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Statistics for partitions

Why care about statistics for partitions?

Structure of the symmetric group Sn.

Statistical mechanics of ideal gas (Boltzmann, Temperley,
Vershik...)

Partitions serve as a prototype for other logarithmic
combinatorial structures (Arratia–Tavaré 2000).

Primary Goal. Overview of the Boltzmann model; sketch
distributions of small parts, large parts, Young diagrams,
asymptotic formula for p(n), etc.

Secondary Goal. Discuss my contributions:
(with K. Bringmann), Limit shapes for Andrews–Gordon partitions, on-going work

(with K. Bringmann), Statistics for unimodal sequences, Adv. in Math. 401 (2022)

Limit shapes for unimodal sequences, Int. J. Number Theory 19 (2023)
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Part 1: Boltzmann models for partitions
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Question

How many partitions of n contain a 1?

#{λ ` n : 1 ∈ λ} = p(n − 1)
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Question

What is the probability that a partition of n contains a 1?

#{λ ` n : 1 ∈ λ}
p(n)

=
p(n − 1)

p(n)
n→∞→ 1.

Answer

As n→∞, 100% of partitions of n contain a 1.
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Question

What is the probability that a partition of n contains two 1s, one
2 and one 5?

#{λ ` n : 1 + 1 + 2 + 5 ∈ λ}
p(n)

=
p(n − 1− 1− 2− 5)

p(n)
n→∞→ 1.

Answer

As n→∞, 100% of partitions of n contain two 1s, one 2 and one
5.
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Question

What is the probability that a partition of n contains n 1s?

#{λ ` n :

n times︷ ︸︸ ︷
1 + · · ·+ 1 ∈ λ}
p(n)

=
1

p(n)
n→∞→ 0.

Answer

As n→∞, 0% of partitions of n contain n 1s.
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Define M1(λ) := multiplicity of 1s in the partition λ,
Pn - uniform measure on {λ ` n}.

We have seen:

Pn(M1 ≥ 1)→ 1, Pn(M1 ≥ n) = Pn

(
1

n
M1 ≥ 1

)
→ 0.

Question

What scaling of M1 yields a non-trivial distribution?
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Question

What scaling of M1 yields a non-trivial distribution?

Theorem (Erdős–Turán, Fristedt, . . . )

Let A :=
√
6
π . As n→∞, M1 obeys an exponential distribution at

the scale of
√
n:

Pn

(
1

A
√
n
M1 ≤ x

)
→ 1− e−x .

Proof.

Use p(m) ∼ 1
4
√
3m

e
π
√

2m
3 in

Pn

(
1

A
√
n
M1 ≤ x

)
∗
= 1−

p
(
n − A

√
nx
)

p(n)
.
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Other multiplicities Mk of small parts are similar.

Theorem (Erdős–Turán, Fristedt, . . . )

Let k = o(
√
n). As n→∞, Mk obeys an exponential distribution

at the scale of
√
n
k :

Pn

(
k

A
√
n
Mk ≤ x

)
→ 1− e−x .
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What about L1(λ) := the largest part of λ?

By inclusion-exclusion:

Pn(L1 ≤ k) =
1

p(n)

p(n)−
∑
r1≥1

p (n − (k + r1))

+
∑

r2>r1≥1

p (n − (k + r1)− (k + r2))

− . . .

)
.

The scaling that yields a non-trivial distribution is

L1 − A
√
n log

(
A
√
n
)

A
√
n

.
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What about L1(λ) := the largest part of λ?

Theorem (Erdős–Lehner 1941)

Pn

(
L1 − A

√
n log

(
A
√
n
)

A
√
n

≤ x

)
→ e−e

−x
.

Interpretation

Typically, the largest part is about A
√
n log(A

√
n) and the

difference varies by an extreme value distribution.
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Earlier methods (Erdős, Szalay, Szekeres, Turán, ...):

combinatorics/recurrences + asymptotics

An alternative method (Fristedt, Pittel, Vershik, ... 1990s) is to use
the Boltzmann model*, which has the following nice properties.

