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Basic Definitions

Throughout, let p > 2 be prime and let
X=xp=(3)

be the Legendre symbol; namely, for a coprime to p let

{1 x? = a(mod p) is soluble,

a) =
x(2) —1 x2 = a(mod p) is nonsoluble

and set x(a) = 0 when p|a.
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Basic Definitions

Throughout, let p > 2 be prime and let

X:Xp:(,‘))

be the Legendre symbol; namely, for a coprime to p let

1  x?>=a(modp) is soluble,
x(a) = by )
—1 x* = a(mod p) is nonsoluble,

and set x(a) = 0 when p|a.

A\

Definition

Partitions of n are m = (a1,...,ax) with a; > a, > --- > a, > 1 and
a1 + - --+ ax = n. No restriction on k.
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Legendre-signed partitions

Definition (Partition-focused)

For any partition 7 = (a1, ..., ax) of any n, set

x(m) = x(a1)x(a2) - - - x(ak),
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Legendre-signed partitions

Definition (Partition-focused)

For any partition m = (ay,

...,ak) of any n, set
x(m) := x(ar)x(a2) - - - x(ak),
Xh(m) = [=xpl () = (1) (),
SO Xp(w),x};(w) € {0,+1}.
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Legendre-signed partitions

Definition (Partition-focused)
For any partition 7 = (a1, ..., ax) of any n, set
x(m) == x(a1)x(a2) - - - x(ax),
Xp(m) = [=xpl(m) = (=1) (),
so xp(™), X};(ﬂ') € {0,£1}. The Legendre-signed partition numbers are
P(”»Xp) = Z XP(T()7 and p(naXL) = Z XL(T[')’
weM[n] wen[n]

with M[n] the set of all partitions of n.
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Legendre-signed partitions

Definition (Partition-focused)
For any partition 7 = (a1, ..., ax) of any n, set
x(m) == x(a1)x(a2) - - - x(ax),
Xp(m) = [=xpl(m) = (=1) (),
so xp(™), X};(ﬂ') € {0,£1}. The Legendre-signed partition numbers are
P(”»Xp) = Z XP(T()7 and p(naXL) = Z XL(T[')’
weM[n] wen[n]

with M[n] the set of all partitions of n.

e p(n) =p(n,1).

Taylor Daniels (Purdue University) Vanishing Legendre-s.p.n.’s March 6, 2025



Legendre-signed partitions

Definition (Partition-focused)
For any partition 7 = (a1, ..., ax) of any n, set
x(m) == x(a1)x(a2) - - - x(ax),
Xp(m) = [=xpl(m) = (=1) (),
so xp(™), X};(ﬂ') € {0,£1}. The Legendre-signed partition numbers are
P(”»Xp) = Z XP(T()7 and p(naXL) = Z XL(T[')’
weM[n] wen[n]

with M[n] the set of all partitions of n.

° p(n) =p(n,1).
@ p(n,1,) are A-restricted partitions (e.g., A =P).
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Legendre-signed partitions

Definition (Partition-focused)
For any partition 7 = (a1, ..., ax) of any n, set
x(m) = x(a1)x(a2) - -~ x(ax),
Xp(m) = [=xpl(m) = (=1) (),
so xp(™), X};(ﬂ') € {0,£1}. The Legendre-signed partition numbers are
P(”»Xp) = Z XP(W)’ and p(naXL) = Z XL(T[')’
weM[n] wen[n]

with M[n] the set of all partitions of n.

° p(n) =p(n,1).
@ p(n,1,) are A-restricted partitions (e.g., A =P).
o Clearly —p(n) < p(n, xp) < p(n).
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Legendre-signed partitions (cont.)

g-Series Notation

r

(z,9)00 = H(l —2zq") and (z1,...,2r;, Q)00 = H(za; q)oo-
m=0

a=1
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Legendre-signed partitions (cont.)

g-Series Notation

(z,9)00 = H(l —2zq") and (z1,...,2r;, Q)00 = H(za; q)oo
m=0

a=1

Definition (g-series-focused)

H(+x ()a%; a°) Zp (1, Xp)q

p—1

[[(—x(a)a% @) Zp nxh)g

a=1
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Legendre-signed partitions (cont.)

