Analytic aspects of partitions with parts separated by parity

William Craig

Universität zu Köln

February 29, 2024

This research is funded by the ERC grant 101001179.

William Craig (Universität zu Köln)

PSP Partitions

February 29, 2024

1/40

Partitions

A **partition** of an integer n is any nonincreasing sequence

$$\lambda := \{\lambda_1, \lambda_2, \dots, \lambda_\ell\}$$

of positive integers which sum to n.

A **partition** of an integer n is any nonincreasing sequence

$$\lambda := \{\lambda_1, \lambda_2, \dots, \lambda_\ell\}$$

of positive integers which sum to n.

Notation

The partition function is given by

p(n) := # partitions of n.

 $4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 \implies p(4) = 5.$

Partitions in Number Theory

Theorem (Hardy-Ramanujan, 1918)

We have that

$$p(n)\sim rac{1}{4n\sqrt{3}}\cdot e^{\pi\sqrt{rac{2n}{3}}}.$$

Theorem (Hardy-Ramanujan, 1918)

We have that

$$p(n) \sim rac{1}{4n\sqrt{3}} \cdot e^{\pi\sqrt{rac{2n}{3}}}.$$

Theorem (Ramanujan, 1919)

For every n, we have that

$$p(5n+4) \equiv 0 \pmod{5},$$

 $p(7n+5) \equiv 0 \pmod{7},$
 $p(11n+6) \equiv 0 \pmod{11}.$

3 / 4<u>0</u>

Parity in Partitions

Theorem (Euler, Legendre)

Let $D_{e/o}(n)$ be the number of partitions of n into an even (resp. odd) number of unequal parts.

Theorem (Euler, Legendre)

Let $D_{e/o}(n)$ be the number of partitions of n into an even (resp. odd) number of unequal parts. Then we have

$$(q;q)_{\infty} = \sum_{n \ge 0} (D_{\mathrm{e}}(n) - D_{\mathrm{o}}(n)) q^n = \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{n(3n-1)}{2}}.$$

We use the standard notation $(a; q)_n := \prod_{k=0}^{n-1} (1 - aq^k)$ for $n \in \mathbb{Z} \cup \{\infty\}$.

Theorem (Euler, Legendre)

Let $D_{e/o}(n)$ be the number of partitions of n into an even (resp. odd) number of unequal parts. Then we have

$$(q;q)_{\infty} = \sum_{n\geq 0} \left(D_{\mathrm{e}}(n) - D_{\mathrm{o}}(n) \right) q^n = \sum_{n\in\mathbb{Z}} (-1)^n q^{\frac{n(3n-1)}{2}}.$$

We use the standard notation $(a; q)_n := \prod_{k=0}^{n-1} (1 - aq^k)$ for $n \in \mathbb{Z} \cup \{\infty\}$.

Theorem (Kim-Kim-Lovejoy, 2021)

Let $p_{e/o}(n)$ be the number of partitions of n with more even parts than odd parts (resp. more odd parts than even parts). Then we have

$$\frac{p_o(n)}{p_e(n)} \to 1 + \sqrt{2}.$$

Parts Separated by Parity

Let λ be a partition. Then λ has *parts separated by parity* provided one of the following is true:

Let λ be a partition. Then λ has *parts separated by parity* provided one of the following is true:

• Each odd part of λ is larger than every even part of λ ;

Let λ be a partition. Then λ has *parts separated by parity* provided one of the following is true:

- Each odd part of λ is larger than every even part of λ ;
- Each even part of λ is larger than every odd part of λ .

Let λ be a partition. Then λ has parts separated by parity provided one of the following is true:

- Each odd part of λ is larger than every even part of λ ;
- Each even part of λ is larger than every odd part of λ .

Definition

A family S has *parts separated by parity* (PSP) if membership in S is partly or wholly determined by the condition above.

William Craig (Universität zu Köln)

Example (Andrews, 2018)

Let $\mathcal{EO}(n)$ be the number of partitions of *n* where each even part is less than each odd part.

