Methods in asymptotic statistics for partitions
Walter Bridges (Universität zu Köln)
October 12, 2023

International Conference on Modular Forms and q-Series University of Cologne, March 11-15, 2024

Organizers: Kathrin Bringmann, Walter Bridges, Johann Franke http://www.mi.uni-koeln.de/Bringmann/Konferenz2024.html

Why care about statistics for partitions?

- Structure of the symmetric group S_{n}.
- Statistical mechanics of ideal gas (Boltzmann, Temperley, Vershik...)
- Partitions serve as a prototype for other logarithmic combinatorial structures (Arratia-Tavaré 2000).

Primary Goal. Overview of the Boltzmann model; sketch distributions of small parts, large parts, Young diagrams, asymptotic formula for $p(n)$, etc.

Secondary Goal. Discuss my contributions:

- (with K. Bringmann), Limit shapes for Andrews-Gordon partitions, on-going work
- (with K. Bringmann), Statistics for unimodal sequences, Adv. in Math. 401 (2022)
- Limit shapes for unimodal sequences, Int. J. Number Theory 19 (2023)

Part 1: Boltzmann models for partitions

Question

How many partitions of n contain a 1?

$$
\#\{\lambda \vdash n: 1 \in \lambda\}=p(n-1)
$$

Question

What is the probability that a partition of n contains a 1 ?

$$
\frac{\#\{\lambda \vdash n: 1 \in \lambda\}}{p(n)}=\frac{p(n-1)}{p(n)} \xrightarrow{n \rightarrow \infty} 1 .
$$

Answer

As $n \rightarrow \infty, 100 \%$ of partitions of n contain a 1 .

Question

What is the probability that a partition of n contains two 1 s , one 2 and one 5?

$$
\frac{\#\{\lambda \vdash n: 1+1+2+5 \in \lambda\}}{p(n)}=\frac{p(n-1-1-2-5)}{p(n)} \stackrel{n \rightarrow \infty}{\rightarrow} 1 .
$$

Answer

As $n \rightarrow \infty, 100 \%$ of partitions of n contain two 1 s, one 2 and one 5.

Question

What is the probability that a partition of n contains $n 1 s$?

$$
\frac{\#\{\lambda \vdash n: \overbrace{1+\cdots+1}^{n \text { times }} \in \lambda\}}{p(n)}=\frac{1}{p(n)} \stackrel{n \rightarrow \infty}{\rightarrow} 0 .
$$

Answer

As $n \rightarrow \infty, 0 \%$ of partitions of n contain $n 1 s$.

Define $M_{1}(\lambda):=$ multiplicity of 1 s in the partition λ, P_{n} - uniform measure on $\{\lambda \vdash n\}$.

We have seen:

$$
P_{n}\left(M_{1} \geq 1\right) \rightarrow 1, \quad P_{n}\left(M_{1} \geq n\right)=P_{n}\left(\frac{1}{n} M_{1} \geq 1\right) \rightarrow 0 .
$$

Question

What scaling of M_{1} yields a non-trivial distribution?

Question

What scaling of M_{1} yields a non-trivial distribution?

Theorem (Erdős-Turán, Fristedt, ...)
Let $A:=\frac{\sqrt{6}}{\pi}$. As $n \rightarrow \infty, M_{1}$ obeys an exponential distribution at the scale of \sqrt{n} :

$$
P_{n}\left(\frac{1}{A \sqrt{n}} M_{1} \leq x\right) \rightarrow 1-e^{-x}
$$

Proof.

Use $p(m) \sim \frac{1}{4 \sqrt{3} m} e^{\pi \sqrt{\frac{2 m}{3}}}$ in

$$
P_{n}\left(\frac{1}{A \sqrt{n}} M_{1} \leq x\right) \stackrel{*}{=} 1-\frac{p(n-A \sqrt{n} x)}{p(n)}
$$

\square

Other multiplicities M_{k} of small parts are similar.