* also called Fristedt’s conditioning device, the Arratia–Tavaré principle, etc.

Avoids intricate combinatorics, recurrences, etc., ... and
generalizes to situations which lack nice combinatorics (e.g.
unimodal sequences).

Offers heuristic insight (e.g. for the asymptotic formula for
p(n)).

Allows families of distributions to be derived simultaneously.

Can be used to quickly generate random partitions.
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Key idea 1: product generating function

Sequence of multiplicities (M1,M2, . . . ), which completely
determines a partition, is generated independently by

P(q) :=
∑
n≥0

p(n)qn =
∏
k≥1

1

1− qk
.
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Key idea 2: saddle-point bound/approximation

Note that p(n) ≤ q−nP(q) for q ∈ (0, 1).

Choosing q = qn := e
− 1

A
√

n , the RHS is close enough to p(n):

log p(n) ∼ log q−nn P(qn), in particular
p(n)

q−nn P(qn)
∼ Polynomial.



Statistics for partitions

Notation:

Example

λ : 9 + 6 + 5 + 5 + 4 + 4 + 4 + 2 + 1 + 1
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Notation: multiplicity

Example

λ : 9 + 6 + 5 + 5 + 4 + 4 + 4 + 2 + 1 + 1

M4(λ) = 3
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Notation: largest parts

Example

λ : 9 + 6 + 5 + 5 + 4 + 4 + 4 + 2 + 1 + 1

L2(λ) = 6

L1 = sup{k : Mk > 0} has same distribution as
∑

k≥1Mk .
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Notation: size

Example

λ : 9 + 6 + 5 + 5 + 4 + 4 + 4 + 2 + 1 + 1

S(λ) = 41

Note S =
∑

k≥1 kMk .
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Recall P(q) =
∏

k≥1(1− qk)−1.

Boltzmann model: For q ∈ (0, 1), define

Pq(λ) :=
qS(λ)

P(q)
.

We get a probability measure on all partitions.

It is uniform when restricted to partitions of n:

Pq(·|S = n) = Pn(·)

By Key Idea 1, Mk are independent geometric:

Pq(Mk = `) = qk`(1− qk).
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Transfer Principle

By Key Idea 2 (saddle-point approximation), distributions under
Pn coincide with those under Pqn , as n→∞, for most statistics.

dTV - total variation metric on probability measures.

Proposition (Fristedt, Trans. AMS, 1993)

Suppose X is a random variable determined by
{Mk : k ≤ an or k ≥ bn}. If an = o(

√
n) and bn = ω(

√
n), then

lim
n→∞

dTV
(
Pn(X−1),Pqn(X−1)

)
= 0.
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Question

What is the joint distribution of (M1, . . . ,Mkn) under Pn?

Theorem (Fristedt 1993, Trans. AMS)

For kn = o
(
n

1
4

)
. Then

Pn

(
kMk

A
√
n
≤ xk , 1 ≤ k ≤ kn

)
∼

kn∏
k=1

(
1− e−xk

)

Answer

The multiplicities of k = o(n1/4), rescaled by
√
n
k , behave as

independent exponential random variables.
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Question

How is the size S distributed under Pqn?

Recall S =
∑

k≥1 kMk︸︷︷︸
independent!

. Here,

Mean: Eqn(S) =
∑
k≥1

kqkn
1− qkn

∼ n

Variance: Varqn(S) = σ2n =
∑
k≥1

k2qkn
(1− qkn )2

∼ 2An
3
2 .

Remark

Solving for q ∈ (0, 1) in Eq(S) ∼ n is equivalent to finding the
saddle-point of q−nP(q).
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Question

How is the size S distributed under Pqn?

(Fristedt, 1993): S satisfies a central limit theorem under Pqn :

Pqn

(
S − n√
2An3/4

≤ x

)
∼ 1√

2π

∫ x

−∞
e−

t2

2 dt.

