Distribution of the sum of reciprocal parts for distinct parts partitions

Walter Bridges

University of North Texas

March 20, 2025

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
00000					

This talk is based on:

• W. Bridges, "Distribution of the sum of reciprocal parts for distinct parts partitions," submitted. arXiv:2503.03899

Distinct parts partitions

Definition

A distinct parts partition λ of size $|\lambda| = n$ is a sequence of integers satisfying

$$\lambda_1 > \cdots > \lambda_\ell > 0,$$
 and $\sum_{j=1}^{\iota} \lambda_j =$

n.

Let $\mathcal{D}(n)$ be the set of distinct parts partitions of n and set $d(n) := \#\mathcal{D}(n)$.

Distinct parts partitions

Definition

A distinct parts partition λ of size $|\lambda| = n$ is a sequence of integers satisfying

$$\lambda_1 > \cdots > \lambda_\ell > 0,$$
 and

$$\sum_{j=1}^{c} \lambda_j = n.$$

Let $\mathcal{D}(n)$ be the set of distinct parts partitions of n and set $d(n) := \#\mathcal{D}(n)$.

Example

d(5) = 3:

$$5, 4+1, 3+2.$$

00000			000000000	
E	·	- 1 ¹		

Egyptian fractions

Definition

An **Egyptian fraction** is a sum of distinct unit fractions.

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
00000					

Egyptian fractions

Definition

An Egyptian fraction is a sum of distinct unit fractions.

Example

Given a distinct parts partition λ , the **sum of reciprocal parts** is denoted

$$\mathcal{S}(\lambda) := rac{1}{\lambda_1} + \cdots + rac{1}{\lambda_\ell}.$$

Egyptian fractions

Definition

An **Egyptian fraction** is a sum of distinct unit fractions.

Example

Given a distinct parts partition λ , the **sum of reciprocal parts** is denoted

$$\mathcal{S}(\lambda) := rac{1}{\lambda_1} + \cdots + rac{1}{\lambda_\ell}.$$

General references on Egyptian fractions:

- P. Erdős and R. L. Graham, Old and New Problems in Combinatorial Number Theory, L'Enseignement Mathématique Université de Genève, 1980.
- R. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer-Verlag, 2004.

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
00000					

How is S distributed among distinct parts partitions of n, as $n \to \infty$?

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
00000					

How is S distributed among distinct parts partitions of n, as $n \to \infty$?

Recall:
$$1 + \frac{1}{2} + \dots + \frac{1}{n} = \log n + \gamma + o(1)$$
, so clearly
 $0 \le S(\lambda) \le \log n + \gamma + o(1)$,

for all $\lambda \in \mathcal{D}_n$.

How is S distributed among distinct parts partitions of n, as $n \to \infty$?

How is S distributed among distinct parts partitions of n, as $n \to \infty$?

Theorem (Kim-Kim, JCTA (2025))

As $n \to \infty$,

$$\sum_{\lambda \in \mathcal{D}_n} S(\lambda) = d(n) \left(\frac{\log(\sqrt{3n})}{2} + O(n^{-1/2}) \right)$$
(1)
$$\sum_{\lambda \in \mathcal{D}_n} S(\lambda)^2 = d(n) \left(\frac{\log^2(\sqrt{3n})}{4} + \frac{\pi^2}{24} + O(n^{-1/2}) \right).$$
(2)

How is S distributed among distinct parts partitions of n, as $n \to \infty$?

Theorem (Kim–Kim, JCTA (2025))

As $n \to \infty$.

$$\sum_{\lambda \in \mathcal{D}_n} S(\lambda) = d(n) \left(\frac{\log(\sqrt{3n})}{2} + O(n^{-1/2}) \right)$$
(1)
$$\sum_{\lambda \in \mathcal{D}_n} S(\lambda)^2 = d(n) \left(\frac{\log^2(\sqrt{3n})}{4} + \frac{\pi^2}{24} + O(n^{-1/2}) \right).$$
(2)

Corollary

 $2S - \log(\sqrt{3n})$ has asymptotic mean 0 and variance $\frac{\pi^2}{12}$.

How is S distributed among distinct parts partitions of n, as $n \to \infty$?