Theorem (Erdős-Turán, Fristedt, ...)
Let $k=o(\sqrt{n})$. As $n \rightarrow \infty, M_{k}$ obeys an exponential distribution at the scale of $\frac{\sqrt{n}}{k}$:

$$
P_{n}\left(\frac{k}{A \sqrt{n}} M_{k} \leq x\right) \rightarrow 1-e^{-x} .
$$

What about $L_{1}(\lambda):=$ the largest part of λ ?
By inclusion-exclusion:

$$
\begin{gathered}
P_{n}\left(L_{1} \leq k\right)=\frac{1}{p(n)}\left(p(n)-\sum_{r_{1} \geq 1} p\left(n-\left(k+r_{1}\right)\right)\right. \\
+\sum_{r_{2}>r_{1} \geq 1} p\left(n-\left(k+r_{1}\right)-\left(k+r_{2}\right)\right) \\
-\ldots) .
\end{gathered}
$$

The scaling that yields a non-trivial distribution is

$$
\frac{L_{1}-A \sqrt{n} \log (A \sqrt{n})}{A \sqrt{n}}
$$

What about $L_{1}(\lambda):=$ the largest part of λ ?
Theorem (Erdős-Lehner 1941)

$$
P_{n}\left(\frac{L_{1}-A \sqrt{n} \log (A \sqrt{n})}{A \sqrt{n}} \leq x\right) \rightarrow e^{-e^{-x}}
$$

Interpretation
Typically, the largest part is about $A \sqrt{n} \log (A \sqrt{n})$ and the difference varies by an extreme value distribution.

Earlier methods (Erdős, Szalay, Szekeres, Turán, ...): combinatorics/recurrences + asymptotics

An alternative method (Fristedt, Pittel, Vershik, ... 1990s) is to use the Boltzmann model*, which has the following nice properties.

* also called Fristedt's conditioning device, the Arratia-Tavaré principle, etc.
- Avoids intricate combinatorics, recurrences, etc., ... and generalizes to situations which lack nice combinatorics (e.g. unimodal sequences).
- Offers heuristic insight (e.g. for the asymptotic formula for $p(n)$).
- Allows families of distributions to be derived simultaneously.
- Can be used to quickly generate random partitions.

Key idea 1: product generating function

Sequence of multiplicities (M_{1}, M_{2}, \ldots), which completely determines a partition, is generated independently by

$$
P(q):=\sum_{n \geq 0} p(n) q^{n}=\prod_{k \geq 1} \frac{1}{1-q^{k}}
$$

Key idea 2: saddle-point bound/approximation

Note that $p(n) \leq q^{-n} P(q)$ for $q \in(0,1)$.

Choosing $q=q_{n}:=e^{-\frac{1}{A \sqrt{n}}}$, the RHS is close enough to $p(n)$:
$\log p(n) \sim \log q_{n}^{-n} P\left(q_{n}\right), \quad$ in particular $\frac{p(n)}{q_{n}^{-n} P\left(q_{n}\right)} \sim$ Polynomial.

Notation:

Example

$$
\lambda: 9+6+5+5+4+4+4+2+1+1
$$

Notation: multiplicity

Example

$$
\lambda: 9+6+5+5+4+4+4+2+1+1
$$

$$
M_{4}(\lambda)=3
$$

Notation: largest parts

Example

$$
\lambda: 9+6+5+5+4+4+4+2+1+1
$$

$$
L_{2}(\lambda)=6
$$

$L_{1}=\sup \left\{k: M_{k}>0\right\}$ has same distribution as $\sum_{k \geq 1} M_{k}$.

Notation: size

Example

$$
\lambda: 9+6+5+5+4+4+4+2+1+1
$$

$S(\lambda)=41$
Note $S=\sum_{k \geq 1} k M_{k}$.

Recall $P(q)=\prod_{k \geq 1}\left(1-q^{k}\right)^{-1}$.
Boltzmann model: For $q \in(0,1)$, define

$$
\boldsymbol{P}_{q}(\lambda):=\frac{q^{S(\lambda)}}{P(q)}
$$

- We get a probability measure on all partitions.
- It is uniform when restricted to partitions of n :

$$
\boldsymbol{P}_{q}(\cdot \mid S=n)=P_{n}(\cdot)
$$

- By Key Idea $1, M_{k}$ are independent geometric:

$$
\boldsymbol{P}_{q}\left(M_{k}=\ell\right)=q^{k \ell}\left(1-q^{k}\right) .
$$

Transfer Principle

By Key Idea 2 (saddle-point approximation), distributions under P_{n} coincide with those under $\boldsymbol{P}_{q_{n}}$, as $n \rightarrow \infty$, for most statistics.
$d_{T V}$ - total variation metric on probability measures.