This leads to a heuristic derivation of the asymptotic formula for
p(n).
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Pq (S = n) =
∑
λ`n

qS(λ)

P(q)
= p(n)

qn

P(q)
.

Equivalently, saddle-point bound is repaired:

p(n) = Pq (S = n)q−nP(q).

Recalling the normal distribution, we expect a local central limit
theorem:

Pqn (S = n) = Pqn (−1 < S − n < 1)

= Pqn

(
− 1√

2An3/4
<

S − n√
2An3/4

<
1√

2An3/4

)
??∼ 1√

2π

∫ 1/
√
2An3/4

−1/
√
2An3/4

e−
t2

2 dt

∼ 2√
2An3/4

.
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Substituting

Pqn (S = n) ∼ 2√
2An3/4

,

and the asymptotic for q−nn P(qn) into

p(n) = Pq (S = n) q−nP(q),

one recovers

Theorem (Hardy–Ramanujan)

p(n) ∼ 1

4
√

3n
q
π
√

2n
3 .
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Application: sampling large partitions

1 Generate independent sample multiplicities according to
Mk ∼ Geometric(1− qkn )

2 The size S =
∑

k≥1 kMk is very likely n + O(n3/4).

Example

Let n = 10, 000, so n3/4 = 1000. I get the following partition of 9599.
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Limit shapes

Question

What are the typical shapes of diagrams of partitions of n?

Figure: Density plot of {λ ` 300}.
ϕ̃(λ) - renormalized
shape; rescale by
1√
n

5√
19

6√
19

Total Area = 1
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Question

What are the typical shapes of diagrams of partitions of n?

Theorem (Dembo–Vershik–Zeitouni 1998)

Let Nε be an ε-strip around e−
x
A + e−

y
A = 1.

lim
n→∞

Pn (ϕ̃(λ) ⊂ Nε) = 1.

Also, an explicit large deviation principle holds.

Conjectured/heuristically derived by Temperley (1952), Szalay-Turán

(1977), Vershik (1996), ...
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Application: Durfee square side length

Example

λ : 9 + 6 + 5 + 5 + 4 + 4 + 4 + 2 + 1 + 1

Durfee(λ) = 4
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e−
x
A + e−

x
A = 1

=⇒ x = A log(2).

Proposition

For any ε > 0,

Pn

(∣∣∣∣Durfee√
n
− A log(2)

∣∣∣∣ < ε

)
→ 1.

(Canfield–Corteel–Savage, 1998) away from this mean, the Durfee
square is normally distributed.
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The h-index is an information-less statistic.

C. Krattenthaler, Was der h-Index wirklich aussagt, Mitt. Dtsch.

Math.-Ver. 29 (2021), 124–128
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But why can we use the Boltzmann model here? Limit shape
depends on parts of size roughly

√
n.

Proposition (Fristedt, Trans. AMS, 1993)

Suppose X is a random variable determined by
{Mk : k ≤ an or k ≥ bn}. If an = o(

√
n) and bn = ω(

√
n), then

lim
n→∞

dTV
(
Pn(X−1),Pqn(X−1)

)
= 0.

Also, largest part depends on all part sizes: L1 = sup{k : Mk > 0}.
Why can we use the Boltzmann model here?
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“Exponentially-small Principle”

Lemma

If Pqn (Event) is exponentially small, then

Pn (Event)→ 0.

Proof.

Pn (Event) = Pqn (Event|S = n)

=
Pqn (Event ∩ S = n)

Pqn (S = n)

≤ Pqn (Event)

Pqn (S = n)
.

But Pqn (S = n) = p(n)qnnP(qn)−1 decays only polynomially.
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Application: Largest part

Lemma

If Pqn (Event) is exponentially small, then

Pn (Event)→ 0.

There exists bn = ω(
√
n) such that

Pqn(Mk = 0, k ≥ bn) exp. small

=⇒ Pn (Mk = 0, k ≥ bn)→ 0

=⇒ Pn (Mk > 0 for some k ≥ bn)→ 1.