Theorem (Kim–Kim, JCTA (2025))

As $n \to \infty$,

$$\sum_{\lambda \in \mathcal{D}_n} S(\lambda) = d(n) \left(\frac{\log(\sqrt{3n})}{2} + O(n^{-1/2}) \right)$$
(1)
$$\sum_{\mu \in \mathcal{D}_n} S(\lambda)^2 = d(n) \left(\frac{\log^2(\sqrt{3n})}{4} + \frac{\pi^2}{24} + O(n^{-1/2}) \right).$$
(2)

Corollary

$$2S - \log(\sqrt{3n})$$
 has asymptotic mean 0 and variance $\frac{\pi^2}{12}$

Remark

Bringmann–Kim–Kim (2025+) proved Rademacher-type asymptotic series for (1) and (2) with $O(\sqrt{n})$ error!

Notation: Uniform measure

$P_n :=$ uniform probability measure on distinct parts partitions of n

Notation: Uniform measure

$P_n :=$ uniform probability measure on distinct parts partitions of n

Example

$$d(5) = 3$$
, so
 $P_n(5) = P_n(4+1) = P_n(3+2) = \frac{1}{3}.$

Kim–Kim's Theorem + Chebyshev's inequality: For all M > 0,

$${\sf P}_n\left(|2S-\log(\sqrt{3n})|>M
ight)\leq rac{\pi^2}{12M^2}$$
 for sufficiently large n .

Let $\{\varepsilon_k\}_{k\geq 1}$ be independent random variables with¹

$$P(\varepsilon_k=\pm 1)=\frac{1}{2}.$$

¹Throughout, P denotes a probability measure induced by the random variables in its argument.

Let $\{\varepsilon_k\}_{k>1}$ be independent random variables with¹

$$P(\varepsilon_k=\pm 1)=\frac{1}{2}.$$

Definition

The random harmonic sum is

$$H:=\sum_{k\geq 1}\frac{\varepsilon_k}{k}.$$

Fact

H converges almost surely.

¹Throughout, P denotes a probability measure induced by the random variables in its argument.

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
	0000				

Main Theorem

Question (Kim-Kim, JCTA (2024))

How is S distributed among distinct parts partitions of n, as $n \to \infty$?

Main Theorem

Question (Kim-Kim, JCTA (2024))

How is S distributed among distinct parts partitions of n, as $n \rightarrow \infty$?

Theorem (B. (2025+))

For any $x \in \mathbb{R}$,

$$\lim_{n\to\infty} P_n(2S - \log(\sqrt{3n}) \le x) = P(H \le x)$$

Figure: A histogram of 10 000 values of $2S(\lambda) - \log(\sqrt{3|\lambda|})$, where partitions λ have been generated in Maple by a **Boltzmann sampler** with parameter $q = e^{-\frac{\pi}{\sqrt{12n}}}$ with n = 2000. In red is an approximation to the density for *H*.

B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).

Introduction Main Result 0000 Main Result 0000 Proof sketch and limit shape 0 Boltzmann sampler Unrestricted parts case 0 O

- B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).
 - Each ε_k has characteristic function $\cos(t)$, so $H = \sum \frac{\varepsilon_k}{k}$ has characteristic function

$$\prod_{k\geq 1}\cos\left(\frac{t}{k}\right).$$

- B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).
 - Each ε_k has characteristic function $\cos(t)$, so $H = \sum \frac{\varepsilon_k}{k}$ has characteristic function

$$\prod_{k\geq 1}\cos\left(\frac{t}{k}\right).$$

• By Fourier inversion, the density is

$$f_{\mathcal{H}}(x) := rac{1}{\pi} \int_0^\infty \cos(xt) \prod_{k \ge 1} \cos\left(rac{t}{k}\right) dt.$$

• The product converges very slowly! There is an easier method!

Density for the random harmonic sum: Method 2

- B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).
 - Write

$$H = \frac{\varepsilon_1}{1} + \frac{\varepsilon_2}{2} + \frac{\varepsilon_4}{4} + \dots$$
$$+ \frac{\varepsilon_3}{3} + \frac{\varepsilon_6}{6} + \frac{\varepsilon_{12}}{12} + \dots$$
$$+ \frac{\varepsilon_5}{5} + \frac{\varepsilon_{10}}{10} + \frac{\varepsilon_{20}}{20} + \dots$$
$$\vdots \qquad =: \sum_{j \ge 0} U_j.$$