Definition (g-series-focused)

p—1

[[(+x(3)a% ¢”) Zp n,Xp)q

a=1

H( x(2)a% q°) anx,,

I
I
A\,

Examples for 5
(+q', —¢% —*,+q" ¢°) Zp nxs)q"  (xs-signed),
(—=¢" +¢* +4*,—q" ¢°) anxs ((—xs)-signed).
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Some plots for small n and p
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Some plots for small n and p

logsc x := sgn(x) log(|x| + 1)
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Some plots for small n and p

logsc x := sgn(x) log(|x| + 1)
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Two odd cases

logsc x := sgn(x) log(|x| + 1)

 logscp(n,xs)
logscp(n,x17)
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Some observations

@ The sequences (p(n, xs))n and (p(n, x17))n Seem to separate into
subsequences (arithmetic progressions (mod 10) and (mod 34),
respectively) with repeating “value-trends”.
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Some observations

@ The sequences (p(n, xs))n and (p(n, x17))n Seem to separate into
subsequences (arithmetic progressions (mod 10) and (mod 34),
respectively) with repeating “value-trends”.

@ In particular, there are some arithmetic progressions on which they are
identically 0.
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Some observations

@ The sequences (p(n, xs))n and (p(n, x17))n Seem to separate into
subsequences (arithmetic progressions (mod 10) and (mod 34),
respectively) with repeating “value-trends”.

@ In particular, there are some arithmetic progressions on which they are
identically 0.

@ The other primes’ graphs don't seem to have this trend.
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Some observations

@ The sequences (p(n, xs))n and (p(n, x17))n Seem to separate into
subsequences (arithmetic progressions (mod 10) and (mod 34),
respectively) with repeating “value-trends”.

@ In particular, there are some arithmetic progressions on which they are
identically 0.

@ The other primes’ graphs don't seem to have this trend.

1. Do these “vanishings on arithmetic progressions” continue indefinitely
for p(n, x5) and p(n, x17)?
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Some observations

@ The sequences (p(n, xs))n and (p(n, x17))n Seem to separate into
subsequences (arithmetic progressions (mod 10) and (mod 34),
respectively) with repeating “value-trends”.

@ In particular, there are some arithmetic progressions on which they are
identically 0.

@ The other primes’ graphs don't seem to have this trend.

1. Do these “vanishings on arithmetic progressions” continue indefinitely
for p(n, x5) and p(n, x17)?
2. For which other primes does this kind of vanishing occur?
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What happens “most” of the time?

Theorem (D, 2024)

If p#£2,5 and p # 1 (mod8), then p(n, xp) — 00 as n — co. More
precisely, for these p,

p(n, xp) = n exp<%ﬁ; (1- %)n) (k = m/2/3).
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What happens “most” of the time?

Theorem (D, 2024)

If p#£2,5 and p # 1 (mod8), then p(n, xp) — 00 as n — co. More
precisely, for these p,

p(n, xp) = n exp<%ﬁ; (1- %)n) (k = m/2/3).

In addition, when p = 1(mod 8), one has p(2m, x,) — 00 as m — oo.
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What happens “most” of the time?

Theorem (D, 2024)

If p 2,5 and p # 1 (mod8), then p(n, xp) — 00 as n — co. More
precisely, for these p,

p(n, xp) < n exp<%ﬁ; (1- %)n) (k = m/2/3).

In addition, when p = 1(mod8), one has p(2m, x,) — 00 as m — oc.

1) (Hardy and Ramanujan, 1918)
log p(m, 1) ~ v/
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What happens “most” of the time?

Theorem (D, 2024)

If p 2,5 and p # 1 (mod8), then p(n, xp) — 00 as n — co. More
precisely, for these p,

p(n, xp) < n exp<%ﬁ; (1- %)n) (k = m/2/3).

In addition, when p = 1(mod8), one has p(2m, x,) — 00 as m — oc.

1) (Hardy and Ramanujan, 1918)
logp(n, 1) ~ xv/n
2) (Erdés, 1942)
logp(n,14) ~ k\/an (64 = limy|AN[N]|/N > 0)
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What happens “most” of the time?

Theorem (D, 2024)

If p 2,5 and p # 1 (mod8), then p(n, xp) — 00 as n — co. More
precisely, for these p,

p(n, xp) < n exp<%ﬁ; (1- %)n) (k = m/2/3).

