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@ Cylindric partitions for any profile are always generated by infinite
products. (Borodin)

@ (Two-variable) generating functions for cylindric partitions come
with natural systems of recurrences. (Corteel-Welsh)

@ If sums can be found to satisfy the recurrences (hard part!), then
one obtains product-sum identities. (Corteel-Welsh,
Corteel-Dousse-Uncu, Warnaar)

Our goal today:

@ Extend Corteel-Welsh's idea to other similar structures.
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Cylindric

Definitions and product sides

Gessel-Krattenthaler (1997, Trans. AMS), “Cylindric partitions”
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Gettin—Krattenthaler (1997, Trans. AMS), “Cylindric partitions”




Cylindric
Definitions and product sides

Notation: )\jﬂifﬂlZ)\lZM2Z>\22....

Definition
A cylindric partition X = (X, ..., A") of width h and profile
(1,...,6n) € {£1}" is a sequence of h + 1 partitions such that
A=\ and ' '

N7V ifg =1,

N-1= M ifg=-1.

The size is [A| = Y25 [M].




Cylindric
Definitions and product sides

Example: a cylindric partition of size 33 and width 10, and profile
06=(-1,1,1,-1,1,1,1,-1,1),
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Cylindric

Definitions and product sides

We use the standard g-Pochhammer notation:

1 1
[T ,1:[0(1—31q")---(1 —a,q")

Let CPs be the set of cylindric partitions with profile 4, and let
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Definitions and product sides

Theorem (Borodin, 2007 Duke M. J., (Han—Xiong reformulation))
Let 6 = (61,...,0n) be a profile and let

W3(6) :={j —i:1<i<j<hd >}
U{h—(j—i):1§i<j§h,5,'<5j}.
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Definitions and product sides

Theorem (Borodin, 2007 Duke M. J., (Han—Xiong reformulation))
Let 6 = (61,...,0n) be a profile and let

W3(6) :={j —i:1<i<j<hd >}
U{h—(j—i):1§i<j§h,6,-<6j}.
Then
CPo(a) = o || e
(q" q")oo (0% 9" oo

v

This product is modular; that is, k occurs as many times in W5(9)
as h— k. This is far from obvious!




Cylindric
Definitions and product sides

Symmetric cylindric partitions are symmetric about the middle diagonal:

N=(03) N =€)

"\SN!L

EE A =62 INEEX)
o LE " \: =(53 p
4 ’ /\ :(L’,z)
EEE No=E
6,‘4 3(2]
3 5:(—1,1/1/4/5-/)

s
IN = X1+ 251X = 100

We have SCP;s(q) = SCP _,ev(5)(q), where rev(d) = (dp, ..., 01).




Cylindric
Definitions and product sides

Theorem (Han—Xiong*, 2019)
For a profile 6 = (01, . ..,d,), define the sets

We(0) :={2h}U{2i —1:6; = -1}U{2h—2i+1:6; =1},

Wy(8) :={2j +2i —2:1<i<j<hd=0d=—1}
U{4h+2-2j—2i:1<i<j<hd=08=1}
U{4h+2i—2j:1<i<j<héi<d}
U{2j—2i:1<i<j<hd>d}}

Then
1
) o= Z g = H K- g2h T Ahy
AESCPs ke Ws(8) (q ' q )oo(q q )oo
LeW;(8)

Unlike for CPs(q), this product is not modular in general.




Cylindric
Definitions and product sides

(Han—Xiong, 2019) For skew doubled shifted plane partitions (DSPP),
the partitions A% and A" need not be identical:

4'722 éz(—ll_llllll _\/ |/-)/_I\
[EE N=@en  A(ED XM= @)
gl I EI YN A=(g31) A=(52)
q[38|4][z Y C=(72)
63] /\i=(l.l") /\ —( Y]
[ N=(43)  AT=(E2)
g .
M= 2_ NI =72
J:o

We have DSPP;(q) = DSPP_,y(5)(q), where rev(d) = (d4, ..., 01).




Cylindric
Definitions and product sides

Theorem (Han—Xiong, 2019)
For a profile § of width h, define the sets

Wi(6) ={h+1}uU{i:6;=-1}u{h+1—i:6; =1},

Wa() :={i+j:1<i<j<h, 6=0=—1}
Ulh+2—i—j:1<i<j<h, &=08=1}
U{2h+2—-(—i):1<i<j<h, 6 <4}
U{j—i:1<i<j<h, &>d}.

Then
1
._ Al
DSPPs(q) := Z g™ = H (0% 4" ) o (qf; 27 2) o
AEDSPPs kews(s) \ ot >
LeWs(0)

v

This product is not modular in general. \
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@ Han and Xiong's proofs are consequences of a general lemma
proved in the theory of symmetric functions.