Density for the random harmonic sum: Method 2

- B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).
 - Write

$$H = \frac{\varepsilon_1}{1} + \frac{\varepsilon_2}{2} + \frac{\varepsilon_4}{4} + \dots$$
$$+ \frac{\varepsilon_3}{3} + \frac{\varepsilon_6}{6} + \frac{\varepsilon_{12}}{12} + \dots$$
$$+ \frac{\varepsilon_5}{5} + \frac{\varepsilon_{10}}{10} + \frac{\varepsilon_{20}}{20} + \dots$$
$$\vdots \qquad =: \sum_{j \ge 0} U_j.$$

• Each U_j is has uniform distribution on $\left[-\frac{2}{2j+1}, \frac{2}{2j+1}\right]$, so

$$f_{\mathcal{H}}(x) = \left(\frac{1}{4}\mathbf{1}_{[-2,2]}\right) * \left(\frac{3}{4}\mathbf{1}_{[-\frac{2}{3},\frac{2}{3}]}\right) * \left(\frac{5}{4}\mathbf{1}_{[-\frac{2}{5},\frac{2}{5}]}\right) * \cdots$$

Introduction 00000	Main Result 0000	Random Harmonic Sum	Proof sketch and limit shape •00000000	Boltzmann sampler 0	Unrestricted parts case
Proof	Outlin	е			

Write

$$S=\sum_{k=1}^n\frac{X_k}{k},$$

where $X_k(\lambda) \in \{0,1\}$ is the multiplicity of k in λ .

Introduction 00000	Main Result 0000	Random Harmonic Sum	Proof sketch and limit shape •00000000	Boltzmann sampler 0	Unrestricted parts case

Write

$$S=\sum_{k=1}^n\frac{X_k}{k},$$

where $X_k(\lambda) \in \{0,1\}$ is the multiplicity of k in λ .

• Break the sum up into three ranges:

$$[1, n] = \underbrace{[1, k_n]}_{\text{small parts}} \cup \underbrace{(k_n, K_n]}_{\text{intermediate}} \cup \underbrace{(K_n, n]}_{\text{large}},$$

where $k_n = \lfloor n^{1/5} \rfloor$ and $K_n = \lfloor n^{1/3} \rfloor$.

Introduction 00000	Main Result 0000	Random Harmonic Sum	Proof sketch and limit shape •00000000	Boltzmann sampler 0	Unrestricted parts case
	A B				

Write

$$S=\sum_{k=1}^n\frac{X_k}{k},$$

where $X_k(\lambda) \in \{0, 1\}$ is the multiplicity of k in λ .

• Break the sum up into three ranges:

$$[1, n] = \underbrace{[1, k_n]}_{\text{small parts}} \cup \underbrace{(k_n, K_n]}_{\text{intermediate}} \cup \underbrace{(K_n, n]}_{\text{large}},$$

where $k_n = \lfloor n^{1/5} \rfloor$ and $K_n = \lfloor n^{1/3} \rfloor$.

• Work of Fristedt (1993) gives joint distributions for small and intermediate part sizes.

Introduction 00000	Main Result 0000	Random Harmonic Sum	Proof sketch and limit shape •00000000	Boltzmann sampler 0	Unrestricted parts case
D	<u> </u>				

Write

$$S=\sum_{k=1}^n\frac{X_k}{k},$$

where $X_k(\lambda) \in \{0, 1\}$ is the multiplicity of k in λ .

• Break the sum up into three ranges:

$$[1, n] = \underbrace{[1, k_n]}_{\text{small parts}} \cup \underbrace{(k_n, K_n]}_{\text{intermediate}} \cup \underbrace{(K_n, n]}_{\text{large}},$$

where $k_n = \lfloor n^{1/5} \rfloor$ and $K_n = \lfloor n^{1/3} \rfloor$.

- Work of Fristedt (1993) gives joint distributions for small and intermediate part sizes.
- We analyze the contribution from large parts by proving a strong version of the **limit shape** for distinct parts partitions.

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
00000	0000	000	0000000	0	00

Proposition (Small parts)

For any $x \in \mathbb{R}$,

$$\lim_{n\to\infty} P_n\left(\sum_{k\leq k_n}\frac{2X_k}{k}-\log{(k_n)}-\gamma\leq x\right)=P(H\leq x).$$

Proposition (Intermediate parts)

$$\lim_{n\to\infty} P_n\left(\left|\sum_{k_n< k\leq K_n}\frac{2X_k}{k}-\log\left(\frac{K_n}{k_n}\right)\right|\leq n^{-\frac{1}{11}}\right)=1.$$