Thus, L1 = sup{k ≥ 1 : Mk > 0} has the same limiting distribution under

Pn as sup{k ≥ bn : Mk > 0}. Can now apply the Fristedt’s Transfer

Principle.
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Question

How is (L1, . . . , Ltn) distributed under Pn as n→∞?

Theorem (Fristedt 1993, Trans. AMS)

Let tn = o(n1/4) and v1 ≥ · · · ≥ vtn . Then

Pn

(
Lt − A

√
n log

(
A
√
n
)

A
√
n

≤ vt , 1 ≤ t ≤ tn

)

∼
∫ v1

−∞
· · ·
∫ vtn

−∞
e−u1−···−utn−e

−utn dutn · · · du1.

Answer

Typically, the largest tn parts are all about A
√
n log(A

√
n) and

away from this mean behave as a Markov chain.
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Unexpected application?

Definition

A partition λ is graphical if its parts are the vertex degrees of a
simple graph.

Example

λ = 2 + 1 + 1 is the only graphical partition of 4.
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Conjecture (Wilf (1982))

limn→∞ Pn(λ is graphical) = 0.

Proposition (Erdős–Gallai (1960))

λ is graphical if and only if

d∑
t=1

Lt(λ) ≥
d∑

t=1

(Lt(λ) + t) for d ≤ Durfee(λ).

Theorem (Pittel (1997), JCTA)

Wilf’s conjecture is true.

Theorem (Melczer–Michelen–Mukherjee (2020), IMRN)

For some C > 0, we have Pn(λ is graphical) ≤ Cn−.003297210314.
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Part 2: Boltzmann models for unimodal sequences
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Notation: peaks

Example

λ : 1 + 1 + 1 + 3 + 4︸︷︷︸
peak

+4 + 3 + 3 + 2

PK (λ) = 4
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Notation: multiplicites

Example

λ : 1 + 1 + 1 + 3 + 4 + 4 + 3 + 3 + 2

M
[`]
3 (λ) = 1 M

[r ]
3 (λ) = 2
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Notation: largest parts

Example

λ : 1 + 1 + 1 + 3 + 4 + 4 + 3 + 3 + 2

L
[`]
2 (λ) = 1 L

[r ]
2 (λ) = 3
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Key Ideas

U(q) =
∑
n≥0

u(n)qn =
∑
m≥0

qm︸︷︷︸
peak

∏
k≤m

1

(1− qk)2︸ ︷︷ ︸
left/right parts

U(q) is not a product, and M
[`]
k ,M

[r ]
k are not independent under the

näıve Boltzmann model:

Pq(λ) :=
qS(λ)

U(q)
, q ∈ (0, 1),

nor is the RHS very tractable. But conditioning on the peak we have a

product generating function,

qm
∏
k≤m

1

(1− qk)m
,

and recover independence. We then apply the Boltzmann model

uniformly for m in the contributing range.
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Transfer Principle

Let B = π√
3

, qn = e−1/B
√
n and

Qq,m(·) := Qq (·|PK = m) Pn,m(·) := Pn (·|PK = m) ,

Proposition (B.–Bringmann, Adv. Math. 2022)

Suppose X : U → Rdn is a random variable determined by

{M [j]
k }k∈Kn,m,j∈{`,r} and that

Varqn

 ∑
k∈Kn,m

k(M
[`]
k + M

[r ]
k )

 =
∑
k∈Kn

2
k2qkn

(1− qkn )2
= o(n3/2). (1)

Then as n→∞

dTV
(
(Pn,m(X−1),Qqn,m(X−1)

)
→ 0. (2)

Furthermore, if (??) is uniform for an ≤ m ≤ bn, then so is (??).
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Theorem (B.–Bringmann, Adv. Math. 2022)

Let B :=
√
3
π . Then

lim
n→∞

Pn

(
PK− B

√
n log

(
2B
√
n
)

B
√
n

≤ v

)
= e−e

−v
.