In addition, when p = 1(mod8), one has p(2m, x,) — 00 as m — oc.

1) (Hardy and Ramanujan, 1918)
logp(n, 1) ~ xv/n
2) (Erdés, 1942)
logp(n,14) ~ k\/an (64 = limy|AN[N]|/N > 0)
3) (Roth and Szekeres, 1954)

logp(n, 1p) ~ Kk+/2n/ log n.
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What happens “most” of the time?

Theorem (D, 2024)

If p£ 2,5 and p # 1 (mod8), then p(n, xp) — oo as n — oco. More
precisely, for these p,

p(n,xp) = n% exp(3ry /(1= L)n) (= 7/2]3).

In addition, when p = 1(mod8), one has p(2m, xp) — 00 as m — oo.

Proof Method

Use the Hardy-Littlewood circle method to compute the first- and
second-order asymptotic terms, a-la Vaughan's (2008) work on partitions
into prime numbers (i.e., p(n, 1p)).

Taylor Daniels (Purdue University) Vanishing Legendre-s.p.n.’s March 6, 2025



Vanishings for p =5

Recall that for 7 = (a1, ..., ak), we set

xs(m) = xs(a1) - - - x5(a),
X(m) = (—=1)*xs(a1) - - xs(ax)-
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Vanishings for p =5

Recall that for 7 = (a1, ..., ak), we set

xs(m) = xs(a1) - - - x5(a),
X(m) = (—=1)*xs(a1) - - xs(ax)-

Theorem (D, 2024)

One has
p(n,xs) =0 for all n = 2 (mod 10)

p(n,xg) =0 for all n = 6 (mod 10).
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Vanishings of p(n, x17)

Theorem (D, 2025+)

One has

p(n, x17) =0 for all n = 17,19, 25,27 (mod 34),
p(n,xi,)=0  forall n=11,15,29,33 (mod 34).
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Vanishings of p(n, x17)

Theorem (D, 2025+)

One has

p(n,x17) =0 for all n = 17,19, 25,27 (mod 34),
p(n,xi,)=0  forall n=11,15,29,33 (mod 34).

The patterns

One has p(n, x17) = 0 when
@ nis odd;

@ 1 — 24n is congruent to a quartic residue (mod 17).
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Vanishings of p(n, x17)

Theorem (D, 2025+)

One has
p(n, x17) =0 for all n = 17,19, 25,27 (mod 34),
p(n,xi,)=0  forall n=11,15,29,33 (mod 34).

One has p(n, x17) = 0 when

@ nis odd;
@ 1 — 24n is congruent to a quartic residue (mod 17).
One has p(n,XJ{7) = 0 when

@ nis odd;

@ 1 — 24n is congruent to a quadratic-nonquartic residue (mod 17).
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The big idea (for p = 17)

o0

s = S Mmoo X b

k=1 k
21k, ptk 2/k, plk

The terms with 2p|k do not contribute asymptotic terms. \
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The big idea (for p = 17)

)= S e Y ek
21k, ptk 2k Pk
=1
+ Y }{ }F(n, K)
Ak plk
oo 2
+ Z Z%{ }G(n,m,k).
ok ™"

e F and G grow like exp(C+/n/k) and exp(C’\/(8 — 3m)n/k), resp..
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The big idea (for p = 17)

b = > S+ Y )} ok

k=1
2tk, ptk 2|

+
M~
x| =

{cmﬁ;f(n, m)} G(n, m, k).

e F and G grow like exp(C+/n/k) and exp(C’'+/(8 — 3m)n/k), resp..

@ The A\, are algebraic numbers, related to “cyclotomy”. E.g.,

_ _ 4
)\]_—)\2— 1+ﬁ
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The big idea (for p = 17)

1

—_

e F and G grow like exp(C+/n/k) and exp(C’'+/(8 — 3m)n/k), resp..

@ The A\, are algebraic numbers, related to “cyclotomy”.

@ The £ and Si are essentially character-twisted incomplete
Kloosterman sums.

March 6, 2025
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The big idea (for p = 17)

1

_l_
[]e
[
x| =
——
3
e}
==
B
3
——
9
\;
3
=

e F and G grow like exp(C+/n/k) and exp(C’'+/(8 — 3m)n/k), resp..

@ The A\, are algebraic numbers, related to “cyclotomy”.