Example (Andrews, 2018)

Let $\mathcal{EO}(n)$ be the number of partitions of *n* where each even part is less than each odd part. We have

$$\begin{split} \sum_{n\geq 0} \mathcal{EO}(n)q^n &= \sum_{n\geq 0} \frac{q^{2n}}{(q^2;q^2)_n (q^{2n+1};q^2)_\infty} \\ &= \frac{1}{(q;q^2)_\infty} \sum_{n\geq 0} \frac{(q;q^2)_n}{(q^2;q^2)_n} q^{2n} \\ &= \frac{(q^3;q^2)_\infty}{(q;q^2)_\infty (q^2;q^2)_\infty} \\ &= \frac{1}{(1-q) (q^2;q^2)_\infty}. \end{split}$$

Example (Andrews, 2018)

Let $\mathcal{EO}(n)$ be the number of partitions of *n* where each even part is less than each odd part. We have

$$\begin{split} \sum_{n\geq 0} \mathcal{EO}(n)q^n &= \sum_{n\geq 0} \frac{q^{2n}}{(q^2;q^2)_n (q^{2n+1};q^2)_\infty} \\ &= \frac{1}{(q;q^2)_\infty} \sum_{n\geq 0} \frac{(q;q^2)_n}{(q^2;q^2)_n} q^{2n} \\ &= \frac{(q^3;q^2)_\infty}{(q;q^2)_\infty (q^2;q^2)_\infty} \\ &= \frac{1}{(1-q)(q^2;q^2)_\infty}. \end{split}$$

William Craig (Universität zu Köln)

Let $\overline{\mathcal{EO}}(n)$ be the number of partitions of *n* with odd parts above even parts and with only the largest even part can have odd multiplicity.

Let $\overline{\mathcal{EO}}(n)$ be the number of partitions of *n* with odd parts above even parts and with only the largest even part can have odd multiplicity.

Theorem (Andrews, 2018)

Consider the third order mock theta function $\nu(q) := \sum_{n \ge 0} \frac{q^{n^2+n}}{(-q;q^2)_{n+1}}$.

Let $\overline{\mathcal{EO}}(n)$ be the number of partitions of *n* with odd parts above even parts and with only the largest even part can have odd multiplicity.

Theorem (Andrews, 2018)

Consider the third order mock theta function $\nu(q) := \sum_{n \ge 0} \frac{q^{n^2+n}}{(-q;q^2)_{n+1}}$. Then

$$\sum_{n\geq 0}\overline{\mathcal{EO}}(n)q^n=\frac{1}{2}\left(\nu(q)+\nu(-q)\right).$$

Let $\overline{\mathcal{EO}}(n)$ be the number of partitions of *n* with odd parts above even parts and with only the largest even part can have odd multiplicity.

Theorem (Andrews, 2018)

Consider the third order mock theta function $\nu(q) := \sum_{n \ge 0} \frac{q^{n^2+n}}{(-q;q^2)_{n+1}}$. Then

$$\sum_{n\geq 0}\overline{\mathcal{EO}}(n)q^n=\frac{1}{2}\left(\nu(q)+\nu(-q)\right).$$

Furthermore, we have

$$\overline{\mathcal{EO}}\,(10n+8)\equiv 0\pmod{5},$$

and this congruence is explained by an "even-odd crank".

William Craig (Universität zu Köln)

• New symmetries in PSP-type objects arise combinatorially (Chern, Burson–Eichhorn)

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson–Eichhorn)
- Infinite families of congruences (Ray-Barman)

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson–Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{EO}}(n)$ (Ray–Barman, Burson–Eichhorn)

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson–Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{EO}}(n)$ (Ray–Barman, Burson–Eichhorn)
- Series identities involving mock theta functions (Andrews)

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson–Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{EO}}(n)$ (Ray–Barman, Burson–Eichhorn)
- Series identities involving mock theta functions (Andrews)
- Connections between Stanley rank $\mathcal{O}(\lambda) \mathcal{O}(\lambda')$ and the even-odd crank for $\overline{\mathcal{EO}}(n)$ (Fu-Tang)

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson–Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{EO}}(n)$ (Ray–Barman, Burson–Eichhorn)
- Series identities involving mock theta functions (Andrews)
- Connections between Stanley rank $\mathcal{O}(\lambda) \mathcal{O}(\lambda')$ and the even-odd crank for $\overline{\mathcal{EO}}(n)$ (Fu-Tang)

And rews' suggestions regarding $\mathcal{EO}(n)$ have received less attention.

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson–Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{EO}}(n)$ (Ray–Barman, Burson–Eichhorn)
- Series identities involving mock theta functions (Andrews)
- Connections between Stanley rank $\mathcal{O}(\lambda) \mathcal{O}(\lambda')$ and the even-odd crank for $\overline{\mathcal{EO}}(n)$ (Fu-Tang)

And rews' suggestions regarding $\mathcal{EO}(n)$ have received less attention.

- Andrews, Partitions with Parts Separated by Parity, 2019.
- Bringmann, Jennings-Shaffer, A Note on Andrews' Partitions with Parts Separated by Parity, 2019.

