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Goal

Use the dynamics of the triangle map (a type of
multi-dimensional continued fraction algorithm) to create an
almost internal symmetry on the space of all partitions of a
given integer N .



New Partition Identities

As one type of example, we can show

Theorem
Every number has as many integer partitions into partitions
with λ1 < λ2 + λm as into partitions with k1 > km. Similarly,
every number has as many integer partitions into partitions
with λ1 > λ2 + λm as into partitions with k1 < km.

Here a partition
(λk11 , . . . , λ

km
m )

is written as
(λ1, . . . , λm)× [k1, . . . , km]



New Partition Identities

We will show how it is easy to generate such identities.



The triangle map

1. Periodicity and algebraic numbers

2. How to divide many small numbers into a big one



The Triangle Map

Roots of Multi-dimensional Continued Fractions:

1. Generalize the fact that a number has an eventually
periodic continued fraction expansion if and only if it is a
quadratic irrational.

2. Finding best Diophantine approximations of n-tuples of
reals by n-tuples of rationals

3. As a rich source of dynamical systems, starting with Gauss
on continued fractions all the way to the current work on
interval exchange maps.



The Triangle Map

Let α be a real number.

1. α is a rational if and only if its decimal expansion is
eventually periodic.

2. α is a quadratic irrational if and only if its continued
fraction expansion is eventually periodic.

√
2 = 1 +

1

2 + 1
2+ 1

2+...



The Triangle Map

Hermite Problem:

Find a way to represent any real number α as a sequence of
integers so that the sequence is eventually periodic if and only if
α is a cubic irrational.



The Triangle Map

How to divide little number into big number?

Really only one way: Euclidean algorithm



The Triangle Map

Take
λ1 = 23, λ2 = 7.

We have

23 = 3 · 7 + 2

7 = 3 · 2 + 1

2 = 2 · 1 + 0

23

7
= 3 +

1

3 + 1
2

.



The Triangle Map

Euclidean algorithm can be written as

(23, 7) → (7, 23− 3 · 7)

= (7, 2)

→ (2, 7− 3 · 2)

= (2, 1)

→ (1, 2− 2 · 1)

= (1, 0)



The Triangle Map

There is the slow (additive, Farey) version

(23, 7) → (23− 7, 7) = (16, 7)

→ (16− 7, 7) = (9, 7)

→ (7, 9− 7) = (7, 2)

→ (7− 2, 2) = (5, 2))

→ (5− 2, 2) = (3, 2)

→ (2, 3− 2) = (2, 1)

→ (2− 1, 1) = (1, 1)

→ (1, 1− 1) = (1, 0)



The Triangle Map

There is the slow (additive, Farey) version.
For λ1 > λ2 > 0, we have

(λ1, λ2)
T0−→ (λ2, λ1 − λ2)

if
λ2 > λ1 − λ2

and
(λ1, λ2)

T1−→ (λ1 − λ2, λ2)

if
λ2 < λ1 − λ2



The Triangle Map

Rephrased by two elements of SL(2,Z) :(
λ1
λ2

)
→
(

0 1
1 −1

)(
λ1
λ2

)
=

(
λ2

λ1 − λ2

)
and (

λ1
λ2

)
→
(

1 −1
0 1

)(
λ1
λ2

)
=

(
λ1 − λ2
λ2

)
Set

T0 =

(
0 1
1 −1

)
, T1 =

(
1 −1
0 1

)



The Triangle Map

Given three numbers

λ1 > λ2 > λ3 > 0

or, more generally, n numbers

λ1 > λ2 > · · · > λm > 0

There are many (too many) ways to divide little numbers into
the big λ1.



