
Distribution of the sum of reciprocal parts for
distinct parts partitions

Walter Bridges

University of North Texas

March 20, 2025



Introduction Main Result Random Harmonic Sum Proof sketch and limit shape Boltzmann sampler Unrestricted parts case

This talk is based on:

W. Bridges, “Distribution of the sum of reciprocal parts for distinct parts
partitions,” submitted. arXiv:2503.03899



Introduction Main Result Random Harmonic Sum Proof sketch and limit shape Boltzmann sampler Unrestricted parts case

Distinct parts partitions

Definition

A distinct parts partition λ of size |λ| = n is a sequence of
integers satisfying

λ1 > · · · > λ` > 0, and
∑̀
j=1

λj = n.

Let D(n) be the set of distinct parts partitions of n and set
d(n) := #D(n).

Example

d(5) = 3 :
5, 4 + 1, 3 + 2.
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Egyptian fractions

Definition

An Egyptian fraction is a sum of distinct unit fractions.

Example

Given a distinct parts partition λ, the sum of reciprocal parts is
denoted

S(λ) :=
1

λ1
+ · · ·+ 1

λ`
.

General references on Egyptian fractions:

P. Erdős and R. L. Graham, Old and New Problems in Combinatorial
Number Theory, L’Enseignement Mathématique Université de Genève,
1980.

R. Guy, Unsolved Problems in Number Theory, 3rd edition,
Springer-Verlag, 2004.
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Question (Kim–Kim, JCTA (2025))

How is S distributed among distinct parts partitions of n, as
n→∞?

Recall: 1 + 1
2 + · · ·+ 1

n = log n + γ + o(1), so clearly

0 ≤ S(λ) ≤ log n + γ + o(1),

for all λ ∈ Dn.
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Question (Kim–Kim, JCTA (2025))

How is S distributed among distinct parts partitions of n, as n→∞?

Theorem (Kim–Kim, JCTA (2025))

As n→∞,

∑
λ∈Dn

S(λ) = d(n)

(
log(
√

3n)

2
+ O(n−1/2)

)
(1)

∑
λ∈Dn

S(λ)2 = d(n)

(
log2(

√
3n)

4
+
π2

24
+ O(n−1/2)

)
. (2)

Corollary

2S − log(
√

3n) has asymptotic mean 0 and variance π2

12 .

Remark

Bringmann–Kim–Kim (2025+) proved Rademacher-type asymptotic
series for (1) and (2) with O(

√
n) error!
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Notation: Uniform measure

Pn := uniform probability measure on distinct parts partitions of n

Example

d(5) = 3, so

Pn(5) = Pn(4 + 1) = Pn(3 + 2) =
1

3
.

Kim–Kim’s Theorem + Chebyshev’s inequality: For all M > 0,

Pn

(
|2S − log(

√
3n)| > M

)
≤ π2

12M2
for sufficiently large n.
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Random Harmonic Sum

Let {εk}k≥1 be independent random variables with1

P(εk = ±1) =
1

2
.

Definition

The random harmonic sum is

H :=
∑
k≥1

εk
k
.

Fact

H converges almost surely.

1Throughout, P denotes a probability measure induced by the random
variables in its argument.
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Main Theorem

Question (Kim–Kim, JCTA (2024))

How is S distributed among distinct parts partitions of n, as
n→∞?

Theorem (B. (2025+))

For any x ∈ R,

lim
n→∞

Pn(2S − log(
√

3n) ≤ x) = P(H ≤ x).
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Figure: A histogram of 10 000 values of 2S(λ)− log(
√

3|λ|), where
partitions λ have been generated in Maple by a Boltzmann sampler
with parameter q = e

− π√
12n with n = 2000. In red is an approximation to

the density for H.
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Density for the random harmonic sum: Method 1

B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).

Each εk has characteristic function cos(t), so H =
∑ εk

k has
characteristic function ∏

k≥1

cos
( t
k

)
.