William Craig (Universität zu Köln)

Notation

A function of the form $p_{yz}^{wx}(n)$ will count the number of partitions of n in a PSP-set \mathcal{P}_{yz}^{wx} :

A function of the form $p_{yz}^{wx}(n)$ will count the number of partitions of n in a PSP-set \mathcal{P}_{yz}^{wx} :

• $\{w,y\}=\{e,o\}$ signify even and odd;

A function of the form $p_{yz}^{wx}(n)$ will count the number of partitions of n in a PSP-set \mathcal{P}_{yz}^{wx} :

- $\{w,y\}=\{e,o\}$ signify even and odd;
- $x,z \in \{u,d\}$ signify unrestricted or distinct;

A function of the form $p_{yz}^{wx}(n)$ will count the number of partitions of n in a PSP-set \mathcal{P}_{yz}^{wx} :

- $\{w,y\}=\{e,o\}$ signify even and odd;
- $\bullet \ x,z \in \{u,d\}$ signify unrestricted or distinct;
- Parts of parity w must lie above parts of parity y;

A function of the form $p_{yz}^{wx}(n)$ will count the number of partitions of n in a PSP-set \mathcal{P}_{yz}^{wx} :

- $\{w,y\}=\{e,o\}$ signify even and odd;
- $\bullet \ x,z \in \{u,d\}$ signify unrestricted or distinct;
- Parts of parity w must lie above parts of parity y;
- Parts of parity w (resp. y) are restricted by condition x (resp. z).

A function of the form $p_{yz}^{wx}(n)$ will count the number of partitions of n in a PSP-set \mathcal{P}_{yz}^{wx} :

- $\{w,y\}=\{e,o\}$ signify even and odd;
- $\bullet \ x,z \in \{u,d\}$ signify unrestricted or distinct;
- Parts of parity w must lie above parts of parity y;
- Parts of parity w (resp. y) are restricted by condition x (resp. z).

Definition

We consider the following eight functions:

 $p_{\mathrm{eu}}^{\mathrm{ou}}(n), \ p_{\mathrm{eu}}^{\mathrm{od}}(n), \ p_{\mathrm{ou}}^{\mathrm{eu}}(n), \ p_{\mathrm{ou}}^{\mathrm{ed}}(n), \ p_{\mathrm{ed}}^{\mathrm{ou}}(n), \ p_{\mathrm{ed}}^{\mathrm{od}}(n), \ p_{\mathrm{od}}^{\mathrm{eu}}(n), \ p_{\mathrm{od}}^{\mathrm{ed}}(n).$

A function of the form $p_{yz}^{wx}(n)$ will count the number of partitions of n in a PSP-set \mathcal{P}_{yz}^{wx} :

- $\{w,y\}=\{e,o\}$ signify even and odd;
- $\bullet \ x,z \in \{u,d\}$ signify unrestricted or distinct;
- Parts of parity w must lie above parts of parity y;
- Parts of parity w (resp. y) are restricted by condition x (resp. z).

Definition

We consider the following eight functions:

$$p_{\mathrm{eu}}^{\mathrm{ou}}(n), \ p_{\mathrm{eu}}^{\mathrm{od}}(n), \ p_{\mathrm{ou}}^{\mathrm{eu}}(n), \ p_{\mathrm{ou}}^{\mathrm{ed}}(n), \ p_{\mathrm{ed}}^{\mathrm{ou}}(n), \ p_{\mathrm{od}}^{\mathrm{od}}(n), \ p_{\mathrm{od}}^{\mathrm{ed}}(n), \ p_{\mathrm{od}}^{\mathrm{ed}}(n).$$

Observe that $\mathcal{EO}(n) = p_{eu}^{ou}(n)$.

William Craig (Universität zu Köln)

Theorem (Bringmann–C–Nazaroglu)

As $n \to \infty$, we have the following asymptotics:

Theorem (Bringmann–C–Nazaroglu)

As $n \to \infty$, we have the following asymptotics:

$$\begin{split} p_{\rm eu}^{\rm ou}(n) &\sim \frac{e^{\pi\sqrt{\frac{n}{3}}}}{2\pi\sqrt{n}}, \qquad p_{\rm ou}^{\rm eu}(n) \sim \frac{3^{\frac{1}{4}}e^{\pi\sqrt{\frac{n}{3}}}}{2\pi n^{\frac{1}{4}}}, \\ p_{\rm eu}^{\rm od}(n) &\sim \frac{e^{\pi\sqrt{\frac{n}{3}}}}{4\sqrt{2}\cdot 3^{\frac{1}{4}}n^{\frac{3}{4}}}, \qquad p_{\rm od}^{\rm eu}(n) \sim \frac{e^{\pi\sqrt{\frac{n}{3}}}}{2\sqrt{3}n}, \\ p_{\rm ed}^{\rm ou}(n) &\sim \frac{e^{\pi\sqrt{\frac{n}{3}}}}{4\cdot 3^{\frac{1}{4}}n^{\frac{3}{4}}}, \qquad p_{\rm ou}^{\rm ed}(n) \sim \frac{e^{\pi\sqrt{\frac{n}{3}}}}{4\sqrt{2}\sqrt{n}}, \\ p_{\rm ed}^{\rm od}(n) &\sim \frac{3^{\frac{1}{4}}\left(\sqrt{2}-1\right)e^{\pi\sqrt{\frac{n}{6}}}}{2^{\frac{3}{4}}\pi n^{\frac{1}{4}}}, \qquad p_{\rm od}^{\rm ed}(n) \sim \frac{3^{\frac{1}{4}}\left(\sqrt{2}-1\right)e^{\pi\sqrt{\frac{n}{6}}}}{2^{\frac{1}{4}}\pi n^{\frac{1}{4}}}. \end{split}$$