Proposition (Large parts)

$$\lim_{n\to\infty} P_n\left(\left|\sum_{K_n< k\leq n} \frac{2X_k}{k} - \log\left(\frac{\sqrt{3n}}{K_n}\right) + \gamma\right| \leq n^{-\frac{1}{30}}\right) = 1.$$

Small parts behave like independent Bernoulli random variables:

Proposition (Fristedt, (1993) Trans. AMS) Let $x_k \in \{0, 1\}$ for $k = 1, ..., k_n$ with $k_n = o(n^{1/4})$, then $\lim_{n \to \infty} \left(P_n (X_k = x_k, \ k = 1, ..., k_n) - \frac{1}{2^{k_n}} \right) = 0.$

Small parts behave like independent Bernoulli random variables:

Proposition (Fristedt, (1993) Trans. AMS)
Let
$$x_k \in \{0, 1\}$$
 for $k = 1, \dots, k_n$ with $k_n = o(n^{1/4})$, then
$$\lim_{n \to \infty} \left(P_n \left(X_k = x_k, \ k = 1, \dots, k_n \right) - \frac{1}{2^{k_n}} \right) = 0.$$

• Note $2X_k - 1 \in \{\pm 1\}$, so the limiting distribution of $(2X_k - 1)_{k \le k_n}$ coincides with that of $(\varepsilon_k)_{k \le k_n}$.

Introduction Main Result cool of the second second

Small parts: sketch

Small parts behave like independent Bernoulli random variables:

Proposition (Fristedt, (1993) Trans. AMS)
Let
$$x_k \in \{0, 1\}$$
 for $k = 1, \dots, k_n$ with $k_n = o(n^{1/4})$, then
$$\lim_{n \to \infty} \left(P_n(X_k = x_k, \ k = 1, \dots, k_n) - \frac{1}{2^{k_n}} \right) = 0.$$

• Note $2X_k - 1 \in \{\pm 1\}$, so the limiting distribution of $(2X_k - 1)_{k \le k_n}$ coincides with that of $(\varepsilon_k)_{k \le k_n}$.

Thus,

$$\sum_{k \leq k_n} \frac{2X_k}{k} - \log(k_n) - \gamma \approx \sum_{k \leq k_n} \frac{2X_k - 1}{k} \approx \sum_{k \leq k_n} \frac{\varepsilon_k}{k} \approx H$$

Intermediate parts: sketch

• Using work of Fristedt (1993), one can show

$$\begin{split} & \operatorname{E}_n\left(\sum_{k_n < k \leq K_n} \frac{2X_k}{k}\right) = \log\left(\frac{K_n}{k_n}\right) + O(n^{-1/6}), \\ & \operatorname{Var}_n\left(\sum_{k_n < k \leq K_n} \frac{2X_k}{k}\right) = O(n^{-1/5}). \end{split}$$

Intermediate parts: sketch

• Using work of Fristedt (1993), one can show

$$\mathbf{E}_n \left(\sum_{k_n < k \le K_n} \frac{2X_k}{k} \right) = \log\left(\frac{K_n}{k_n}\right) + O(n^{-1/6}),$$

$$\mathbf{Var}_n \left(\sum_{k_n < k \le K_n} \frac{2X_k}{k} \right) = O(n^{-1/5}).$$

• Chebyshev's Inequality implies that intermediate parts contribute only to the mean of *S*:

$$P_n\left(\left|\sum_{k_n < k \leq K_n} \frac{2X_k}{k} - \log\left(\frac{K_n}{k_n}\right)\right| > n^{-\frac{1}{11}}\right) \ll \frac{n^{\frac{2}{11}}}{n^{\frac{1}{5}}} = o(1).$$

Large parts: limit shape

• Large parts are governed by the limit shape.

Large parts: limit shape

- Large parts are governed by the limit shape.
- The shape of the Young/Ferrer's diagram for λ is described by the step function,

$$arphi_{\lambda}(t) := \sum_{k \leq t} X_k(\lambda).$$

- Large parts are governed by the limit shape.
- The Young/Ferrer's diagram of λ is described by the step function,

$$arphi_\lambda(t) := \sum_{k \leq t} X_k(\lambda).$$

• If
$$|\lambda| = n$$
, rescale axes by $\frac{1}{\sqrt{n}}$

• $\frac{1}{\sqrt{n}}\varphi(\sqrt{n}t)$ is "almost surely very close to"

$$L(t) := \frac{\sqrt{12}}{\pi} \log \left(\frac{2}{1 + e^{-\frac{\pi t}{\sqrt{12}}}} \right).$$

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
			000000000		

Theorem (Dembo-Vershik-Zeitouni (1998))

For any $\varepsilon > 0$,

$$\lim_{n\to\infty} P_n\left(\sup_{t\geq 0}\left|\frac{1}{\sqrt{n}}\varphi(\sqrt{n}t)-L(t)\right|<\varepsilon\right)=1.$$

Also, an explicit large deviation principle holds at the scaling of \sqrt{n} .