Proposition (Fristedt, Trans. AMS, 1993)

Suppose X is a random variable determined by $\left\{M_{k}: k \leq a_{n}\right.$ or $\left.k \geq b_{n}\right\}$. If $a_{n}=o(\sqrt{n})$ and $b_{n}=\omega(\sqrt{n})$, then

$$
\lim _{n \rightarrow \infty} d_{T V}\left(P_{n}\left(X^{-1}\right), \boldsymbol{P}_{q_{n}}\left(X^{-1}\right)\right)=0
$$

Question

What is the joint distribution of $\left(M_{1}, \ldots, M_{k_{n}}\right)$ under P_{n} ?

Theorem (Fristedt 1993, Trans. AMS)
For $k_{n}=o\left(n^{\frac{1}{4}}\right)$. Then

$$
P_{n}\left(\frac{k M_{k}}{A \sqrt{n}} \leq x_{k}, 1 \leq k \leq k_{n}\right) \sim \prod_{k=1}^{k_{n}}\left(1-e^{-x_{k}}\right)
$$

Answer

The multiplicities of $k=o\left(n^{1 / 4}\right)$, rescaled by $\frac{\sqrt{n}}{k}$, behave as independent exponential random variables.

Question

How is the size S distributed under $\boldsymbol{P}_{q_{n}}$?
Recall $S=\sum_{k \geq 1} \underbrace{k M_{k}}_{\text {independent! }}$. Here,

Mean:

$$
\mathrm{E}_{q_{n}}(S)=\sum_{k \geq 1} \frac{k q_{n}^{k}}{1-q_{n}^{k}} \sim n
$$

Variance: $\quad \operatorname{Var}_{q_{n}}(S)=\sigma_{n}^{2}=\sum_{k \geq 1} \frac{k^{2} q_{n}^{k}}{\left(1-q_{n}^{k}\right)^{2}} \sim 2 A n^{\frac{3}{2}}$.

Remark

Solving for $q \in(0,1)$ in $\mathrm{E}_{q}(S) \sim n$ is equivalent to finding the saddle-point of $q^{-n} P(q)$.

Question

How is the size S distributed under $\boldsymbol{P}_{q_{n}}$?
(Fristedt, 1993): S satisfies a central limit theorem under $\boldsymbol{P}_{q_{n}}$:

$$
\boldsymbol{P}_{q_{n}}\left(\frac{S-n}{\sqrt{2 A} n^{3 / 4}} \leq x\right) \sim \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t
$$

This leads to a heuristic derivation of the asymptotic formula for $p(n)$.

$$
\boldsymbol{P}_{q}(S=n)=\sum_{\lambda \vdash n} \frac{q^{S(\lambda)}}{P(q)}=p(n) \frac{q^{n}}{P(q)} .
$$

Equivalently, saddle-point bound is repaired:

$$
p(n)=\boldsymbol{P}_{q}(S=n) q^{-n} P(q)
$$

Recalling the normal distribution, we expect a local central limit theorem:

$$
\begin{aligned}
\boldsymbol{P}_{q_{n}}(S=n) & =\boldsymbol{P}_{q_{n}}(-1<S-n<1) \\
& =\boldsymbol{P}_{q_{n}}\left(-\frac{1}{\sqrt{2 A} n^{3 / 4}}<\frac{S-n}{\sqrt{2 A} n^{3 / 4}}<\frac{1}{\sqrt{2 A} n^{3 / 4}}\right) \\
& \stackrel{? ?}{\sim} \frac{1}{\sqrt{2 \pi}} \int_{-1 / \sqrt{2 A} n^{3 / 4}}^{1 / \sqrt{2 A} n^{3 / 4}} e^{-\frac{t^{2}}{2}} d t \\
& \sim \frac{2}{\sqrt{2 A} n^{3 / 4}} .
\end{aligned}
$$