Generating Functions

William Craig (Universität zu Köln)

Generating Functions

Fact

We define the generating functions $F_{yz}^{wx}(q) := \sum_{n>0} p_{yz}^{wx}(n)q^n$.

Fact

We define the generating functions
$$F_{yz}^{wx}(q) := \sum_{n>0} p_{yz}^{wx}(n)q^n$$
.

Example

We have the following constructions:

$$\begin{split} F_{\rm eu}^{\rm od}(q) &= \sum_{n \ge 0} \frac{\left(-q^{2n+1}; q^2\right)_{\infty}}{\left(q^2; q^2\right)_n} q^{2n}; \\ F_{\rm od}^{\rm eu}(q) &= \sum_{n \ge 0} \frac{\left(-q; q^2\right)_n}{\left(q^{2n+2}; q^2\right)_{\infty}} q^{2n+1} + \frac{1}{\left(q^2; q^2\right)_{\infty}} \end{split}$$

Fact

We define the generating functions
$$F_{yz}^{wx}(q) := \sum_{n \ge 0} p_{yz}^{wx}(n)q^n$$
.

Example

We have the following constructions:

$$egin{split} F_{ ext{eu}}^{ ext{od}}(q) &= \sum_{n\geq 0} rac{\left(-q^{2n+1};\,q^2
ight)_\infty}{\left(q^2;\,q^2
ight)_n} q^{2n}; \ F_{ ext{od}}^{ ext{eu}}(q) &= \sum_{n\geq 0} rac{\left(-q;\,q^2
ight)_n}{\left(q^{2n+2};\,q^2
ight)_\infty} q^{2n+1} + rac{1}{\left(q^2;\,q^2
ight)_\infty}. \end{split}$$

All eight generating functions can be constructed using q-hypergeometric series in this very classical manner.

Proposition ("Modular" PSP's)

The following generating functions hold:

Proposition ("Modular" PSP's)

The following generating functions hold:

$$\begin{split} F_{\rm eu}^{\rm od}(q) &= \frac{1}{(1-q) \left(q^2; q^2\right)_{\infty}}, \\ F_{\rm ed}^{\rm od}(q) &= \frac{\left(-q; q^2\right)_{\infty}}{1-q} - \frac{q(-q^2; q^2)_{\infty}}{1-q}, \\ F_{\rm ou}^{\rm eu}(q) &= \frac{1}{1-q} \left(\frac{1}{(q; q^2)_{\infty}} - \frac{q}{(q^2; q^2)_{\infty}}\right), \\ F_{\rm od}^{\rm ed}(q) &= \frac{(1+q)(-q^2; q^2)_{\infty}}{1-q} - \frac{q(-q; q^2)_{\infty}}{1-q}. \end{split}$$

A partial ϑ -function is (roughly) a summation over $n \ge 0$ which, when summed over $n \in \mathbb{Z}$, is a modular ϑ -function.

A partial ϑ -function is (roughly) a summation over $n \ge 0$ which, when summed over $n \in \mathbb{Z}$, is a modular ϑ -function. A false ϑ -function (roughly) differs from a modular ϑ -function by a $\operatorname{sgn}(n)$ factor.

A partial ϑ -function is (roughly) a summation over $n \ge 0$ which, when summed over $n \in \mathbb{Z}$, is a modular ϑ -function. A false ϑ -function (roughly) differs from a modular ϑ -function by a $\operatorname{sgn}(n)$ factor.

Proposition (Partial/False PSP's)

The following generating functions hold:

A partial ϑ -function is (roughly) a summation over $n \ge 0$ which, when summed over $n \in \mathbb{Z}$, is a modular ϑ -function. A false ϑ -function (roughly) differs from a modular ϑ -function by a $\operatorname{sgn}(n)$ factor.