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
			000000000		

Theorem (Dembo-Vershik-Zeitouni (1998))

For any $\varepsilon > 0$,

$$\lim_{n\to\infty} P_n\left(\sup_{t\geq 0}\left|\frac{1}{\sqrt{n}}\varphi(\sqrt{n}t)-L(t)\right|<\varepsilon\right)=1.$$

Also, an explicit large deviation principle holds at the scaling of \sqrt{n} .

Theorem (Yakubovich (2001))

For any fixed $0 < t_1 < \cdots < t_r$, the vector

$$\frac{1}{\sqrt{n}}\left(\varphi(t_1\sqrt{n}),\ldots,\varphi(t_r\sqrt{n})\right)$$

varies from $(L(t_1), \ldots, L(t_r))$ like a r-dimensional Gaussian at the scaling $n^{-\frac{1}{4}}$.

Introduction	Main Result	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler	Unrestricted parts case
			000000000		

Theorem (Dembo-Vershik-Zeitouni (1998))

For any $\varepsilon > 0$,

$$\lim_{n\to\infty} P_n\left(\sup_{t\geq 0}\left|\frac{1}{\sqrt{n}}\varphi(\sqrt{n}t)-L(t)\right|<\varepsilon\right)=1.$$

Also, an explicit large deviation principle holds at the scaling of \sqrt{n} .

Theorem (Yakubovich (2001))

For any fixed $0 < t_1 < \cdots < t_r$, the vector

$$\frac{1}{\sqrt{n}}\left(\varphi(t_1\sqrt{n}),\ldots,\varphi(t_r\sqrt{n})\right)$$

varies from $(L(t_1), \ldots, L(t_r))$ like a r-dimensional Gaussian at the scaling $n^{-\frac{1}{4}}$.

Proposition (B., (2025+))

For fixed $0 < \delta < \frac{1}{4}$, we have

$$\limsup_{n\to\infty} n^{-\delta} \log P_n\left(\inf_{t\geq 0} \left|\frac{1}{\sqrt{n}}\varphi(\sqrt{n}t) - L(t)\right| > n^{-\frac{1}{4}+\delta}\right) < 0$$

Figure: The black step functions are the renormalized shapes $\frac{1}{\sqrt{|\lambda|}}\phi_{\lambda}(\sqrt{|\lambda|}t)$ for six random distinct parts partitions λ of sizes 992, 1592, 1065, 1475, 910, and 1107, generated using a Boltzmann sampler with parameter $q = e^{-\frac{\pi}{\sqrt{12n}}}$ with n = 1000. In red are the curves $L(t) \pm n^{-\frac{1}{4}}$.

Introduction 00000	Main Result 0000	Random Harmonic Sum	Proof sketch and limit shape	Boltzmann sampler 0	Unrestricted parts case
Large	parts:	sketch			

Observe that

Observe that

• Partition the interval (with appropriate scaling):

$$(K_n, n] = \bigcup_{j=1}^J (t_{j-1,n}\sqrt{n}, t_{j,n}\sqrt{n}].$$

Large parts: sketch

Observe that

$$\underbrace{\frac{1}{b\sqrt{n}}\sum_{\substack{a\sqrt{n} < k \le b\sqrt{n} \\ \approx \frac{L(b) - L(a)}{b}}} X_k}_{\approx \frac{L(b) - L(a)}{b}} \le \sum_{a\sqrt{n} < k \le b\sqrt{n}} \frac{X_k}{k} \le \underbrace{\frac{1}{a\sqrt{n}}\sum_{\substack{a\sqrt{n} < k \le b\sqrt{n} \\ \approx \frac{L(b) - L(a)}{a}}} X_k}_{\approx \frac{L(b) - L(a)}{a}}$$

