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This talk is based on:

@ W. Bridges, “Distribution of the sum of reciprocal parts for distinct parts
partitions,” submitted. arXiv:2503.03899
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A distinct parts partition \ of size |\| = n is a sequence of
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AL > o> XN >0, and Z)\j:n.

Let D(n) be the set of distinct parts partitions of n and set

d(n) := #D(n).
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Egyptian fractions

Definition
An Egyptian fraction is a sum of distinct unit fractions.

Given a distinct parts partition A, the sum of reciprocal parts is
denoted

1 1
SO) =5

General references on Egyptian fractions:

@ P. Erdés and R. L. Graham, Old and New Problems in Combinatorial
Number Theory, L'Enseignement Mathématique Université de Geneve,
1980.

@ R. Guy, Unsolved Problems in Number Theory, 3rd edition,
Springer-Verlag, 2004.
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Question (Kim—-Kim, JCTA (2025))

How is S distributed among distinct parts partitions of n, as
n—oo0?

Recall: 1+ %+ 4+ % =logn+v+ o(1), so clearly
0<S(\) <logn+~+o0(1),

for all A € D,,.
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As n — oo,
3 5() = d(n) ('g(f) ¥ O(n-1/2)> (1
AeD,
S SO = dn) <'°g2(f37) S 0<n1/2)> e
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Question (Kim—Kim, JCTA (2025))

How is S distributed among distinct parts partitions of n, as n — co?

Theorem (Kim—Kim, JCTA (2025))
As n — 00,

S 5(4) = d(n) ('g‘m T 0<n-1/2)> 1)

AED, 2
3" S(A? = d(n) ("’gQ(fT’) + 72%21 + O(n1/2)> . 2)
AeD,

Corollary

. . 2
2S5 — log(v/3n) has asymptotic mean 0 and variance 5.

Remark

Bringmann—Kim-Kim (2025+) proved Rademacher-type asymptotic
series for (1) and (2) with O(+\/n) error!
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Notation: Uniform measure

Pp := uniform probability measure on distinct parts partitions of n

d(5) =3, so

Po(5) = Po(4 +1) = Py(3+2) = %

Kim—Kim’'s Theorem + Chebyshev’s inequality: For all M > 0,
2

T
12M?2

for sufficiently large n.

Po (|25 — log(v3n)| > M) <
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Throughout, P denotes a probability measure induced by the random
variables in its argument.
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Random Harmonic Sum

Let {ex}k>1 be independent random variables withl

1
P(gk:il)za

Definition

The random harmonic sum is

H::Z%k.

k>1

H converges almost surely. l

Throughout, P denotes a probability measure induced by the random
variables in its argument.
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Main Theorem

Question (Kim-Kim, JCTA (2024))

How is S distributed among distinct parts partitions of n, as
n—oo?

Theorem (B. (2025+))
For any x € R,

lim P,(2S — log(v/3n) < x) = P(H < x).

n—o0
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0.151

0.104

0.054

Figure: A histogram of 10 000 values of 25(X) — log(+/3|A]), where
partitions A have been generated in Maple by a Boltzmann sampler
with parameter ¢ = e vi2» with n = 2000. In red is an approximation to
the density for H.
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Density for the random harmonic sum: Method 1

B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).

@ Each ¢, has characteristic function cos(t), so H =) % has
characteristic function

@ By Fourier inversion, the density is

fru(x) = %/Oo cos(xt) H cos (%) dt.

0 k>1

@ The product converges very slowly! There is an easier method!
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Density for the random harmonic sum: Method 2

B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).
@ Write

1 2 4
€3 €6 €12

+3 + 6 + 12 +...
€5 €10 €20

+5 + 10 + 20 T

::ZUJ-.

j=0
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Density for the random harmonic sum: Method 2

B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003).

@ Write
= L4242ty
22
2+
::ZUJ-.
>0

o . TR 2 2
@ Each U; is has uniform distribution on [ st —zj_ﬂ], SO

1 3 5
w00 = (312a) » (G1a1) » (3a)
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0.25 025
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
ST 01 2 5 e R I I
x x
0.25 025
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0 0
3.2 .10 1 2 3 4 3 -2 -1 0 1 2 3 4

Above: Densities for >°7_ U; for n € {0,1,2,3}.
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Proof Outline

o Write .