Substituting

$$
\boldsymbol{P}_{q_{n}}(S=n) \sim \frac{2}{\sqrt{2 A} n^{3 / 4}}
$$

and the asymptotic for $q_{n}^{-n} P\left(q_{n}\right)$ into

$$
p(n)=\boldsymbol{P}_{q}(S=n) q^{-n} P(q)
$$

one recovers
Theorem (Hardy-Ramanujan)

$$
p(n) \sim \frac{1}{4 \sqrt{3} n} q^{\pi \sqrt{\frac{2 n}{3}}} .
$$

Application: sampling large partitions

(1) Generate independent sample multiplicities according to $M_{k} \sim \operatorname{Geometric}\left(1-q_{n}^{k}\right)$
(2) The size $S=\sum_{k \geq 1} k M_{k}$ is very likely $n+O\left(n^{3 / 4}\right)$.

Example

Let $n=10,000$, so $n^{3 / 4}=1000$. I get the following partition of 9599 .

Limit shapes

Question

What are the typical shapes of diagrams of partitions of n ?

Figure: Density plot of $\{\lambda \vdash 300\}$.

$\widetilde{\varphi}(\lambda)$ - renormalized shape; rescale by
$\frac{1}{\sqrt{n}}$

Total Area $=1$

Question

What are the typical shapes of diagrams of partitions of n ?

Theorem (Dembo-Vershik-Zeitouni 1998)

Let N_{ϵ} be an ϵ-strip around $e^{-\frac{X}{A}}+e^{-\frac{Y}{A}}=1$.

$$
\lim _{n \rightarrow \infty} P_{n}\left(\widetilde{\varphi}(\lambda) \subset N_{\epsilon}\right)=1
$$

Also, an explicit large deviation principle holds.
Conjectured/heuristically derived by Temperley (1952), Szalay-Turán (1977), Vershik (1996), ...

Application: Durfee square side length

Example

$$
\lambda: 9+6+5+5+4+4+4+2+1+1
$$

Durfee $(\lambda)=4$

$$
\begin{aligned}
& e^{-\frac{x}{A}}+e^{-\frac{x}{A}}=1 \\
& \Longrightarrow x=A \log (2) .
\end{aligned}
$$

Proposition

For any $\epsilon>0$,

$$
P_{n}\left(\left|\frac{\text { Durfee }}{\sqrt{n}}-A \log (2)\right|<\epsilon\right) \rightarrow 1 .
$$

(Canfield-Corteel-Savage, 1998) away from this mean, the Durfee square is normally distributed.

The h-index is an information-less statistic.
C. Krattenthaler, Was der h-Index wirklich aussagt, Mitt. Dtsch. Math.-Ver. 29 (2021), 124-128

But why can we use the Boltzmann model here? Limit shape depends on parts of size roughly \sqrt{n}.

Proposition (Fristedt, Trans. AMS, 1993)

Suppose X is a random variable determined by $\left\{M_{k}: k \leq a_{n}\right.$ or $\left.k \geq b_{n}\right\}$. If $a_{n}=o(\sqrt{n})$ and $b_{n}=\omega(\sqrt{n})$, then

$$
\lim _{n \rightarrow \infty} d_{T V}\left(P_{n}\left(X^{-1}\right), \boldsymbol{P}_{q_{n}}\left(X^{-1}\right)\right)=0
$$

Also, largest part depends on all part sizes: $L_{1}=\sup \left\{k: M_{k}>0\right\}$. Why can we use the Boltzmann model here?

"Exponentially-small Principle"

Lemma

If $\boldsymbol{P}_{q_{n}}$ (Event) is exponentially small, then

$$
P_{n}(\text { Event }) \rightarrow 0 .
$$

Proof.

$$
\begin{aligned}
P_{n}(\text { Event }) & =\boldsymbol{P}_{q_{n}}(\text { Event } \mid S=n) \\
& =\frac{\boldsymbol{P}_{q_{n}}(\text { Event } \cap S=n)}{\boldsymbol{P}_{q_{n}}(S=n)} \\
& \leq \frac{\boldsymbol{P}_{q_{n}}(\text { Event })}{\boldsymbol{P}_{q_{n}}(S=n)} .
\end{aligned}
$$

But $\boldsymbol{P}_{q_{n}}(S=n)=p(n) q_{n}^{n} P\left(q_{n}\right)^{-1}$ decays only polynomially.