The Triangle Map

Domain:

4 = {λ1 > λ2 > · · · > λm > 0}

Subdomains

40 = {λ1 < λ2 + λm}
41 = {λ1 > λ2 + λm}

40

41

(1, 0, . . . , 0) (1, 0, . . . , 0)

(1, . . . 1)

(2, 1, . . . , 1)



The Triangle Map

The Slow-Triangle map T : 40 ∪41 →4 by

T (λ1, . . . , λm) =

{
T0(λ1, . . . , λm), if λ2 + λm > λ1
T1(λ1, . . . , λm), if λ2 + λm < λ1

=

{
(λ2, λ3, . . . , λm, λ1 − λ2), if λ2 + λm > λ1

(λ1 − λm, λ2, . . . , λm), if λ2 + λm < λ1



The Triangle Map

(7, 5, 1)
T1−→ (7− 1, 5, 1) = (6, 5, 1)

and
(7, 5, 4)

T0−→ (5, 4, 7− 5) = (5, 4, 3)



The Triangle Map

For now, we ignore the diagonal

4D = {(λ1, . . . , λm) ∈ 4 : λ2 + λm = λ1}

(1, 0, . . . , 0) (1, 0, . . . , 0)

(1, . . . 1)

(2, 1, . . . , 1)
4D

This is a set of measure zero, and hence ignored if concerned
with dynamics.



The Triangle Map

A dynamical system on simplices.
Earlier work
TG (2001), S. Assaf, L. Chen, T. Cheslack-Postava, B. Cooper,
A. Diesl, TG, M. Lepinski and A. Schuyler (2005),
A. Messaoudi, A. Nogueira, and F. Schweiger (2009),
V. Berthé, W. Steiner and J. Thuswaldner (2021),
Fougeron and A. Skripchenko (2021),
C.Bonanno, A. Del Vigna and S. Munday (2021),
C. Bonanno and A. Del Vigna (2021),
H. Ito (2023) and some more



The Triangle Map

A point λ ∈ 4 has triangle sequence

(i0, i1, . . . , )

where each ik = 0 or 1 and

T (k)(λ) ∈ 4ik

Theorem: If triangle sequence is eventually periodic, then

λ2
λ1
, . . . ,

λm
λ1

are all in the same algebraic number field, of degree at most m.



The Triangle Map

T

 λ1
...
λm

 =



T0

 λ1
...
λm

 , if λ2 + λm > λ1

T1

 λ1
...
λm

 , if λ2 + λm < λ1



The Triangle Map

where

T0 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
1 −1 0 · · · 0

 and T1 =


1 0 0 · · · 0 −1
0 1 0 · · · 0 0

...
0 0 0 · · · 0 1


Thus for n = 3, we have

T0 =

0 1 0
0 0 1
1 −1 0

 and T1 =

1 0 −1
0 1 0
0 0 1





The Triangle Map

Summary: Start with cone

4 = {λ1 > · · · > λm > 0}

Split into two subcones

40 = {λ2 + λm > λ1}
41 = {λ2 + λm < λ1}

Interate multiplication of the two m×m matrices

T0 : 40 →4

T1 : 40 →4



Integer Partitions

p(n) is the number of ways of writing n as the sum of less than
or equal t positive integers (ordering not mattering).
p(7) = 15 since

7 6 + 1 5 + 2
5 + 1 + 1 4 + 3 4 + 2 + 1

4 + 1 + 1 + 1 3 + 3 + 1 3 + 2 + 2
3 + 2 + 1 + 1 3 + 1 + 1 + 1 + 1 2 + 2 + 2 + 1

2 + 2 + 1 + 1 + 1 2 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1.

(7) (6, 1) (5, 2) (5, 12)
(4, 3) (4, 2, 1) (4, 13) (32, 1)
(3, 22) (3, 2, 12) (3, 14) (23, 1)
(22, 13) (2, 15) (17).



Integer Partitions

(7) (6, 1) (5, 2) (5, 12)
(4, 3) (4, 2, 1) (4, 13) (32, 1)
(3, 22) (3, 2, 12) (3, 14) (23, 1)
(22, 13) (2, 15) (17).

(7)× [1] (6, 1)× [1, 1] (5, 2)× [1, 1] (5, 1)× [1, 2]
(4, 3)× [1, 1] (4, 2, 1)× [1, 1, 1] (4, 1)× [1, 3] (3, 1)× [2, 1]
(3, 2)× [1, 2] (3, 2, 1)× [1, 1, 2] (3, 1)× [1, 4] (2, 1)× [3, 1]
(2, 1)× [2, 3] (2, 1)× [1, 5] (1)× [7].