Proposition (Partial/False PSP's)

The following generating functions hold:

$$\begin{aligned} F_{\rm eu}^{\rm od}(q) &= \frac{1}{(q^2; q^2)} \sum_{n \ge 0}^{\infty} q^{n^2}, \\ F_{\rm ed}^{\rm ou}(-q) &= \frac{1}{2(-q; q^2)_{\infty}} \left((-q; q)_{\infty} + 1 - \sum_{n \ge 0}^{\infty} (1 - q^n) q^{\frac{n(3n-1)}{2}} \right) \end{aligned}$$

Definition

Define the following series of Ramanujan:

$$f(q) := \sum_{n \ge 0} \frac{q^{n^2}}{(-q;q)_n^2}.$$

Definition

Define the following series of Ramanujan:

$$f(q) := \sum_{n \ge 0} \frac{q^{n^2}}{(-q;q)_n^2}.$$

Note that f(q) is a mock ϑ -function from Ramanujan's last letter.

Definition

Define the following series of Ramanujan:

$$f(q) := \sum_{n \ge 0} \frac{q^{n^2}}{(-q;q)_n^2}.$$

Note that f(q) is a mock ϑ -function from Ramanujan's last letter.

Proposition (Mock PSP's)

The following generating functions hold:

$$F_{\mathrm{ou}}^{\mathrm{ed}}(-q) = \frac{\left(-q^2; q^2\right)_{\infty}}{2} \left(2 - f(q) + \frac{1}{\left(-q; q\right)_{\infty}}\right)$$

Definition

Define the following series of Ramanujan:

$$f(q) := \sum_{n \ge 0} \frac{q^{n^2}}{(-q;q)_n^2}.$$

Note that f(q) is a mock ϑ -function from Ramanujan's last letter.

Proposition (Mock PSP's)

The following generating functions hold:

$$F_{\mathrm{ou}}^{\mathrm{ed}}(-q) = \frac{\left(-q^{2}; q^{2}\right)_{\infty}}{2} \left(2 - f(q) + \frac{1}{\left(-q; q\right)_{\infty}}\right)$$

Remark

We will return to $F_{\mathrm{od}}^{\mathrm{eu}}(q)$ later...

William Craig (Universität zu Köln)

February 29, 2024

William Craig (Universität zu Köln)

Let $B(q) = \sum_{n\geq 0} b(n)q^n$ be a power series whose radius of convergence is at least one and assume that b(n) are non-negative and weakly increasing.

Let $B(q) = \sum_{n\geq 0} b(n)q^n$ be a power series whose radius of convergence is at least one and assume that b(n) are non-negative and weakly increasing. Also suppose that λ , β , $\gamma \in \mathbb{R}$ with $\gamma > 0$ exist such that

$$B\left(e^{-t}
ight)\sim\lambda t^{eta}e^{rac{\gamma}{t}}$$
 as $t
ightarrow0^{+},$ $B\left(e^{-z}
ight)\ll|z|^{eta}e^{rac{\gamma}{|z|}}$ as $z
ightarrow0,$

with the latter condition holding in each region of the form $|y| \le \Delta x$ for $\Delta > 0$ and z = x + iy with $x, y \in \mathbb{R}$, x > 0.

Let $B(q) = \sum_{n\geq 0} b(n)q^n$ be a power series whose radius of convergence is at least one and assume that b(n) are non-negative and weakly increasing. Also suppose that λ , β , $\gamma \in \mathbb{R}$ with $\gamma > 0$ exist such that

$$B\left(e^{-t}
ight)\sim\lambda t^{eta}e^{rac{\gamma}{t}}$$
 as $t
ightarrow0^{+},$ $B\left(e^{-z}
ight)\ll|z|^{eta}e^{rac{\gamma}{|z|}}$ as $z
ightarrow0$

with the latter condition holding in each region of the form $|y| \le \Delta x$ for $\Delta > 0$ and z = x + iy with $x, y \in \mathbb{R}$, x > 0. Then we have

$$b(n) \sim rac{\lambda \gamma^{rac{eta}{2}+rac{1}{4}}}{2\sqrt{\pi}n^{rac{eta}{2}+rac{3}{4}}}e^{2\sqrt{\gamma n}} \qquad ext{as } n o \infty.$$

Let $B(q) = \sum_{n\geq 0} b(n)q^n$ be a power series whose radius of convergence is at least one and assume that b(n) are non-negative and weakly increasing. Also suppose that λ , β , $\gamma \in \mathbb{R}$ with $\gamma > 0$ exist such that

$$B\left(e^{-t}
ight)\sim\lambda t^{eta}e^{rac{\gamma}{t}}$$
 as $t
ightarrow0^{+},$ $B\left(e^{-z}
ight)\ll|z|^{eta}e^{rac{\gamma}{|z|}}$ as $z
ightarrow0_{+}$

with the latter condition holding in each region of the form $|y| \le \Delta x$ for $\Delta > 0$ and z = x + iy with $x, y \in \mathbb{R}$, x > 0. Then we have

$$b(n) \sim rac{\lambda \gamma^{rac{eta}{2}+rac{1}{4}}}{2\sqrt{\pi}n^{rac{eta}{2}+rac{3}{4}}}e^{2\sqrt{\gamma n}} \qquad ext{as } n o \infty.$$

Remark

For PSP's, the parity separation condition is convenient for proving "suitable" increasing properties.