X

s=3% =k
k

k=1
where Xy () € {0, 1} is the multiplicity of k in A.

@ Break the sum up into three ranges:

[1,n] = [Lko] U (KnKn] U(Kn n,
—— —_—— =

small parts intermediate large

where k, = [n/*] and K, = |n/3].
@ Work of Fristedt (1993) gives joint distributions for small and
intermediate part sizes.

@ We analyze the contribution from large parts by proving a
strong version of the limit shape for distinct parts partitions.
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Proof Outline

Proposition (Small parts)
For any x € R,

lim P, Lf(—log(k,,)—'ygx — P(H < x).

n—oo
k<kn

N

Proposition (Intermediate parts)

. 2 X K _1
i o || S FE ()| <) <1

A
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Small parts: sketch

Small parts behave like independent Bernoulli random variables:

Proposition (Fristedt, (1993) Trans. AMS)

Let x, € {0,1} for k =1,..., k, with k, = o(n'/*), then

1
lim (Pn(Xk:Xk,k:].,...,kn) ):0.

n—00 - Qkn
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Let x, € {0,1} for k =1,..., k, with k, = o(n'/*), then

1
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@ Note 2X) — 1 € {£1}, so the limiting distribution of
(2Xx — 1)k<k, coincides with that of (e4)k<x, .
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Small parts: sketch

Small parts behave like independent Bernoulli random variables:

Proposition (Fristedt, (1993) Trans. AMS)

Let x, € {0,1} for k =1,..., k, with k, = o(n'/*), then

1
lim (Pn(Xk:Xk,k:].,...,kn) >:0.

n—00 - Qkn

@ Note 2X) — 1 € {£1}, so the limiting distribution of
(2Xx — 1)k<k, coincides with that of (e4)k<x, .

@ Thus,

2Xk 2Xk -1 Ek
ZT—Iog(kn)—'yzZ P I%H
k<kn k<kn k<kn
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Intermediate parts: sketch

@ Using work of Fristedt (1993), one can show

2X, Kn .
En| D 7| =loe (kn>+0(" 1),

kn<k<Kn

Var, Z 2—20( = O(n~ /5.
kn<k<Kn
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Intermediate parts: sketch

@ Using work of Fristedt (1993), one can show

2X, Kn .
En| D 7| =loe (kn>+0(" 1),

kn<k<Kj

Var, Z 2—20( = O(n~ /5.
kn<k<Kn

@ Chebyshev's Inequality implies that intermediate parts
contribute only to the mean of S:

2X K 1
(52 ()] <o
kn<k<Kn
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Large parts: limit shape

o Large parts are governed by the limit shape.

@ The shape of the Young/Ferrer's diagram for X is described
by the step function,

oa(1) =D Xe(N).

k<t

Let \=8+5+3+2+1.

t|0 1 2 3 4 5 6 7 8 9
ex(t) [0 1 2 3 3 4 4 4 5 5
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Large parts: limit shape

@ Large parts are governed by the limit shape.

@ The Young/Ferrer's diagram of X is described by the step
function,

ea(t) =D Xe(N).

k<t
e If |A| = n, rescale axes by ﬁ

° %gp(ﬁt) is “almost surely very close to”

L(t) ::\/ﬁlog< 2 7rt>‘

T 14e v2
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Theorem (Dembo—Vershik—Zeitouni (1998))
For any € > 0,
lim P (s !
i up |—
n— oo " tZ[g \/EQO

Also, an explicit large deviation principle holds at the scaling of \/n.

(v/nt) — L(t)‘ < s> =1,
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Theorem (Dembo—Vershik—Zeitouni (1998))
For any € > 0,

lim P, (sup

n—oo

(ft)—L(t)‘ >:1.

Also, an explicit large deviation principle holds at the scaling of \/n.

Theorem (Yakubovich (2001))
For any fixed 0 < t; < --- < t, the vector

% (P(tVm), .., o(tv/m)

varies from (L(t1),...,L(t.)) like a r-dimensional Gaussian at the scaling n™4.
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Theorem (Dembo—Vershik—Zeitouni (1998))
For any € > 0,
lim P (s !
i up |—
n— oo " tZg \/EQO

Also, an explicit large deviation principle holds at the scaling of \/n.