By Fourier inversion, the density is

fH(x) :=
1

π

∫ ∞
0

cos(xt)
∏
k≥1

cos
( t
k

)
dt.

The product converges very slowly! There is an easier method!
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Density for the random harmonic sum: Method 2

B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).

Write

H =
ε1
1

+
ε2
2

+
ε4
4

+ . . .

+
ε3
3

+
ε6
6

+
ε12
12

+ . . .

+
ε5
5

+
ε10
10

+
ε20
20

+ . . .

... =:
∑
j≥0

Uj .

Each Uj is has uniform distribution on
[
− 2

2j+1 ,
2

2j+1

]
, so

fH(x) =

(
1

4
1[−2,2]

)
∗
(

3

4
1[− 2

3 ,
2
3 ]

)
∗
(

5

4
1[− 2

5 ,
2
5 ]

)
∗ · · ·
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Above: Densities for
∑n

j=0 Uj for n ∈ {0, 1, 2, 3}.
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Proof Outline

Write

S =
n∑

k=1

Xk

k
,

where Xk(λ) ∈ {0, 1} is the multiplicity of k in λ.

Break the sum up into three ranges:

[1, n] = [1, kn]︸ ︷︷ ︸
small parts

∪ (kn,Kn]︸ ︷︷ ︸
intermediate

∪ (Kn, n]︸ ︷︷ ︸
large

,

where kn = bn1/5c and Kn = bn1/3c.
Work of Fristedt (1993) gives joint distributions for small and
intermediate part sizes.

We analyze the contribution from large parts by proving a
strong version of the limit shape for distinct parts partitions.
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Proof Outline

Proposition (Small parts)

For any x ∈ R,

lim
n→∞

Pn

∑
k≤kn

2Xk

k
− log (kn)− γ ≤ x

 = P(H ≤ x).

Proposition (Intermediate parts)

lim
n→∞

Pn

∣∣∣∣∣∣
∑

kn<k≤Kn

2Xk

k
− log

(
Kn

kn

)∣∣∣∣∣∣ ≤ n−
1
11

 = 1.

Proposition (Large parts)

lim
n→∞

Pn

∣∣∣∣∣∣
∑

Kn<k≤n

2Xk

k
− log

(√
3n

Kn

)
+ γ

∣∣∣∣∣∣ ≤ n−
1
30

 = 1.
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Small parts: sketch

Small parts behave like independent Bernoulli random variables:

Proposition (Fristedt, (1993) Trans. AMS)

Let xk ∈ {0, 1} for k = 1, . . . , kn with kn = o(n1/4), then

lim
n→∞

(
Pn (Xk = xk , k = 1, . . . , kn)− 1

2kn

)
= 0.

Note 2Xk − 1 ∈ {±1}, so the limiting distribution of
(2Xk − 1)k≤kn coincides with that of (εk)k≤kn .

Thus,∑
k≤kn

2Xk

k
− log(kn)− γ ≈

∑
k≤kn

2Xk − 1

k
≈
∑
k≤kn

εk
k
≈ H
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Intermediate parts: sketch

Using work of Fristedt (1993), one can show

En

 ∑
kn<k≤Kn

2Xk

k

 = log

(
Kn

kn

)
+ O(n−1/6),

Varn

 ∑
kn<k≤Kn

2Xk

k

 = O(n−1/5).

Chebyshev’s Inequality implies that intermediate parts
contribute only to the mean of S :

Pn

∣∣∣∣∣∣
∑

kn<k≤Kn

2Xk

k
− log

(
Kn

kn

)∣∣∣∣∣∣ > n−
1
11

� n
2
11

n
1
5

= o(1).
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Large parts: limit shape

Large parts are governed by the limit shape.

The shape of the Young/Ferrer’s diagram for λ is described
by the step function,

ϕλ(t) :=
∑
k≤t

Xk(λ).

Example

Let λ = 8 + 5 + 3 + 2 + 1.

t 0 1 2 3 4 5 6 7 8 9 . . .

ϕλ(t) 0 1 2 3 3 4 4 4 5 5 . . .