@ The £ and Si are essentially character-twisted incomplete
Kloosterman sums.

@ ¢p =0 =1and cg =0 (Keyl!).
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The big idea for p = 17 (cont.)

Because
(k,2p) = 1= F(n,2k) = 2F(n, k),

we condense the first two sums:

pnxp) = > %{AkSk(n) + )\2k£2k(n)}F(n, k)

k=1
21k, ptk

_|_
x| =
—
>
~
%)
=
—
]
~
——
71
—
S
-
~
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Examining £4 and £ ~k, examples

For some small k,

Li(n) =1,

La(n) = (=1)",

£3(n) = 2cos(Z(n— 3)),

£4(n) = 2cos(ZE(n - 2)),

£5(n) = 2cos(3E(n+ 1)) + 2 cos(3E(2n — 1))

£5(n) = 2cos(3Z(n — £)) + 2cos(3Z(2n — 5))
+2cos(2Z(4n — 1)) + 2 cos(2Z(8n + 8)).
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Examining £ and £/; the x-twisted Dedekind sums

Definition (Classical Dedekind sums)

w3 (%))

pmod k
with .
o [x-M-3 xez
O M
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Examining £ and £/; the x-twisted Dedekind sums

Definition (Classical Dedekind sums)

(= 3 )
with 1
«x»={§_[xl_§ s
stk = 3 xm(™) (wa):
pmod [k,p]
where [k, p| = lem(k, p).
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Examining £ and £/; the x-twisted Dedekind sums

Definition (Classical Dedekind sums)

0= 2 (F)(%):

pmod k
with .
S
= 3 () ()

where [k, p] = lem(k, p).

Sums s, (h, k) (and more general) were introduced and studied by Berndt
in connection with transformations of logn(7).
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Definition
For k with 21k and p|k, define

ef(n) =5 (n0):= Y exp{miA(h, k) — 2mihn/k}.
h (mod k)
x(h)=1
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Definition
For k with 21k and p|k, define

£5(n) = £f(n,0) = Z/ exp{miN(h, k) — 2mihn/k}.
h (mod k)
x(h)=1

Definition (cont.)

here Ar k= Y x () (L)

pmod k
x(m)=1

RC{ES R CING)

pmod k
x(w)=-1
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Definition
For k with 21k and p|k, define

ef(n) = £5(n0):= 3 exp{miA(h, k) — 2mihn/k}.
h (mod k)
x(h)=1

A simpler formula for A(h, k)

A(h, k) = s, (h, k) — s, (2h, k) } + 3{s(2h, k) — s(2hp, k)}.

Taylor Daniels (Purdue University) Vanishing Legendre-s.p.n.’s March 6, 2025



“Kloosterman” sums

For simplicity: Assume p = 1(mod8), p|k, 21k, and 3tk.
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“Kloosterman” sums

For simplicity: Assume p = 1(mod8), p|k, 21k, and 3{k. Then

ef(n):= > exp{miN(h k) — 2mihn/k}

h (mod k)
x(h)=1
= Z/ exp{ {24k/\(h, k) — 48/7”} %}7
h (mod k)
x(h)=1
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“Kloosterman” sums

For simplicity: Assume p = 1(mod8), p|k, 21k, and 3{k. Then
ef(n):= > exp{miN(h k) — 2mihn/k}

h (mod k)
x(h)=1
/ i
= expq |24kA(h, k) — 48hn
Pl Frat
x(h)=1

24kA(h, k) = 9hx(h)Bx(x) — (p — 1)(2h + 2h) (mod k),
where hh = 1 (mod k) and By(x) := % Z“ 1,u 2x(p);
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“Kloosterman” sums

For simplicity: Assume p = 1(mod8), p|k, 21k, and 3{k. Then
ef(n):= > exp{miN(h k) — 2mihn/k}

h (mod k)
x(h)=1
/ i
= expq |24kA(h, k) — 48hn
Pl Frat
x(h)=1

24kA(h, k) = 9hx(h)Bx(x) — (p — 1)(2h + 2h) (mod k),
where hh = 1 (mod k) and By(x) := % Z# 1,u 2x();
24kA(h, k) = 0 (mod 3);
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“Kloosterman” sums

For simplicity: Assume p = 1(mod8), p|k, 21k, and 3{k. Then
ef(n):= > exp{miN(h k) — 2mihn/k}

h (mod k)
x(h)=1

_h(r%'k)exp{[zw/\(h, k) — 48hn} Z’k}
x(h)=1

24kA(h, k) = 9hx(h)Bx(x) — (p — 1)(2h + 2h) (mod k),
where hh = 1 (mod k) and By(x) := % Z“ 1,u 2x();
24kA(h, k) = 0 (mod 3);
also

8 (mod 16) h quartic (mod p)
0 (mod 16) h quadratic-nonquartic (mod p).