William Craig (Universität zu Köln)

PSP Partitions

Definition

The Dedekind η -function is defined for $\tau \in \mathbb{C}$ satisfying $Im(\tau) > 0$ by

$$\eta(\tau) = q^{rac{1}{24}}(q;q)_{\infty}, \quad \Theta(q) := \sum_{n \in \mathbb{Z}} q^{rac{n^2}{2}} \quad (q = e^{2\pi i \tau}).$$

Definition

The Dedekind η -function is defined for $\tau \in \mathbb{C}$ satisfying $\mathsf{Im}(\tau) > 0$ by

$$\eta(\tau)=q^{rac{1}{24}}(q;q)_{\infty}, \quad \Theta(q):=\sum_{n\in\mathbb{Z}}q^{rac{n^2}{2}} \quad (q=e^{2\pi i \tau}).$$

Lemma

Let $q = e^{-z}$. Then as $z \to 0$ in regions $|y| \le \Delta x$ for $\Delta > 0$ and z = x + iy, we have the asymptotic behaviors

$$(q;q)_{\infty}\sim \sqrt{rac{2\pi}{z}}e^{-rac{\pi^2}{6z}}, \quad \Theta\left(q
ight)\sim \sqrt{rac{2\pi}{z}}.$$

Proposition (Euler-Maclaurin summation)

Let g be a holomorphic function in a domain containing those z = x + iysatisfying $|y| \le \Delta x$, $x \ge 0$. Also suppose that g, as well as all of its derivatives, are of sufficient decay.

Proposition (Euler-Maclaurin summation)

Let g be a holomorphic function in a domain containing those z = x + iysatisfying $|y| \le \Delta x$, $x \ge 0$. Also suppose that g, as well as all of its derivatives, are of sufficient decay. Then for any $a \in \mathbb{R}$ and $N \in \mathbb{N}_0$, we have

$$\sum_{m\geq 0} g((m+a)z) = \frac{1}{z} \int_0^\infty g(w) dw - \sum_{n=0}^{N-1} \frac{B_{n+1}(a)g^{(n)}(0)}{(n+1)!} z^n + O_N\left(z^N\right),$$

as $z \to 0$ uniformly in this region. Here $B_n(x)$ denotes the n-th Bernoulli polynomial.

Proposition (Euler–Maclaurin summation)

Let g be a holomorphic function in a domain containing those z = x + iysatisfying $|y| \le \Delta x$, $x \ge 0$. Also suppose that g, as well as all of its derivatives, are of sufficient decay. Then for any $a \in \mathbb{R}$ and $N \in \mathbb{N}_0$, we have

$$\sum_{m\geq 0} g((m+a)z) = \frac{1}{z} \int_0^\infty g(w) dw - \sum_{n=0}^{N-1} \frac{B_{n+1}(a)g^{(n)}(0)}{(n+1)!} z^n + O_N\left(z^N\right),$$

as $z \to 0$ uniformly in this region. Here $B_n(x)$ denotes the n-th Bernoulli polynomial.

Remark

Can be used to study partial $\vartheta\text{-}\mathsf{functions}$ after completing the square in the exponent.

William Craig (Universität zu Köln)

The Case of $\textit{F}_{\rm od}^{\rm eu}$

The Case of $\textit{F}_{\rm od}^{\rm eu}$

• Asymptotics for all eight cases follow from asymptotic calculations along these lines.

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:
 - Modular forms (Hardy–Ramanujan, Rademacher)

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:
 - Modular forms (Hardy-Ramanujan, Rademacher)
 - Mock modular forms (Zwegers, Bringmann-Ono)

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:
 - Modular forms (Hardy-Ramanujan, Rademacher)
 - Mock modular forms (Zwegers, Bringmann-Ono)
 - Partial/false ϑ -functions (Bringmann–Nazaroglu, 2019)

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:
 - Modular forms (Hardy-Ramanujan, Rademacher)
 - Mock modular forms (Zwegers, Bringmann-Ono)
 - Partial/false *θ*-functions (Bringmann–Nazaroglu, 2019)
- The function $F_{\text{od}}^{\text{eu}}(q)$ involves *mock Maass forms*, which have not previously been studied in this way.