Integer Partitions

λ = (λ1, . . . , λm)× [k1, . . . , km] ` N

means

N = k1λ1 + . . .+ kmλm

=
(
k1 · · · km

)
·

 λ1
...
λm


Rhetoric: The λi’s are the parts, the kj ’s are the multiplicities



Triangle Map and Integer Partitions

P(N) = {partition space for N}

For −→
λ ×

−→
k ∈ P(N)

we have

−→
λ ∈ 4.

Apply the triangle map T .



Triangle Map and Integer Partitions

N = k1λ1 + . . .+ kmλm

=
(
k1 · · · km

)
·

 λ1
...
λm


=

(
k1 · · · km

)
T−1i · Ti

 λ1
...
λm





Triangle Map and Integer Partitions

(λ1, . . . , λm)× [k1, . . . , km]

T̃0 ↓
(λ2, λ3 . . . , λm, λ1 − λ2)× [k1 + k2, k3, . . . , km, k1]

if λ2 + λm > λ1 and

(λ1, . . . , λm)× [k1, . . . , km]

T̃1 ↓
(λ1 − λm, λ2 . . . , λm, )× [k1, . . . , km−1, k1 + km]

if λ2 + λm < λ1



Triangle Map and Integer Partitions

For this to “work”, we need both T−10 and T−11 to have
non-negative entries. This is true for the triangle map. It is
false for most (but not all) other multi-dimensional continued
fraction algorithms.

Very few multi-dimensional continued fraction algorithms are
partition friendly.

Why?

Why are a few types of division partition friendly, and why are
most not?



Triangle Map and Integer Partitions

(14, 7, 6, 5)× [1, 0, 0, 0]
T̃1−→ (9, 7, 6, 5)× [1, 0, 0, 1]

T̃0−→ (7, 6, 5, 2)× [1, 0, 1, 1]

T̃0−→ (6, 5, 2, 1)× [1, 1, 1, 1]

Since 6 = 5 + 1 ((6, 5, 2, 1) ∈ 4D), for now we must stop



Triangle Map and Integer Partitions

T̃ : 4−4D →4

is also Young compatible.



Triangle Map and Integer Partitions

To a given partition

(λ1, . . . , λm)× [k1, . . . , km]

we associate the Young shape, a diagram k1 + · · ·+ km rows
such that there are k1 rows with λ1 squares on top of k2 rows
with λ2 squares, and so on.



Triangle Map and Integer Partitions

For example, the Young shape for

(5, 3, 2)× [3, 2, 1] ` 23

is



Triangle Map and Integer Partitions

Flip a Young shape, turning the rows into columns, to get the
conjugate partition
Flipping the Young shape of the partition (5, 3, 2)× [3, 2, 1] ` 23
of the previous example gives us the Young shape

∼C

which represents the conjugate partition

(5, 3, 2)× [3, 2, 1] ∼C (6, 5, 3)× [2, 1, 21]



Triangle Map and Integer Partitions

(λ1, λ2)× [k1, k2] ∼C (k1 + k2, k1)× [λ2, λ1 − λ2]

and in general

(λ1, . . . , λm)× [k1, . . . , km]
∼C

(k1 + . . .+ km, k1 + . . .+ km−1, . . . , k1)
×

[λm, λm−1 − λm, . . . , λ1 − λ2]



Triangle Map and Integer Partitions

Respects conjugation (is Young compatible ):

Theorem
The diagram

(λ̄)× [k̄] ∼C T̃0((µ̄)× [l̄])

T̃0 ↓ ↑ T̃0
T̃0((λ̄× [k̄])) ∼C (µ̄)× [l̄]

when λ2 + λm > λ1 and

(λ̄)× [k̄] ∼C T̃01((µ̄)× [l̄])

T̃1 ↓ ↑ T̃1
T̃1((λ̄× [k̄])) ∼C (µ̄)× [l̄]

when λ2 + λm < λ1 are both commutative.



Triangle Map and Integer Partitions

It appears that the triangle map is the only multidimensional
continued fraction algorithm that is both partition friendly and
Young Compatible.