ϕλ(t)
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Large parts: limit shape

Large parts are governed by the limit shape.

The Young/Ferrer’s diagram of λ is described by the step
function,

ϕλ(t) :=
∑
k≤t

Xk(λ).

If |λ| = n, rescale axes by 1√
n

.

1√
n
ϕ(
√
nt) is “almost surely very close to”

L(t) :=

√
12

π
log

(
2

1 + e
− πt√

12

)
.
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Theorem (Dembo–Vershik–Zeitouni (1998))

For any ε > 0,

lim
n→∞

Pn

(
sup
t≥0

∣∣∣∣ 1√
n
ϕ(
√
nt)− L(t)

∣∣∣∣ < ε

)
= 1.

Also, an explicit large deviation principle holds at the scaling of
√
n.

Theorem (Yakubovich (2001))

For any fixed 0 < t1 < · · · < tr , the vector

1√
n

(
ϕ(t1
√
n), . . . , ϕ(tr

√
n)
)

varies from (L(t1), . . . , L(tr )) like a r -dimensional Gaussian at the scaling n−
1
4 .

Proposition (B., (2025+))

For fixed 0 < δ < 1
4
, we have

lim sup
n→∞

n−δ logPn

(
inf
t≥0

∣∣∣∣ 1√
n
ϕ(
√
nt)− L(t)

∣∣∣∣ > n−
1
4
+δ

)
< 0.
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Figure: The black step functions are the renormalized shapes
1√
|λ|
φλ(
√
|λ|t) for six random distinct parts partitions λ of sizes 992,

1592, 1065, 1475, 910, and 1107, generated using a Boltzmann sampler
with parameter q = e

− π√
12n with n = 1000. In red are the curves

L(t)± n−
1
4 .
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Large parts: sketch

Observe that

1

b
√
n

∑
a
√
n<k≤b

√
n

Xk︸ ︷︷ ︸
≈ L(b)−L(a)

b

≤
∑

a
√
n<k≤b

√
n

Xk

k
≤ 1

a
√
n

∑
a
√
n<k≤b

√
n

Xk︸ ︷︷ ︸
≈ L(b)−L(a)

a

.

Partition the interval (with appropriate scaling):

(Kn, n] =
J⋃

j=1

(tj−1,n
√
n, tj,n

√
n].

Limit shape proposition and careful analysis give (roughly)∑
Kn<k≤n

2Xk

k
≈

J+1∑
j=1

2

tj,n
(L(tj,n)− L(tj−1,n))

≈ log

(√
3n

Kn

)
− γ + o(1).
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Boltzmann sampler

The Boltzmann model is a family of probability distributions
on all distinct parts partitions constructed from the generating
function as

P(λ) := q|λ|
∏
k≥1

1

1 + qk
, q ∈ (0, 1).

Conditioned on the size, P coincides with the uniform
measure.

If q = qn = e
− π√

12n (the approximate saddle point of
q−n

∏
k≥1(1 + qk)), sampling Xk according to

Bernoulli
(

qkn
1+qkn

)
yields a.s. partitions of size n + O(n3/4)

(Fristedt, 1993).

See, e.g., my October 2023 talk in this seminar for more
details! :)
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Unrestricted parts case

Question (Kim–Kim, JCTA (2025))

How is S distributed among (unrestricted) partitions of n, as n→∞?

Distribution follows directly from work of Fristedt (1993) and
Erdős–Lehner (1941).

Answer (see Kim–Kim, JCTA (2025))

For any x ∈ R,

lim
n→∞

Pn

(
π√
6n

S ≤ x

)
= 1−

∑
k≥1

(−1)k−1e−k2x .

Remark

This is the Kolmogorov distribution and arises in a number of places:

1 as the maximum height of the Brownian bridge process,

2 as the number of parts of partitions into squares (Goh–Hitczenko, 2006),

3 as the height of ordered, rooted trees on n + 1 vertices (Renyi–Szekeres
1967, Stepanov 1969).
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Thanks for listening!
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