Definition

We define Ramanujan's σ -function by

$$\sigma(\boldsymbol{q}) := \sum_{n \geq 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q;q)_n}.$$

Definition

We define Ramanujan's $\sigma\text{-function}$ by

$$\sigma(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q;q)_n}.$$

Theorem (Andrews–Dyson–Hickerson, 1988)

We have the generating function

$$\sigma(q) = \sum_{\substack{n \geq 0 \ |j| \leq n}} (-1)^{n+j} \left(1 - q^{2n+1}\right) q^{rac{n(3n+1)}{2} - j^2}.$$

Definition

We define Ramanujan's $\sigma\text{-function}$ by

$$\sigma(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q;q)_n}.$$

Theorem (Andrews–Dyson–Hickerson, 1988)

We have the generating function

$$\sigma(q) = \sum_{\substack{n \geq 0 \ |j| \leq n}} (-1)^{n+j} \left(1 - q^{2n+1}\right) q^{rac{n(3n+1)}{2} - j^2}.$$

Remark

Observe that this is a false indefinite ϑ -function.

William Craig (Universität zu Köln)

Connections to PSP's

William Craig (Universität zu Köln)

Theorem

We have the generating function identity

$$\begin{split} F_{\rm od}^{\rm eu}(-q) &= -\frac{1}{(q^2;q^2)_{\infty}} \left(\sum_{j\geq 1} \sum_{n\geq j} (-1)^{n+j} \left(1-q^{2n+1}\right) q^{\frac{n(3n+1)}{2}-j^2} - 1 \right) \\ &= \frac{1}{(q^2;q^2)_{\infty}} \left(1-\frac{\sigma(q)}{2} + \frac{(q;q)_{\infty}}{2}\right). \end{split}$$

Theorem

We have the generating function identity

$$\begin{split} F_{\rm od}^{\rm eu}(-q) &= -\frac{1}{(q^2;q^2)_{\infty}} \left(\sum_{j\geq 1} \sum_{n\geq j} (-1)^{n+j} \left(1-q^{2n+1}\right) q^{\frac{n(3n+1)}{2}-j^2} - 1 \right) \\ &= \frac{1}{(q^2;q^2)_{\infty}} \left(1-\frac{\sigma(q)}{2} + \frac{(q;q)_{\infty}}{2}\right). \end{split}$$

Question

What is the modular structure of $\sigma(q)$?

Definition

Define the q-series
$$\sigma^*(q)$$
 by $\sigma^*(q) := 2 \sum_{n \ge 1} \frac{(-1)^n q^{n^2}}{(q;q^2)_n}$,

Definition

Define the q-series $\sigma^*(q)$ by $\sigma^*(q) := 2\sum_{n\geq 1} \frac{(-1)^n q^{n^2}}{(q;q^2)_n}$, and further define

$$arphi(q) := \sum_{n \in 24\mathbb{Z}+1} T(n) q^{|n|/24} := q^{1/24} \sigma(q) + q^{-1/24} \sigma^*(q).$$

Definition

Define the *q*-series
$$\sigma^*(q)$$
 by $\sigma^*(q) := 2 \sum_{n \ge 1} \frac{(-1)^n q^{n^2}}{(q;q^2)_n}$, and further define

$$arphi(q) := \sum_{n \in 24\mathbb{Z}+1} T(n) q^{|n|/24} := q^{1/24} \sigma(q) + q^{-1/24} \sigma^*(q).$$

Theorem (Cohen, 1988)

The nonholomorphic series $(q = e^{-z} = e^{-x-iy})$

$$\varphi_0(q) := y^{1/2} \sum_{n \in \mathbb{Z} \setminus \{0\}} T(n) \mathcal{K}_0\left(\frac{2\pi |n|y}{24}\right) e^{\frac{2\pi inx}{24}}$$

is an eigenvalue of the hyperbolic Laplacian $\Delta := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$ with eigenvalue $\frac{1}{4}$ and transforms as a modular form with multiplier for $\Gamma_0(2)$.

Let B(n, m) := n^TAm be an integral, symmetric bilinear form on Z² of signature (1, 1).

Let B(n, m) := n^TAm be an integral, symmetric bilinear form on Z² of signature (1, 1). Let Q(n) = ½B(n, n) be the associated quadratic form.

- Let B(n, m) := n^TAm be an integral, symmetric bilinear form on Z² of signature (1, 1). Let Q(n) = ½B(n, n) be the associated quadratic form.
- Since Q has signature (1, 1), we can choose P so that

$$A = P^T \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} P,$$

i.e. so that $Q(P\mathbf{n}) = n_1 n_2$.