24kA(h, k) = {
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Ingredients for congruences of 24kA(h, k)

Let p|k and k odd. Define for (h, k) =1
T(h) = #{1 < pu < k: peven, x(u) =—1, and k{hu/k} odd.}
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Ingredients for congruences of 24kA(h, k)

Let p|k and k odd. Define for (h, k) =1
T(h) = #{1 < pu < k: peven, x(u) =—1, and k{hu/k} odd.}

n(hy=Y (1_2X(N)>{hlf}(mod2) (0 < {x} < 1).

1<pu<k
L even
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Ingredients for congruences of 24kA(h, k)

Let p|k and k odd. Define for (h, k) =1
T(h) = #{1 < pu < k: peven, x(u) =—1, and k{hu/k} odd.}

n(hy=Y (1_2X(N)>{hl;u}(mod2) (0 < {x} < 1).

1<pu<k
L even

When x(h) =1, one has
24kN(h, k) = 87,(2h) (mod 16),
so knowing 7 (h) (mod 2) will determine 24kA(h, k) (mod 16).
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Ingredients for congruences of 24kA(h, k)

Let p|k and k odd. Define for (h, k) =1
T(h) = #{1 < pu < k: peven, x(u) =—1, and k{hu/k} odd.}

n(hy=Y (1_2X(N)>{hlf}(mod2) (0 < {x} < 1).

1<pu<k
[ even

When x(h) =1, one has
24kN(h, k) = 87,(2h) (mod 16),
so knowing 7 (h) (mod 2) will determine 24kA(h, k) (mod 16).

Suppose that p|k and k odd, and that (h, k) = 1. Then

1(mod?2) h quartic (mod p),
Tk(h)z{( ) h quartic (mod p)

0(mod2) h quadratic-nonquartic (mod p).
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Other interesting congruences; reciprocity

The following reciprocity laws are due to Berndt:
1. For p|k with (h, k) =1 we have

h* + x(h)

SX(h> k)""X(h)sX(l;’ h) = hk

2. When ptk one has

Bx(x)  (kk =1(modh)).

2
(b, k) +5(h k) = LBy (),
where
W(hk) == > S(j/h),
0Sj<h

Z Z [ku+§y+u].

0<u<p 0sv<p
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Other interesting congruences; reciprocity

When ptk one has
h?+1

SX(h7 k) + §X(h7 k) = W

Ba(x),

where

= > SG/h).

0<j<h

Z S [kwkyw}

0<u<p 0<v<p P

For ptk, all k (even and odd), and (h, k) =1, one has

5 (h, k) = 3(x(k) — 1) (mod 2).

Taylor Daniels (Purdue University) Vanishing Legendre-s.p.n.’s March 6, 2025



e(n) = S exp{min(h k) — 2rihn/k}
h (mod k)

Let p #5 and p = 1(mod 4). For odd k coprime to p, one has
Lok(n) = La(n)Lx(n) = (=1)"Lk(n).

Moreover, when p = 1(mod 8) one has A\ = Aok for all k with
(k,4p) = 1. Thus, when p = 1(mod8), the first sum in (14) vanishes for

all odd n. )
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e(n) = S exp{min(h k) — 2rihn/k}
h (mod k)

Let p #5 and p = 1(mod 4). For odd k coprime to p, one has
Lok(n) = La(n)Lx(n) = (=1)"Lk(n).

Moreover, when p = 1(mod 8) one has A\ = Aok for all k with
(k,4p) = 1. Thus, when p = 1(mod8), the first sum in (14) vanishes for
all odd n.

For p = 1(mod8) and (k,p) =1, one has £44(n) = 0 for odd n. Thus,
the second sum in (14) vanishes for all odd n.

A\
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The sums £, for p|k, with p = 17.

