_{1}(\chi_{p})) & p \equiv 5 \pmod{8} \text{ and } p \neq 5. \end{cases}$$

 $L_1(\chi_p) > 0$ for all p, so $\mathfrak{b}_p < 1$ when $p \equiv 5 \pmod{8}$ and $p \neq 5$.

A plot of $|\Phi(z,\chi_{13})|$



A plot of $|\Phi(z, \chi_5)|$



We "rank" singularities based on their exponential factor exp(cκ√n).
Most Φ(z, χ_p) have two *principal* singularities. Φ(z, χ₅) has four.

Theorem (D., 2024)
Let
$$\kappa = \pi \sqrt{2/3}$$
. As $n \to \infty$ one has
 $\mathfrak{p}(n, \chi_5) = \mathfrak{a}_5 n^{-\frac{3}{4}} \exp\left(\frac{1}{2}\kappa \sqrt{\frac{4}{5}n}\right)$
 $\times \left[1 + (-1)^n \mathfrak{b}_5 + \mathfrak{d}_5 \cos\left(\frac{2\pi}{5}n - \frac{\pi}{10}\right) + O(n^{-\frac{1}{5}})\right],$
 $\mathfrak{a}_5 = \left(\frac{3 + \sqrt{5}}{960}\right)^{1/4}, \quad \mathfrak{b}_5 = \frac{3 - \sqrt{5}}{2}, \quad and \quad \mathfrak{d}_5 = \sqrt{2(5 - \sqrt{5})}.$

The "signed" term $\mathfrak{S}(n)$

$$\mathfrak{S}(n) := 1 + (-1)^n \left(\frac{3-\sqrt{5}}{2}\right) + \sqrt{2(5-\sqrt{5})} \cos\left(\frac{2\pi}{5}n - \frac{\pi}{10}\right),$$

so that $\mathfrak{p}(n,\chi_5) = \mathfrak{a}_5 n^{-3/4} \exp\left(\frac{1}{2}\kappa \sqrt{\frac{4}{5}n}\right) \mathfrak{S}(n).$

Computing the values of $\mathfrak{S}(n)$ for $1 \le n \le 10$, it is surprising to find that

$$\mathfrak{S}(2) = 0$$
 and $\mathfrak{S}(n) \neq 0$ for $1 \leq n \leq 10$ with $n \neq 2$.

Indeed, since

$$\cos\left(\frac{7\pi}{10}\right) = -\frac{1}{2}\sqrt{\frac{5-\sqrt{5}}{2}},$$

we have

$$\mathfrak{S}(2) = rac{5-\sqrt{5}}{2} - rac{\sqrt{(5-\sqrt{5})^2}}{2} = 0.$$

Does this mean that $p(10m + 2, \chi_5) = 0$? There is an error term...

- 1. An overview
- 2. Legendre-signed partitions
- 3. General circle method tools
- 4. The vanishing of $\mathfrak{p}(10j+2,\chi_5)$
- 5. (Bonus) Biasymptotics

A simple generating function is

$$\Phi(z,1)=\prod_{n=1}^{\infty}\left(\frac{1}{1-z^n}\right)=\sum_{n=0}^{\infty}\mathfrak{p}(n,1)z^n\qquad(|z|<1).$$

For $f:\mathbb{N} \to \mathbb{C}$ with $|f| \leq 1$ let

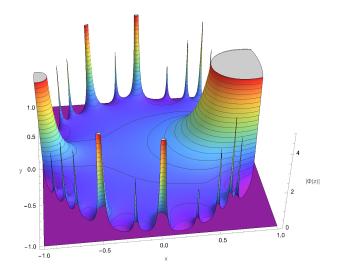
$$\Phi(z,f):=\prod_{n=1}^{\infty}\left(\frac{1}{1-f(n)z^n}\right)=\sum_{n=0}^{\infty}\mathfrak{p}(n,f)z^n\qquad(|z|<1).$$

By Cauchy's theorem we have

$$\mathfrak{p}(n,f) = \frac{1}{2\pi i} \int_{|z|=\rho} \Phi(z) z^{-n-1} dz$$

for all $0 < \rho < 1$.