• Partition the interval (with appropriate scaling):

$$(\mathcal{K}_n, n] = \bigcup_{j=1}^J (t_{j-1,n}\sqrt{n}, t_{j,n}\sqrt{n}].$$

• Limit shape proposition and careful analysis give (roughly)

$$\sum_{K_n < k \le n} \frac{2X_k}{k} \approx \sum_{j=1}^{J+1} \frac{2}{t_{j,n}} (L(t_{j,n}) - L(t_{j-1,n}))$$
$$\approx \log\left(\frac{\sqrt{3n}}{K_n}\right) - \gamma + o(1).$$

$${\sf P}(\lambda):=q^{|\lambda|}\prod_{k\geq 1}rac{1}{1+q^k},\qquad q\in(0,1).$$

$${\sf P}(\lambda):=q^{|\lambda|}\prod_{k\geq 1}rac{1}{1+q^k},\qquad q\in(0,1).$$

• Conditioned on the size, *P* coincides with the uniform measure.

$${\mathcal P}(\lambda):=q^{|\lambda|}\prod_{k\geq 1}rac{1}{1+q^k},\qquad q\in(0,1).$$

- Conditioned on the size, *P* coincides with the uniform measure.
- If $q = q_n = e^{-\frac{\pi}{\sqrt{12n}}}$ (the approximate saddle point of $q^{-n} \prod_{k \ge 1} (1 + q^k)$), sampling X_k according to Bernoulli $\left(\frac{q_n^k}{1+q_n^k}\right)$ yields a.s. partitions of size $n + O(n^{3/4})$ (Fristedt, 1993).

$${\sf P}(\lambda):=q^{|\lambda|}\prod_{k\geq 1}rac{1}{1+q^k},\qquad q\in(0,1).$$

- Conditioned on the size, *P* coincides with the uniform measure.
- If $q = q_n = e^{-\frac{\pi}{\sqrt{12n}}}$ (the approximate saddle point of $q^{-n} \prod_{k \ge 1} (1 + q^k)$), sampling X_k according to Bernoulli $\left(\frac{q_n^k}{1+q_n^k}\right)$ yields a.s. partitions of size $n + O(n^{3/4})$ (Fristedt, 1993).
- See, e.g., my October 2023 talk in this seminar for more details! :)

Introduction Main Result 0000 Nain Result 0000 Proof sketch and limit shape 0 Boltzmann sampler 0 Onestricted parts case 0

Unrestricted parts case

Question (Kim-Kim, JCTA (2025))

How is S distributed among (unrestricted) partitions of n, as $n \to \infty$?

Unrestricted parts case

Question (Kim–Kim, JCTA (2025))

How is S distributed among (unrestricted) partitions of n, as $n \to \infty$?

- Distribution follows directly from work of Fristedt (1993) and Erdős–Lehner (1941).
- Answer (see Kim-Kim, JCTA (2025))

For any $x \in \mathbb{R}$,

$$\lim_{n \to \infty} P_n\left(\frac{\pi}{\sqrt{6n}} S \le x\right) = 1 - \sum_{k \ge 1} (-1)^{k-1} e^{-k^2 x}$$

Unrestricted parts case

Question (Kim-Kim, JCTA (2025))

How is S distributed among (unrestricted) partitions of n, as $n \to \infty$?

- Distribution follows directly from work of Fristedt (1993) and Erdős–Lehner (1941).
- Answer (see Kim-Kim, JCTA (2025))

For any $x \in \mathbb{R}$,

$$\lim_{n \to \infty} P_n\left(\frac{\pi}{\sqrt{6n}} S \le x\right) = 1 - \sum_{k \ge 1} (-1)^{k-1} e^{-k^2 x}$$

Remark

This is the Kolmogorov distribution and arises in a number of places:

- as the maximum height of the Brownian bridge process,
- as the number of parts of partitions into squares (Goh-Hitczenko, 2006),
- S as the height of ordered, rooted trees on n + 1 vertices (Renyi-Szekeres 1967, Stepanov 1969).

Our work:

• W. Bridges, "Distribution of the sum of reciprocal parts for distinct parts partitions," submitted. arXiv:2503.03899

Other references:

- K. Bringmann, B. Kim and E. Kim, Improved asymptotics for moments of reciprocal sums of partitions into distinct parts, preprint. https://arxiv.org/pdf/2412.02534
- B. Fristedt, "The structure of random large partitions of integers", Transactions of the American Mathematical Society 337 (1993), 703–735.
- B. Kim and E. Kim, "Distributions of reciprocal sums of parts in integer partitions", Journal of Combinatorial Theorey Series A **211** (2025).
- B. Schmuland, "Random harmonic series", American Mathematical Monthly **110** (2003).