@ As a corollary of their work, one can prove product generating
functions when size is counted with any nonnegative weights.



Cylindric
Definitions and product sides

@ Han and Xiong's proofs are consequences of a general lemma
proved in the theory of symmetric functions.

@ As a corollary of their work, one can prove product generating
functions when size is counted with any nonnegative weights.

For a = (ao,a1,...,ap) € R'}fl, define A; := J,;é a;. For

A € DSPPs, define a weighted size

h

A2 = ailX].

i=0

@ This allows us to get even more “product sides”.



Cylindric
Definitions and product sides

Proposition (B.-Uncu)
For a profile § of width h, define

W2(S) i={ At} UA; 6 = —1} U {Anps — A : 6 = 1},

W5 (6) ={Ai+Aj:1<i<j<h, §=0d=-1}
U{2App1 — A — A1 1<i<j<h, 6;=0¢=1}
U{2Ah+1—(Aj—A;)11§f<j§h, (5,‘<(5j}
U{A —Ai:1<i<j<h, §>6}

Then
1
DELIG) = Z g = H k. gA 7. g2A :
AeDSPPs ke W;(3) (q g h+1)00(q 1 q h+1)oo
LeW;(6)

Fora=(1,2,2,...,2,1), we have SCPs(q) = DSPP}(q).




Cylindric
Definitions and product sides

For cylindric partitions of width h, we define |\|, := Z 5 ! ai|A7], so that
AP is counted with \°.

Proposition (B.-Uncu)
For a profile 5 of width h, define

W3a((5) ZZ{Ah}U{Aj—A,‘:1§I'<j§h,(5,'>(5j}
U{Ah—(Aj—A,')Z1§i<_j§h,(5,‘<5j}.

Then 0
a A Ala —
CP(S(q) = Z ql | - H (qu; th)oo

AECPs kEW3(5)
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What types of products appear?
@ Capparelli #1:

1
(9,93 9° q'9;

(12, 12 (1,2,7,2)
72) =(a%q )OOCP(71,1,1,71)(‘7)

@ Kanade—Russell f:

1
(9,9 9% 4% ¢°)

1,2,1,5
=(q% qg)ooCPgl,l,,l?,l)(q)



Cylindric
Definitions and product sides

What types of products appear?
@ Capparelli #1:

1
(9,93 9° q'9;

(12, 12 (1,2,7,2)
72) =(a%q )OOCP(71,1,1,71)(‘7)

@ Kanade—Russell f:

1
(9,9 9% 4% ¢°)

1,2,1,5
=(q% qg)ooCPgl,l,,l?,l)(q)

@ ForO0< by < by <--- < byy1, we have

1 b b by,ba—bi,..r,brs1—by
(qbl o qb,. qbr+1)oo = (q 1.q '+1)ooCPE_1172_17_1”7_171+)1 )(q).

But this profile does not lead to interesting recurrences/sum-sides...



Recurrences and sum sides



Cylindric
Recurrences and sum sides

Toy example:

o Let P(z;q) :=_,cp 2"V gl*, where the sum runs over all integer
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Toy example:

o Let P(z;q) :=_,cp 2"V gl*, where the sum runs over all integer
partitions and ¢()\) is the size of the largest part.

@ Claim: we have

P(zq:
P(z; q) = P(zg:q) _ Z 2"q"P(2q; q) — Z 2 H) g HAL

1—z
q m>0 m>0
AEP

Proof idea: Given a partition pu € P, let \ be the partition obtained
by removing the largest part from p. [



Cylindric
Recurrences and sum sides

Toy example:

o Let P(z;q) :=_,cp 2"V gl*, where the sum runs over all integer
partitions and £(\) is the size of the largest part.

@ Claim: we have

P(zq:
P(z; q) = P(zg:q) _ Z 2"q"P(2q; q) — Z 2 H) g HAL

1—=z
q m>0 m>0
AEP

Proof idea: Given a partition pu € P, let \ be the partition obtained
by removing the largest part from p. [

@ This leads to the product-sum identity:

= (@a)n (zq; 9)oo




Cylindric
Recurrences and sum sides

Let powers of z in CPs(z; g) count the size of the largest square in a
cylindric partition.

Proposition (Corteel-Welsh, 2019 Annals of Comb.)

Let 6 = (1,...,0n) be a profile. For convenience define 6p11 := d7.
Define

b= {1<J < h: (§,8:) = (1, -1)}.

For a subset ) C J C 5, define a new profile o (&) by swapping the signs
of(éj,5j+1) for j € J. Then

P
Zzq=h q
Cszq E ( 1\J\1 1()(|J‘ )
pCJCl -
5




Cylindric
Recurrences and sum sides

Let powers of z in CPs(z; g) count the size of the largest square in a
cylindric partition.