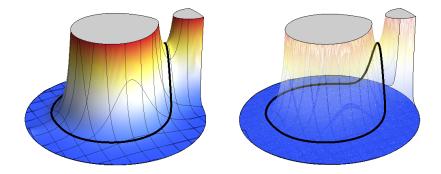
A plot of $|\Phi(z,1)|$



Based on a figure from Flajolet and Sedgewick's Analytic Combinatorics

Taylor Daniels (Purdue Univ.)

Zooming in on $|\Phi(z)z^{-n-1}|$ with n = 5. We take the radius $\rho \approx 0.626$.



Dividing [0,1) into arcs

We now examine the integral(s)

$$\mathfrak{p}(n,f) = \frac{1}{2\pi i} \int_{|z|=\rho} \Phi(z) z^{-n-1} dz = \rho^{-n} \int_0^1 \Phi(\rho e(\alpha)) e(-n\alpha) d\alpha.$$

Want to split [0,1) into principal-, major-, and minor- "arcs".

- Principal arcs are the "dominant" arcs, usually near 0 and 1. For $\mathfrak{p}(n, \chi_p)$ the arc about $\alpha = 1/2$ is also principal.
- Major arcs are around reduced rationals $a/q \in [0,1)$ with $q \leq Q$.
- Minor arcs are everything else (near a/q with q > Q). Error term.

$$\Psi(z, f) = \Psi(z) := \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} f^k(n) z^{nk} / k \qquad (|z| < 1)$$

 $\Phi(z) = \exp \Psi(z)$

What do we need to study p(n, f)?

- A "program" described by Gafni for studying $p(n, \mathbf{1}_A)$ which works for us:
 - For the principal arcs, need to know about $\sum_{n} f(n)n^{-s}$.
 - For the major arcs, need to know about "residue" sums

$$\sum_{n\equiv a \pmod{q}} f(n) \qquad (\text{with } (a,q)=1).$$

• For the minor arcs, need to know about exponential ("Weyl") sums

$$\sum_{n\leq X}f(n)e(n\alpha).$$

Gafni's "program" is essentially $f(n) := \mathbf{1}_A$, giving

$$\sum_{n \in A} n^{-s}, \quad \sum_{\substack{n \in A \\ n \equiv a \pmod{q}}} 1, \text{ and } \sum_{\substack{n \in [1..X] \cap A}} e(n\alpha).$$

Theorem (Montgomery and Vaughan, 1977)

Suppose that $|lpha-\mathsf{a}/\mathsf{q}|\leq \mathsf{q}^{-2}$, $(\mathsf{a},\mathsf{q})=1$, and $2\leq R\leq q\leq X/R$. Then

$$\sum_{n \le X} f(n)e(n\alpha) \ll \frac{X}{\log X} + \frac{X\log^{3/2} R}{R^{1/2}}$$

uniformly for all multiplicative f with $|f| \leq 1$.

Theorem (D., 2024)

Suppose α is such that: if $|\alpha - a/q| \le 1/(qX^{2/3})$ and (a, q) = 1, then $q > X^{1/3}$. Writing $\rho = e^{-1/X}$, as $X \to \infty$ one has

 $\Psi(\rho e(\alpha), f) \ll X / \log X$

uniformly for multiplicative f with $|f| \leq 1$.

- 1. An overview
- 2. Legendre-signed partitions
- 3. General circle method tools
- 4. The vanishing of $\mathfrak{p}(10j+2,\chi_5)$
- 5. (Bonus) Biasymptotics

Two curious vanishings

Keep
$$\chi_5(n) = (\frac{n}{5})$$
, and for $\pi = (a_1, a_2, \dots, a_k)$ let
 $\chi_5^{\dagger}(\pi) := (-1)^k \chi_5(a_1) \chi_5(a_2) \cdots \chi_5(a_k) = [-\chi_5](\pi).$

Theorem (D., 2024)

One has

$$\mathfrak{p}(n,\chi_5)=0$$
 $n\equiv 2 \pmod{10},$
 $\mathfrak{p}(n,\chi_5^{\dagger})=0$ $n\equiv 6 \pmod{10}.$

and

$$\mathfrak{p}(n,\chi_5) = \mathfrak{p}(n,\chi_5^{\dagger}) \qquad n \equiv 0 \pmod{10}, \\ \mathfrak{p}(n,\chi_5) = -\mathfrak{p}(n,\chi_5^{\dagger}) \qquad n \equiv 8 \pmod{10}$$