Application: Largest part

Lemma

If $\boldsymbol{P}_{q_{n}}$ (Event) is exponentially small, then

$$
P_{n}(\text { Event }) \rightarrow 0 .
$$

There exists $b_{n}=\omega(\sqrt{n})$ such that

$$
\begin{aligned}
& \boldsymbol{P}_{q_{n}}\left(M_{k}=0, k \geq b_{n}\right) \text { exp. small } \\
& \Longrightarrow P_{n}\left(M_{k}=0, k \geq b_{n}\right) \rightarrow 0 \\
& \Longrightarrow P_{n}\left(M_{k}>0 \text { for some } k \geq b_{n}\right) \rightarrow 1 .
\end{aligned}
$$

Thus, $L_{1}=\sup \left\{k \geq 1: M_{k}>0\right\}$ has the same limiting distribution under P_{n} as $\sup \left\{k \geq b_{n}: M_{k}>0\right\}$. Can now apply the Fristedt's Transfer Principle.

Question

How is $\left(L_{1}, \ldots, L_{t_{n}}\right)$ distributed under P_{n} as $n \rightarrow \infty$?

Theorem (Fristedt 1993, Trans. AMS)
Let $t_{n}=o\left(n^{1 / 4}\right)$ and $v_{1} \geq \cdots \geq v_{t_{n}}$. Then

$$
\begin{aligned}
& P_{n}\left(\frac{L_{t}-A \sqrt{n} \log (A \sqrt{n})}{A \sqrt{n}} \leq v_{t}, 1 \leq t \leq t_{n}\right) \\
& \sim \int_{-\infty}^{v_{1}} \cdots \int_{-\infty}^{v_{t_{n}}} e^{-u_{1}-\cdots-u_{t_{n}}-e^{-u_{t_{n}}}} d u_{t_{n}} \cdots d u_{1} .
\end{aligned}
$$

Answer

Typically, the largest t_{n} parts are all about $A \sqrt{n} \log (A \sqrt{n})$ and away from this mean behave as a Markov chain.

Unexpected application?

Definition

A partition λ is graphical if its parts are the vertex degrees of a simple graph.

Example

$\lambda=2+1+1$ is the only graphical partition of 4.

Conjecture (Wilf (1982))
$\lim _{n \rightarrow \infty} P_{n}(\lambda$ is graphical $)=0$.

Proposition (Erdős-Gallai (1960))
λ is graphical if and only if

$$
\sum_{t=1}^{d} L_{t}(\bar{\lambda}) \geq \sum_{t=1}^{d}\left(L_{t}(\lambda)+t\right) \quad \text { for } d \leq \operatorname{Durfee}(\lambda)
$$

Theorem (Pittel (1997), JCTA)

Wilf's conjecture is true.

Theorem (Melczer-Michelen-Mukherjee (2020), IMRN)
For some $C>0$, we have $P_{n}(\lambda$ is graphical $) \leq C n^{-.003297210314}$.

Part 2: Boltzmann models for unimodal sequences

Notation: peaks

Example

$$
\begin{aligned}
& \lambda: 1+1+1+3+\underbrace{\overline{4}}_{\text {peak }}+4+3+3+2 \\
& P K(\lambda)=4
\end{aligned}
$$

Notation: multiplicites

Example

$$
\lambda: 1+1+1+3+\overline{4}+4+3+3+2
$$

$$
M_{3}^{[l]}(\lambda)=1 \quad M_{3}^{[r]}(\lambda)=2
$$

Notation: largest parts

Example

$$
\lambda: 1+1+1+3+\overline{4}+4+3+3+2
$$

$L_{2}^{[\ell]}(\lambda)=1 \quad L_{2}^{[r]}(\lambda)=3$

Key Ideas

$$
U(q)=\sum_{n \geq 0} u(n) q^{n}=\sum_{m \geq 0} \underbrace{q^{m}}_{\text {peak }} \prod_{k \leq m} \underbrace{\frac{1}{\left(1-q^{k}\right)^{2}}}_{\text {left/right parts }}
$$

$U(q)$ is not a product, and $M_{k}^{[\ell]}, M_{k}^{[r]}$ are not independent under the naïve Boltzmann model:

$$
\boldsymbol{P}_{q}(\lambda):=\frac{q^{S(\lambda)}}{U(q)}, \quad q \in(0,1)
$$

nor is the RHS very tractable. But conditioning on the peak we have a product generating function,

$$
q^{m} \prod_{k \leq m} \frac{1}{\left(1-q^{k}\right)^{m}},
$$

and recover independence. We then apply the Boltzmann model uniformly for m in the contributing range.