Matthew Phang conjectures that this is indeed true.



Triangle Map and Integer Partitions

What if
λ1 = λ2 + λm

Define

(λ1, . . . , λm)× [k1, . . . , km]

T̃D ↓
(λ2, λ3 . . . , λm)× [k1 + k2, k3, . . . , k1 + km]



Triangle Map and Integer Partitions

(14, 7, 6, 5)× [1, 0, 0, 0]
T̃1−→ (9, 7, 6, 5)× [1, 0, 0, 1]

T̃0−→ (7, 6, 5, 2)× [1, 0, 1, 1]

T̃0−→ (6, 5, 2, 1)× [1, 1, 1, 1]

T̃D−−→ (5, 2, 1)× [2, 1, 2]

T̃1−→ (4, 2, 1)× [2, 1, 4]

T̃1−→ (3, 2, 1)× [2, 1, 6]

T̃D−−→ (2, 1)× [3, 8]



Triangle Map and Integer Partitions

TD, while weird in dynamics, is natural here.

(6, 5, 2, 1)× [1, 1, 1, 1]
T̃0−→ (5, 2, 1, 1)× [2, 1, 1, 1]

and

(6, 5, 2, 1)× [1, 1, 1, 1]
T̃1−→ (5, 5, 2, 1)× [1, 1, 1, 2]

If you concatenate, you get

(6, 5, 2, 1)× [1, 1, 1, 1]
T̃D−−→ (5, 2, 1)× [2, 1, 2]



Triangle Map and Integer Partitions

P(N) = all partitions of N .

4 := {(λ1, . . . , λm) ∈ Rm : λ1 > λ2 > · · · > λm > 0}
40 := {(λ1, . . . , λm) ∈ 4 : λ1 < λ2 + λm}
41 := {(λ1, . . . , λm) ∈ 4 : λ1 > λ2 + λm}
4D := {(λ1, . . . , λm) ∈ 4 : λ1 = λ2 + λm}



Triangle Map and Integer Partitions

T̃0 is one-to one on P(N) ∩40.

T̃1 is one-to one on P(N) ∩41.

T̃D is not one-to one on P(N) ∩4D.



Triangle Map and Integer Partitions

Idea:

1. Start with an interesting subset of P(N)

2. Apply T̃

3. Count image



Triangle Map and Integer Partitions

Theorem
Every number has as many integer partitions into partitions
with λ1 < λ2 + λm as into partitions with k1 > km. Similarly,
every number has as many integer partitions into partitions
with λ1 > λ2 + λm as into partitions with k1 < km.

Proof.

Im(T̃0(4∩ P(N)) = {k1 > km} ∩ P(N)

Im(T̃1(4∩ P(N)) = {k1 < km} ∩ P(N)



Triangle Map and Integer Partitions

With

O = {(λ1, . . . , λm)× [k1, . . . , km] : λi odd}
F0 = {(λ1, . . . , λm)× [k1, . . . , km] : λm even,

λi odd if i < m, k1 > km}
F1 = {(λ1, . . . , λm)× [k1, . . . , km] : λ1 even,

λi odd if i > 1, k1 < km}

then

pO(N) = (number of odd factors of N) + pF0(N) + pF1(N).



Triangle Map and Integer Partitions

There are many others.

They are easy to both create and to prove.



Triangle Map and Integer Partitions

It is also straightforward to write down corresponding
generating functions.

Question: Starting with a proposed equality of generating
functions, is there a direct proof (one not using the rhetoric of
the triangle map)



Triangle Map and Integer Partitions

In dynamics, it is natural to study the cylinders of the map:

4 = {λ1 > · · · > λm > 0}
40 = {λ2 + λm > λ1}
41 = {λ2 + λm < λ1}
400 = {

−→
λ ∈ 40 : T0(

−→
λ ) ∈ 40}

401 = {
−→
λ ∈ 40 : T0(

−→
λ ) ∈ 41}

410 = {
−→
λ ∈ 41 : T0(

−→
λ ) ∈ 40}

411 = {
−→
λ ∈ 41 : T0(

−→
λ ) ∈ 41}

...