Note: n 7→ n
2 in Erdős-Lehner’s Theorem plus an extra log(2).
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Theorem (B.–Bringmann, Adv. Math. 2022)

Let v0 ≥ v
[j]
1 ≥ · · · ≥ v

[j]
tn for j ∈ {`, r} and t ≤ tn = o(n1/4). Then

Pn

(
PK− B

√
n log

(
2B
√
n
)

B
√
n

≤ v0
L
[j]
t − B

√
n log

(
2B
√
n
)

B
√
n

≤ v
[j]
t ,

1 ≤ t ≤ tn, j ∈ {L,R})

∼
∫ v0

−∞
· · ·
∫ v

[r ]
tn

−∞

1

22tn
e−u0−

∑tn
t=1(u

[`]
t +u

[r ]
t )− e

−u
t
[`]
n

2 − e

−u
t
[r ]
n

2 du
t
[r ]
n
· · · du0.

Remark

Away from the mean, the sequences PK, L
[j]
1 , . . . , L

[j]
tn for j ∈ {`, r}

behave as two Markov chains for for t = o(n1/4).
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Theorem (B.–Bringmann, Adv. Math. 2022)

Let k ≤ kn = o(n1/4). Then

Pn

(
kM

[j]
k

A
√
n
≤ v

[j]
k , 1 ≤ k ≤ kn, j ∈ {`, r}

)

∼
kn∏
k=1

(
1− e−v

[`]
k

)(
1− e−v

[r ]
k

)
.

Remark

The left and right multiplicities of k = o(n1/4), when rescaled,
behave as independent exponential random variables with mean
1.
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Symmetry

Question

How is
(
M

[`]
1 −M

[r ]
1 , . . . ,M

[`]
kn
−M

[r ]
kn

)
for kn = o(n1/4) distributed?

χP := indicator function of P

Corollary

Let kn = o(n1/4). Then

Pn

(
k(M

[`]
k −M

[r ]
k )

B
√
n

≤ vk , for k ≤ kn

)
∼
∏
k≤kn

((
1−

e−vk

2

)
χvk>0 +

evk

2
χvk≤0

)

Answer

The differences M
[`]
k −M

[r ]
k , when rescaled, have independent Laplace

distributions for k = o(n1/4). (convolution of geometric)
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Application: sampling large unimodal sequences

1 Sample a peak according to PK ∼ Gumbel(0, 1).

2 Generate independent pairs of sample multiplicities according to

M
[`]
k ,M

[r ]
k ∼ Geometric(1− qkn ) for k ≤ PK .

Example

Let n = 10, 000. I get the following u.s. with size 8393 and peak 915.
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Limit shapes

Theorem (B., Int. J. Number Theory 2023)

Let B :=
√
3
π . Define

fu(x) :=

{
−B log

(
1− eBx

)
if x < 0,

−B log
(
1− e−Bx

)
if x > 0.

Then this is a limit shape for

unimodal sequences under the

scaling 1√
n

.

fu(x)
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Concluding remarks
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Boltzmann model useful with other product/sum-of-products
generating functions and w.r.t. other multiplicative measures:

partitions under multiplicative measures (Vershik, 1996)

Rogers–Ramanujan partitions (Bogachev–Yakubovich, 2019)

distinct parts with bounded largest part ( B. 2020)

concave compositions (Dalal–Lohss–Parry, 2021)

strongly unimodal sequences (B. 2022)
...
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Boltzmann model not always useful:

Product gen. fn., but hard combinatorics.
E.g. plane partitions:∑

n≥0
pp(n)qn =

∏
k≥1

1

(1− qk)k
.

But what does each factor count?

Statistic not easily described in terms of Mk .
E.g. the number of hooks equal to t. [Griffin–Ono–Tsai,
2022] use Method of Moments
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Thanks for listening!
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