Transfer Principle

Let $B=\frac{\pi}{\sqrt{3}}, q_{n}=e^{-1 / B \sqrt{n}}$ and

$$
Q_{q, m}(\cdot):=Q_{q}(\cdot \mid \mathrm{PK}=m) \quad P_{n, m}(\cdot):=P_{n}(\cdot \mid \mathrm{PK}=m),
$$

Proposition (B.-Bringmann, Adv. Math. 2022)

Suppose $X: \mathcal{U} \rightarrow \mathbb{R}^{d_{n}}$ is a random variable determined by $\left\{M_{k}^{[j]}\right\}_{k \in K_{n, m}, j \in\{\ell, r\}}$ and that

$$
\begin{equation*}
\operatorname{Var}_{q_{n}}\left(\sum_{k \in K_{n, m}} k\left(M_{k}^{[\ell]}+M_{k}^{[r]}\right)\right)=\sum_{k \in K_{n}} 2 \frac{k^{2} q_{n}^{k}}{\left(1-q_{n}^{k}\right)^{2}}=o\left(n^{3 / 2}\right) . \tag{1}
\end{equation*}
$$

Then as $n \rightarrow \infty$

$$
\begin{equation*}
d_{T V}\left(\left(P_{n, m}\left(X^{-1}\right), Q_{q_{n}, m}\left(X^{-1}\right)\right) \rightarrow 0 .\right. \tag{2}
\end{equation*}
$$

Furthermore, if (??) is uniform for $a_{n} \leq m \leq b_{n}$, then so is (??).

Theorem (B.-Bringmann, Adv. Math. 2022)
Let $B:=\frac{\sqrt{3}}{\pi}$. Then

$$
\lim _{n \rightarrow \infty} P_{n}\left(\frac{\mathrm{PK}-B \sqrt{n} \log (2 B \sqrt{n})}{B \sqrt{n}} \leq v\right)=e^{-e^{-v}}
$$

Note: $n \mapsto \frac{n}{2}$ in Erdős-Lehner's Theorem plus an extra $\log (2)$.

Theorem (B.-Bringmann, Adv. Math. 2022)
Let $v_{0} \geq v_{1}^{[j]} \geq \cdots \geq v_{t_{n}}^{[j]}$ for $j \in\{\ell, r\}$ and $t \leq t_{n}=o\left(n^{1 / 4}\right)$. Then

$$
\begin{gathered}
P_{n}\left(\frac{\mathrm{PK}-B \sqrt{n} \log (2 B \sqrt{n})}{B \sqrt{n}} \leq v_{0} \frac{L_{t}^{[j]}-B \sqrt{n} \log (2 B \sqrt{n})}{B \sqrt{n}} \leq v_{t}^{[j]},\right. \\
\left.1 \leq t \leq t_{n}, j \in\{L, R\}\right) \\
\sim \int_{-\infty}^{v_{0}} \cdots \int_{-\infty}^{v_{t_{n}}^{[r]}} \frac{1}{2^{2 t_{n}}} e^{-u_{0}-\sum_{t=1}^{t_{n}}\left(u_{t}^{[]]}+u_{t}^{[r]}\right)-\frac{-e_{t_{n}}^{[t]}}{2}-\frac{e^{-t_{t_{n}}}}{2}} d u_{t_{n}^{[n]}} \cdots d u_{0} .
\end{gathered}
$$

Remark

Away from the mean, the sequences $\mathrm{PK}, L_{1}^{[j]}, \ldots, L_{t_{n}}^{[j]}$ for $j \in\{\ell, r\}$ behave as two Markov chains for for $t=o\left(n^{1 / 4}\right)$.