31/43

To examine $\mathfrak{p}(n,\chi_5)$ and $\mathfrak{p}(n,\chi_5^{\dagger})$, let

$$(z;q) = (z;q)_{\infty} = \prod_{n=0}^{\infty} (1-zq^n),$$

 $(z_1,\ldots,z_m;q) = (z_1;q)\cdots(z_m;q),$

and

$$X(q):=(q,-q^2,-q^3,q^4;q^5)$$
 and $Y(q):=(-q,q^2,q^3,-q^4;q^5)$ so that

$$rac{1}{X(q)} = \sum_{n=0}^\infty \mathfrak{p}(n,\chi_5) q^n$$
 and $rac{1}{Y(q)} = \sum_{n=0}^\infty \mathfrak{p}(n,\chi_5^\dagger) q^n.$

32 / 43

Again

$$X(q) := (q, -q^2, -q^3, q^4; q^5)$$
 and $Y(q) := (-q, q^2, q^3, -q^4; q^5)$

Euler's product

$$\varphi(q) := (q;q)$$
 and $\varphi_m := \varphi(q^m).$

Using these, we have

$$X(q)Y(q) = \varphi(q^{10})/\varphi(q^2) = \varphi_{10}/\varphi_2,$$

and thus

$$\frac{\varphi_{10}^3}{X(q)} = \frac{Y(q)\varphi_{10}^4}{\varphi_2} \qquad \text{and} \qquad \frac{\varphi_{10}^3}{Y(q)} = \frac{X(q)\varphi_{10}^4}{\varphi_2}.$$

From here, we need 10-dissections of $Y(q)\varphi_{10}^4$, $X(q)\varphi_{10}^4$, and $1/\varphi_2$.

An *m*-dissection of f(q) is

$$f(q) = q^0 f_0(q^m) + q^1 f_1(q^m) + \cdots + q^{m-1} f_{m-1}(q^m).$$

The Rogers-Ramanujan continued fraction

$${\it R}(q):=rac{(q^1,q^4;q^5)}{(q^2,q^3;q^5)}.$$

Let $R_5 := R(q^5)$. From (Hirschhorn, eq. 8.4.4) we have

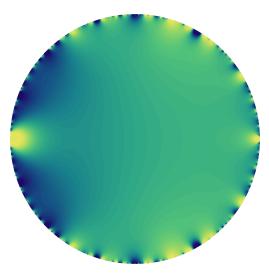
$$\frac{1}{\varphi} = \frac{\varphi_{25}^5}{\varphi_5^6} \Big(R_5^{-4} + q R_5^{-3} + 2q^2 R_5^{-2} + 3q^3 R_5^{-1} + 5q^4 - 3q^5 R_5 + 2q^6 R_5^2 - q^7 R_5^3 + q^8 R_5^4 \Big),$$

then substitute q with q^2 .

- 1. An overview
- 2. Legendre-signed partitions
- 3. General circle method tools
- 4. The vanishing of $\mathfrak{p}(10j+2,\chi_5)$
- 5. (Bonus) Biasymptotics

Back to $\mathfrak{p}(n,\mu)$ and $\mathfrak{p}(n,\lambda)$

A plot of $|\Phi(z,\mu)|$.



Back to μ and λ

Recall

$$\mathfrak{p}(n,f) = \sum_{\pi \in \Pi[n]} f(\pi) \quad \text{with} \quad f(\pi) = f(a_1)f(a_2)\cdots f(a_k).$$

If $n = p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$ with distinct p_i , then
 $\lambda(n) = (-1)^{a_1+\cdots+a_r} \quad \text{and} \quad \mu(n) = \begin{cases} (-1)^r & \text{if all } a_i = 1, \\ 0 & \text{otherwise.} \end{cases}$

Theorem (D., 2023)

Let $\kappa := \pi \sqrt{2/3}$. For all $\varepsilon > 0$, as $n \to \infty$ one has

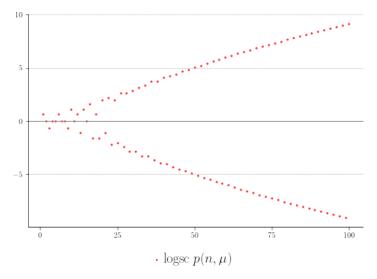
$$\mathfrak{p}(n,\mu) \ll e^{(1+\varepsilon)\sqrt{n}}$$
 and $\mathfrak{p}(n,\lambda) \ll e^{(\frac{1}{2}\kappa+\varepsilon)\sqrt{n}}$.