Triangle Map and Integer Partitions

For all m, we have λ1 > · · · , > λm > 0 and ki > 0 for
i = 1, . . . ,m.

sets dim = 2 dim ≥ 3

40 2λ2 > λ1 λ2 + λm > λ1
41 2λ2 < λ1 λ2 + λm < λ1
4D 2λ2 = λ1 λ2 + λm = λ1
400 2λ2 > λ1, 2λ1 > 3λ2 λ2 + λm > λ1, 2λ2 < λ1 + λ3
401 2λ2 > λ1, 2λ1 < 3λ2 λ2 + λm > λ1, 2λ2 > λ1 + λ3
410 2λ2 < λ1, 3λ2 > λ1 λ2 + λm < λ1, λ2 + 2λm > λ1
411 3λ2 < λ1 λ2 + 2λm < λ1

These are natural subsets for dynamics (critical in proofs of
ergodicity).



Triangle Map and Integer Partitions

Theorem

1. Every number N has as many integer partitions into
partitions with λ1 < λ2 + λm and 2λ2 < λ1 + λ3 as into
partitions with λ1 < λ2 + λm and k1 > km, i.e.

p400(N) = pT0(400)(N).

2. Every number has as many integer partitions into
partitions with λ1 < λ2 + λm and 2λ2 > λ1 + λ3 as into
partitions with λ1 > λ2 + λm and k1 > km, i.e.

p401(N) = pT0(401)(N).



Triangle Map and Integer Partitions

(λ1, . . . , λm)× [k1, . . . , km]

T̃−10 ↓
(λ1 + λm, λ1, . . . , λm−1)× [km, k1 − km.k2, . . . , km−1]

if k1 > km and

(λ1, . . . , λm)× [k1, . . . , km]

T̃−11 ↓
(λ1 + λm, λ2, . . . , λm))× [k1, k2, . . . , km−1, km − k1]

if k1 < km and

(λ1, . . . , λm)× [k1, . . . , km]

T̃−1D (l) ↓
(λ1 + λm, λ1, . . . , λm)× [l, k1 − l, k2, . . . , km−1, km − l]

if l < min{k1, km}



Triangle Map and Integer Partitions

By looking at the inverse images of (1)× [N ], get a tree
structure on P(N).

(7)× [1](1)× [7]

(2, 1)× [1, 5] (2, 1)× [2, 3] (2, 1)× [3, 1]

(3, 1)× [1, 4] (3, 2)× [1, 2]

(4, 1)× [1, 3] (5, 2)× [1, 1]

(5, 1)× [1, 2]

(6, 1)× [1, 1]



Triangle Map and Integer Partitions

A small part of the tree structure can be explained via the
natural extension.

In dynamics, one can always change a many-to-one map to a
one-to-one map (the natural extension). The word “natural” is
here categorical.

This is what the map T̃ is doing. In the context of integer
partitions, T̃ was forced upon us (which does suggest why it is
categorically “natural” but also why it is natural in the
colloquial sense of the word). Using Young conjugation, we get
an interval symmetry on the natural extension. This is new.



Triangle Map and Integer Partitions
The natural extension of a map T : X → X, where X is a
measure space. (There are technical details floating about.)
The map T can be many-to-one. For example, the triangle map
acting on 4 is 2-to-1.

The natural extension is a map S : Y → Y , where Y is a
measure space, S is one-to-one, and there is an onto map

π : Y → Y

making the following diagram commutative

Y
S−→ Y

π ↓ ↓ π

X
T−→ X



Triangle Map and Integer Partitions

Also need that if there is any other U : Z → Z with these
properties, that it factors through S : Y → Y .

Straightforward to prove a natural extension must exist,
abstractly. Hard to make it concrete.



Triangle Map and Integer Partitions

For example, set-theoretically easy to find Y . It is simply the
colimit of T .

Set
Y = {(x0, x1, x2, . . .) : xk ∈ X,T (xk+1) = xk}

Then

S((x0, x1, x2, . . .) = ((T (x0), x0, x1, . . .)

and
π(x0, x1, x2, . . .) = x0.

The work is showing that Y is a measure space with desired
properties.