Theorem (B.-Bringmann, Adv. Math. 2022)
Let $k \leq k_{n}=o\left(n^{1 / 4}\right)$. Then

$$
\begin{gathered}
P_{n}\left(\frac{k M_{k}^{[j]}}{A \sqrt{n}} \leq v_{k}^{[j]}, 1 \leq k \leq k_{n}, j \in\{\ell, r\}\right) \\
\quad \sim \prod_{k=1}^{k_{n}}\left(1-e^{-v_{k}^{[l]}}\right)\left(1-e^{-v_{k}^{[r]}}\right) .
\end{gathered}
$$

Remark

The left and right multiplicities of $k=o\left(n^{1 / 4}\right)$, when rescaled, behave as independent exponential random variables with mean 1.

Symmetry

Question

How is $\left(M_{1}^{[\ell]}-M_{1}^{[r]}, \ldots, M_{k_{n}}^{[\ell]}-M_{k_{n}}^{[r]}\right)$ for $k_{n}=o\left(n^{1 / 4}\right)$ distributed?
$\chi_{P}:=$ indicator function of P

Corollary

Let $k_{n}=o\left(n^{1 / 4}\right)$. Then

$$
P_{n}\left(\frac{k\left(M_{k}^{[l]}-M_{k}^{[r]}\right)}{B \sqrt{n}} \leq v_{k}, \text { for } k \leq k_{n}\right) \sim \prod_{k \leq k_{n}}\left(\left(1-\frac{e^{-v_{k}}}{2}\right) \chi_{v_{k}>0}+\frac{e^{v_{k}}}{2} \chi_{v_{k} \leq 0}\right)
$$

Answer

The differences $M_{k}^{[\ell]}-M_{k}^{[r]}$, when rescaled, have independent Laplace distributions for $k=o\left(n^{1 / 4}\right)$. (convolution of geometric)

Application: sampling large unimodal sequences

(1) Sample a peak according to $P K \sim \operatorname{Gumbel}(0,1)$.
(2) Generate independent pairs of sample multiplicities according to $M_{k}^{[\ell]}, M_{k}^{[r]} \sim \operatorname{Geometric}\left(1-q_{n}^{k}\right)$ for $k \leq P K$.

Example

Let $n=10,000$. I get the following u.s. with size 8393 and peak 915 .

Limit shapes

Theorem (B., Int. J. Number Theory 2023)
Let $B:=\frac{\sqrt{3}}{\pi}$. Define
$f_{u}(x):= \begin{cases}-B \log \left(1-e^{B x}\right) & \text { if } x<0, \\ -B \log \left(1-e^{-B x}\right) & \text { if } x>0 .\end{cases}$
Then this is a limit shape for unimodal sequences under the
 scaling $\frac{1}{\sqrt{n}}$.

Concluding remarks

Boltzmann model useful with other product/sum-of-products generating functions and w.r.t. other multiplicative measures:

- partitions under multiplicative measures (Vershik, 1996)
- Rogers-Ramanujan partitions (Bogachev-Yakubovich, 2019)
- distinct parts with bounded largest part (B. 2020)
- concave compositions (Dalal-Lohss-Parry, 2021)
- strongly unimodal sequences (B. 2022)
-

Boltzmann model not always useful:

- Product gen. fn., but hard combinatorics.
E.g. plane partitions:

$$
\sum_{n \geq 0} p p(n) q^{n}=\prod_{k \geq 1} \frac{1}{\left(1-q^{k}\right)^{k}}
$$

But what does each factor count?

- Statistic not easily described in terms of M_{k}.
E.g. the number of hooks equal to t. [Griffin-Ono-Tsai, 2022] use Method of Moments

Thanks for listening!

- W. Bridges and K. Bringmann "Statistics for unimodal sequences," Advances in Mathematics 401 (2022). arXiv: 2106.02334
- W. Bridges, "Partitions into distinct parts with bounded largest part," Research in Number Theory 6 (2020) arXiv:2004.12036
- W. Bridges, "Limit shapes for unimodal sequences," International Journal of Number Theory (2023), arXiv: 2001.06878