Recall/Define

Let 21k and p|k, and set

£(n,m):= Z/ exp{miN(h, k) — 2mi(hn + 2hm)/k},
h (mod k)
x(h)=+1

where again

A(h, k) = s\ (h, k) — s, (2h, k) } + 3{s(2h, k) — s(2hp, k) }.
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The sums £, for p|k, with p = 17.

Recall/Define

Let 21k and p|k, and set

£H(n,m) = Z/ exp{miN(h, k) — 2mi(hn + 2hm)/k},
h (mod k)
x(h)=+1

where again

A(h, k) 2{5X (h k) — sy(2h, k) } + 2{5 (2h, k) — s(2hp, k) }.
For properly “aligned” n and m, the exp-terms in St(n, m) for quartic h
cancel the exp-terms with quadratic-nonquartic h.

Taylor Daniels (Purdue University) Vanishing Legendre-s.p.n.’s March 6, 2025



Serious “luck”

For p = 17, p|k, we have
Slt(n, 0)=0 for n=10,2,8,10 (mod 17),
£r(n1)=0 forn=1,4,6,9 (mod17),
£5(n2)=0 for n=10,2,8,10 (mod 17).
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Serious “luck”

For p = 17, p|k, we have

Slt(n, 0)=0 for n=10,2,8,10 (mod 17),
£r(n1)=0 forn=1,4,6,9 (mod17),
£5(n2)=0 for n=10,2,8,10 (mod 17).

Generally

£r(n,m), £ (n,mp) won't simultaneously vanish if my # mo.
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Serious “luck”

For p = 17, p|k, we have
£t(n, 0)=0 for n=10,2,8,10 (mod 17),
£r(n1)=0 forn=1,4,6,9 (mod17),
£5(n2)=0 for n=10,2,8,10 (mod 17).

Generally

£r(n,m), £ (n,mp) won't simultaneously vanish if my # mo.
For p = 17, coefficient of G(n, m, k) is
{cos;f(n, 0) + 1€/ (n, 1) + & (n, 2)},

but
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Serious “luck”

For p = 17, p|k, we have
£t(n, 0)=0 for n=10,2,8,10 (mod 17),
£r(n1)=0 forn=1,4,6,9 (mod17),
£5(n2)=0 for n=10,2,8,10 (mod 17).
Generally
£r(n,m), £ (n,mp) won't simultaneously vanish if my # mo.

For p = 17, coefficient of G(n, m, k) is

{cos;f(n, 0) + 1€/ (n, 1) + & (n, 2)},

but
C0:C2:1 C1:0.
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Are 5 and 17 special?

Definition

In describing the aformentioned vanishings, we may say that p(n, x5) and
p(n, x17) vanish on some arithmetic progressions.
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Are 5 and 17 special?

Definition

In describing the aformentioned vanishings, we may say that p(n, x5) and
p(n, x17) vanish on some arithmetic progressions.

\

Theorem (D, 2024)

If p# 2,5 and p # 1(mod8), then p(n, xp) — 00 as n — oo. Thus, for
these primes, the quantities p(n, x) do not vanish on any arithmetic
progressions.

Taylor Daniels (Purdue University) Vanishing Legendre-s.p.n.’s March 6, 2025



Are 5 and 17 special?

Definition

In describing the aformentioned vanishings, we may say that p(n, x5) and
p(n, x17) vanish on some arithmetic progressions.

Theorem (D, 2024)

If p# 2,5 and p # 1(mod8), then p(n, xp) — 00 as n — oo. Thus, for
these primes, the quantities p(n, x) do not vanish on any arithmetic
progressions.

Conjecture (Proof/work in-progress)

Among all primes p > 2, the quantities p(n, xp) and p(n, X;r,) vanish on
certain arithmetic progressions only when p =5 or p = 17.
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Another interesting example

Definition

Fix p =13 and x = x13, and let

12

(9.9, ¢* 4% "% q'% q
( ) r_l_Il( ( ) ) (_q2’_q5’_q6,_q , —q a_qll;ql?’)oo

13)00

Define the coefficients a, via

A(q) = Z anq".
n=0

Theorem (D, McLaughlin, 2025+)
One has

313m+3 = 313m+9 = a13m+11 = 0 form>0
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My thanks for attending!
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