Triangle Map and Integer Partitions

We can find the natural extensions in a straightforward manner.

Pm(N) = all integer partitions of N with m parts .

Elements are
(λ1, . . . , λm)× [k1, . . . , km]

with all being non-negative integers and

λ1 > . . . > λm

with

k1λ1 + . . .+ kmλm = N



Triangle Map and Integer Partitions

Why stick with integers? Allow real numbers.

Pm(N) = all partitions of N with m parts .

Elements are
(λ1, . . . , λm)× [k1, . . . , km]

with all being positive real numbers and

λ1 > . . . > λm

with
k1λ1 + . . .+ kmλm = N



Triangle Map and Integer Partitions

Still have that T̃ will map

Pm(N)− {λ1 = λ2 + λm} → Pm(N).



Triangle Map and Integer Partitions

Four natural subdomains:

Domain(T̃0) = {λ1 < λ2 + λm}
Domain(T̃1) = {λ1 > λ2 + λm}

Image(T̃0) = {k1 > km}
Image(T̃1) = {k1 < km}



Triangle Map and Integer Partitions

Four natural subdomains:

A = Domain(T̃0) ∩ Image(T̃0)

B = Domain(T̃0) ∩ Image(T̃1)

C = Domain(T̃1) ∩ Image(T̃0)

D = Domain(T̃1) ∩ Image(T̃1)



Triangle Map and Integer Partitions

Young conjugation is quite natural for integer partitions.

C−→

which represents the conjugate map

C(5, 3, 2)× [3, 2, 1] = (6, 5, 3)× [2, 1, 21]



Triangle Map and Integer Partitions

Not sure what a Young shape would be for real numbers, but
the map C still makes sense:

(λ1, . . . , λm)× [k1, . . . , km]
↓ C

(k1 + . . .+ km, k1 + . . .+ km−1, . . . , k1)
×

[λm, λm−1 − λm, . . . , λ1 − λ2]



Triangle Map and Integer Partitions

Domain(T̃0) ∩ Image(T̃0)
C−→ Domain(T̃0) ∩ Image(T̃0)

Domain(T̃0) ∩ Image(T̃1)
C−→ Domain(T̃1) ∩ Image(T̃0)

Domain(T̃1) ∩ Image(T̃0)
C−→ Domain(T̃0) ∩ Image(T̃1)

Domain(T̃1) ∩ Image(T̃1)
C−→ Domain(T̃1) ∩ Image(T̃1)

Thus Young conjugation gives us an involution of the natural
extension. This seems new.



Sources

1. “On integer partitions and continued fraction type
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Ramanujan J. (2024)
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continued fraction algorithm” by Baalbaki and TG in
Electron. J. Combinatorics (2024),

3. “Ergodicity and Algebraticity of the Fast and Slow
Triangle Maps” by TG and Lehmann Duke,
https://arxiv.org/abs/2409.05822

4. ”Methods for Obtaining Partition Identities Using the
Selmer and Brun Algorithm”, Phang, Senior Thesis,,
Williams College, 2023.

5. “Tree Structures on Partitions Shaped by the Dynamics of
the Triangle Map”, Fox, Senior Thesis,, Williams College,
2024.



Questions

1. Is it true that the triangle map is the only
multi-dimensional continued fraction algorithm that is both
partition friendly and Young compatible?

2. Understand the nature of the tree structure

3. Direct proofs of generating function identities.

4. Find more identities

5. Can you put “q” into this language. (Maybe link with
work of Sophie Morier-Genoud, Valentin Ovsienko and
collaborators)

6. Use integer partitions to understand the dynamics

7. Multi-dimensional continued fractions can be linked to
billards, translations surfaces, automata theory, etc. Can
integer partition theory be used?



Homework

1. Find the path under T̃ of

(12, 7, 3, 2)× [2, 3, 1, 5]

2. Find the tree structure for all P(N), for

N = 1, 2, 3, 4, 5, 6, 7, 8, 9.

3. For 4 = {1 > λ2 > λ3 > 0}, find the values of λ2, λ3 whose
triangle sequence is

(0, 1, 0, 1, 0, 1, . . .).



THANKS