(v/nt) — L(t)‘ < s) =1,

Theorem (Yakubovich (2001))
For any fixed 0 < t; < --- < t, the vector

% (G(t/F), .., o(t/T)
varies from (L(t1),...,L(t.)) like a r-dimensional Gaussian at the scaling ni.

Proposition (B., (2025+))

For fixed 0 < § < %, we have

lim sup n? log P <;gg

n— oo

\%w(ﬁt) — ()

1
> n’ﬁ*‘s) < 0.
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t

Figure: The black step functions are the renormalized shapes

ﬁq&,\( |\[t) for six random distinct parts partitions \ of sizes 992,

1592, 1065, 1475, 910, and 1107, generated using a Boltzmann sampler
with parameter ¢ = e* viz» with n = 1000. In red are the curves

L(t)+n~3.
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@ Observe that
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—_— Xk < — < — Xk .
by/n Z - k — ay/n Z
ay/n<k<b+/n ay/n<k<b+/n ay/n<k<b+/n
~ L= La) o L) —L(a)
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@ Observe that

1 Xk 1
—_— Xk < — < — Xk .
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ay/n<k<b+/n ay/n<k<b+/n ay/n<k<b+/n
~ L= La) o L) —L(a)

@ Partition the interval (with appropriate scaling):
J

(Kny n] = U(tj—l,n\/E7 tj,n\/E]-

Jj=1
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Large parts: sketch

@ Observe that

1 Xk 1
—_— Xk < — < — Xk .
by/n Z - k — ay/n Z
ay/n<k<b+/n ay/n<k<b+/n ay/n<k<b+/n
~ L= La) o L) —L(a)

@ Partition the interval (with appropriate scaling):
J

(Kny ] = (J(G-1,0v/, 5,071,
j=1
@ Limit shape proposition and careful analysis give (roughly)
1,

> PRy 2t - Lan)

t.
Ko<k<n j=1 5"

~ log <m> — v+ o(1).

K
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Boltzmann sampler

@ The Boltzmann model is a family of probability distributions
on all distinct parts partitions constructed from the generating
function as

1
PN =g ] oo 9€(0.).
k>1 q

@ Conditioned on the size, P coincides with the uniform
measure.

o If g =g, =e VI (the approximate saddle point of
g "l (1 + q¥)), sampling Xy according to
Bernoulli ( i’ﬁ ) yields a.s. partitions of size n + O(n%/*)

1+qf
(Fristedt, 1993).

@ See, e.g., my October 2023 talk in this seminar for more
details! :)
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Unrestricted parts case

Question (Kim-Kim, JCTA (2025))

How is S distributed among (unrestricted) partitions of n, as n — co?

@ Distribution follows directly from work of Fristedt (1993) and
Erdés-Lehner (1941).

Answer (see Kim—Kim, JCTA (2025))
For any x € R,

"|_|>n;o P, <\/%S < x) =1 Z(_l)k_le_kzx.

k>1

This is the Kolmogorov distribution and arises in a number of places:

@ as the maximum height of the Brownian bridge process,
@ as the number of parts of partitions into squares (Goh—Hitczenko, 2006),

@ as the height of ordered, rooted trees on n+ 1 vertices (Renyi—-Szekeres
1967, Stepanov 1969).
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Thanks for listening!

Our work:

@ W. Bridges, “Distribution of the sum of reciprocal parts for distinct parts
partitions,” submitted. arXiv:2503.03899

Other references:

@ K. Bringmann, B. Kim and E. Kim, Improved asymptotics for moments of
reciprocal sums of partitions into distinct parts, preprint.
https://arxiv.org/pdf/2412.02534

@ B. Fristedt, “The structure of random large partitions of integers”,
Transactions of the American Mathematical Society 337 (1993), 703-735.

@ B. Kim and E. Kim, “Distributions of reciprocal sums of parts in integer
partitions”, Journal of Combinatorial Theorey Series A 211 (2025).

@ B. Schmuland, “Random harmonic series”, American Mathematical
Monthly 110 (2003).
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