Proposition (Corteel-Welsh, 2019 Annals of Comb.)

Let 6 = (1,...,0n) be a profile. For convenience define 6p11 := d7.
Define

b= {1<J < h: (§,8:) = (1, -1)}.

For a subset ) C J C 5, define a new profile o (&) by swapping the signs
of(éj,5j+1) for j € J. Then

CPs(z; q) = Z (1)1 CP, (5 (zqV; q)

_ [J]
0CICIs b=

Proof idea: Given a cylindric partition of profile §, the set /5 locates
possible squares for the largest part. Removing some subset J of largest
parts changes the profile into o,(ls). The (—1)'s indicate
inclusion-exclusion.



Cylindric
Recurrences and sum sides

Example:
) -|J | - -II |
g [ 2| 023?(5) [ 2 '
) ] - a ﬂ
Ak J =43¢ BT
3 > 12
t il AN
\ alt i \ alt
U I J I |
! I

C.haose, J_e ‘zcg'—-i?”?g



Cylindric
Recurrences and sum sides

Similarly,

Proposition (B.-Uncu)

CPZJ(é) (qu,'eJ ai. q)
1 — quieJ Clf

CPi(ziq)= ) (-1

0CJICls

=

and

DSPPZJ((;) (ZqZIGJ ai; q)

DSPP3(z; q) = )
SPP§(z; q) Z (1) 1— zg2ics®

PCJICIs

For DSPP the o have a slightly different meaning!

| \

Remark

Note that the width is preserved by o. In fact, for DSPP there is one
system of 2" recurrences for width h. For CP, there are h separate
systems of (j’) recurrences for width h and profiles with j (—1)'s.
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Cylindric
Example identities

For DSPP with standard weight and width 3, the directed graph
below describes the system of recurrences.

(=] 3

(AL =S ,1,-03500 Cru-)e,H,-1) <_ (-1,-1,-1)

N\( |'1—" l)'><(- ‘é/)/

5_‘7) < when f:a’I(S\



Cylindric
Example identities

Solving the recurrences and employing the known product generating
function:

Corollary (“Gollnitz—Gordon” and “Little Géllnitz" Identities)

We have
2
Z (_q' q )nqn2+2n _ 1
—~ (4% 9%), (6% % a° ¢°)’
(_q; qz)nqn2+n _ 1
= (4% d%), (6% a*) (0% ¢%)oo”
(- q2)nqnz B 1
—~ (4% 9%, (9.9% 07 4%)
(_qfl; q2 nqn2+” _ 1 .
= (@), (9:9%) . (4% %)

4 identities instead of 8 = 23 because of § — —rev(d) symmetry.



Cylindric
Example identities

Solving the width 2 symmetric cylindric case (equivalently DSPP with
weight a = (1,2, 1)) leads to

Theorem (B.-Uncu)

2 4. 4 4n+1
2 (9%, —q" q*)n q*"z
> (—1)"¢"" (@5 q @) <1 - (—> 2" = (29, —29% ¢*) oo

n>0 (g% q*)2n 1+ g*t2)

Solving the width 3 symmetric cylindric case (equivalently DSPP with
weight a = (1,2,2,1)) leads, for example, to

Theorem (B.-Uncu)

q3[n/2]2+3Ln/2J(\_n/2J+1)—3m(m+1) .
{Zm} &

DIGUE (4% @®)n

m,n>0

4 8. 412
3 5. 6 _(Qaq,q )oo
X (_qaq y—q .4 )m_ (qe;q12)oo
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o Z)\ )\1+)\3+)\5+...

(a: Q)oo

>\1+>\3+)\5+...
(a: q)2 = 2ep



Cylindric
More applications

“Frank Schmidt-type problems” (cf. Andrews—Paule, Andrews’
talk on Sept 23 2021, see also Uncu, 2018)

(1) =Y yep gMHAat st

qq)oo
Priras
Q qq)2 Z)\ 1+A3+As+
9:9)o A+ Aa+ A7
° ((qq 3) = > sepramonp 9T where
A € DIAMOND if
)\1 2 )\2
W% \V;
)\3 > )\4 > )\5
W% \V;

>
o)}
Y
>
3



Cylindric
More applications

Our weighted product formulas confirm these identities; for example,

Z ghtAat AT — DSPPg(llzi(B(q)
AeDIAMOND
1
(9:9)3.(9: 6%) oo
(=9 9)
(g:9)3,

The second identity may be verified similarly.



Thanks for listening!

Note: Ali Uncu will add CPj(z; q) and DSPP3(z; q) recurrences to the
gfunctions package in Mathematica

Walter Bridges (Universitat zu Koln, wbridges “at” uni-koeln “dot” de)
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