In addition, for n = 2k, as $k \to \infty$ one has

 $\log \mathfrak{p}(2k,\mu) \sim \sqrt{2k}$ and $\log \mathfrak{p}(2k,\lambda) \sim \frac{1}{2}\kappa\sqrt{2k}.$

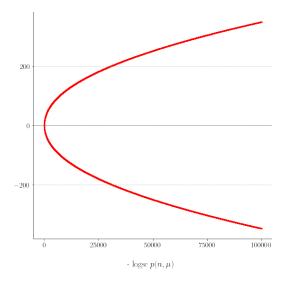
Plots for $n \leq 250$

$\operatorname{logsc} x := \operatorname{sgn}(x) \log(|x| + 1)$



Plots for $n \leq 10^5$

$\operatorname{logsc} x := \operatorname{sgn}(x) \log(|x| + 1)$



Taylor Daniels (Purdue Univ.)

39 / 43

The question of odd n is delicate, and is explored in its own paper.

Assumption

Suppose sup{Re(ρ) : $\zeta(\rho) = 0$ } < 1. This is almost certainly unnecessary.

Theorem (Rough statement)

Under above assumption $\mathfrak{p}(n,\mu)$ infinitely oscillates between arbitrarily long streaks where $\mathfrak{p}(n,\mu) \approx e^{\sqrt{n}+o(\sqrt{n})}$ and arbitrarily long streaks of behaving $(-1)^n e^{\sqrt{n}+o(\sqrt{n})}$. We say $\mathfrak{p}(n,\mu)$ is biasymptotic.

Some difficulties:

- Some $\mathfrak{p}(n,\mu) = 0$.
- For small *n*, say $50 \le n \le 10000$, one has $\mathfrak{p}(n,\mu) \approx (-1)^n e^{\sqrt{n}}$.

If either Riemann or Simplicity fail, then $\mathfrak{p}(n, \lambda)$ is biasymptotic too, but with exponential term $\exp(\frac{1}{2}\kappa\sqrt{n})$.

Theorem (D., 2023)

Suppose Riemann and Simplicity hold, and additionally that $|\zeta'(\rho)| \leq C|\rho|$ for all zeros $\rho = \frac{1}{2} + i\gamma$. There is some $\mathfrak{c} > 0$ such that: if $C < \mathfrak{c}$, then

$$(-1)^n \operatorname{logsc} \mathfrak{p}(n,\lambda) \sim rac{1}{2}\kappa\sqrt{n} \qquad (\kappa = \pi\sqrt{2/3}).$$

Namely $\mathfrak{p}(n,\lambda)$ is "asymptotic" and $\mathfrak{p}(n,\lambda) = (-1)^n \exp(\frac{1}{2}\kappa\sqrt{n} + o(\sqrt{n}))$.

Moreover, it holds that $c > 10^{17881}$.

The quantity 10¹⁷⁸⁸¹ is nowhere near "optimal".

How to "efficiently" compute $\mathfrak{p}(n, f)$

Fact

With $\mathfrak{p}(0) := 1$, for all *n* one has

$$\mathfrak{p}(n) = rac{1}{n} \sum_{k=0}^{n-1} \mathfrak{p}(k) \sigma(n-k), \qquad ext{where} \qquad \sigma(k) = \sum_{d|k} d.$$

Easy generalization

$$\mathfrak{p}(n,f) = \frac{1}{n} \sum_{k=0}^{n-1} \mathfrak{p}(k,f) \mathfrak{S}(n-k,f), \quad \text{where} \quad \mathfrak{S}(k,f) := \sum_{d|k} f(d)^{k/d} d.$$

Recursively computing p(n, f) using GP/Pari takes about 9-12 seconds (on my computer) for $n \le 10^4$; about 11 minutes for $n \le 10^5$.

My thanks for attending!