- Let B(n, m) := n^TAm be an integral, symmetric bilinear form on Z² of signature (1, 1). Let Q(n) = ½B(n, n) be the associated quadratic form.
- Since Q has signature (1, 1), we can choose P so that

$$A = P^T \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} P,$$

i.e. so that
$$Q(P\mathbf{n}) = n_1 n_2$$
.

Let

$$c(t) = P^{-1} \begin{pmatrix} \exp(t) \\ -\exp(-t) \end{pmatrix}, \quad c^{\perp}(t) = P^{-1} \begin{pmatrix} \exp(t) \\ \exp(-t) \end{pmatrix}.$$

- Let B(n, m) := n^TAm be an integral, symmetric bilinear form on Z² of signature (1, 1). Let Q(n) = ½B(n, n) be the associated quadratic form.
- Since Q has signature (1, 1), we can choose P so that

$$A = P^T \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} P,$$

i.e. so that
$$Q(P\mathbf{n}) = n_1 n_2$$
.

Let

$$c(t) = P^{-1} \begin{pmatrix} \exp(t) \\ -\exp(-t) \end{pmatrix}, \quad c^{\perp}(t) = P^{-1} \begin{pmatrix} \exp(t) \\ \exp(-t) \end{pmatrix}.$$

• For fixed c_0 , let $C_Q := \{c \in \mathbb{R}^2 : Q(c) = -1, B(c, c_0) < 0\}$; c(t) parameterizes C_Q , $c^{\perp}(t)$ its complement, and we choose t_1, t_2 and set $c(t_i) = c_i, c^{\perp}(t_i) = c_i^{\perp}$.

False indefinite quadratic forms

• Using the previous notation, we consider the *false indefinite* ϑ -functions

$$\begin{split} \vartheta_{\mu}(\tau) &:= \frac{1}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{2} + \mu \\ \mathbf{n} \neq \mathbf{0}}} (1 - \operatorname{sgn} \left(B(\mathbf{n}, \mathbf{c}_{1}) \right) \operatorname{sgn} \left(B(\mathbf{n}, \mathbf{c}_{2}) \right) \right) q^{Q(\mathbf{n})} \\ &- \frac{t_{2} - t_{1}}{\pi} \delta_{\mu \in \mathbb{Z}^{2}} \end{split}$$

False indefinite quadratic forms

• Using the previous notation, we consider the *false indefinite* ϑ -functions

$$\begin{split} \vartheta_{\mu}(\tau) &:= \frac{1}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{2} + \mu \\ \mathbf{n} \neq \mathbf{0}}} (1 - \operatorname{sgn} \left(B(\mathbf{n}, \mathbf{c}_{1}) \right) \operatorname{sgn} \left(B(\mathbf{n}, \mathbf{c}_{2}) \right) \right) q^{Q(\mathbf{n})} \\ &- \frac{t_{2} - t_{1}}{\pi} \delta_{\mu \in \mathbb{Z}^{2}} \end{split}$$

• In our PSP study, we will make use of the example associated with $A = \begin{pmatrix} 24 & 0 \\ 0 & 4 \end{pmatrix}$: $f_{\mu}(\tau) := \frac{1}{2} \sum_{\mathbf{n} \in \mathbb{Z}^{2} + \mu} (1 + \operatorname{sgn} (2n_{1} + n_{2}) \operatorname{sgn} (2n_{1} - n_{2})) q^{12n_{1}^{2} - 2n_{2}^{2}}$ $- \frac{\operatorname{arccosh}(5)}{\pi} \delta_{\mu \in \mathbb{Z}^{2}}.$

Definition

For $\mu \in A^{-1}\mathbb{Z}^2/\mathbb{Z}^2$, we define the *mock Maass theta functions* associated to $\vartheta_{\mu}(\tau)$ by (with $\tau = \tau_1 + i\tau_2$) by

Definition

For $\mu \in A^{-1}\mathbb{Z}^2/\mathbb{Z}^2$, we define the *mock Maass theta functions* associated to $\vartheta_{\mu}(\tau)$ by (with $\tau = \tau_1 + i\tau_2$) by

$$\begin{split} \Theta_{\mu}(\tau) &= \frac{\sqrt{\tau_2}}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^2 + \mu \\ \mathbf{n} \neq \mathbf{0}}} \left(1 - \operatorname{sgn}\left(B(\mathbf{n}, \mathbf{c}_1)\right) \operatorname{sgn}\left(B(\mathbf{n}, \mathbf{c}_2)\right) \right) \mathcal{K}_0\left(2\pi Q(\mathbf{n})\tau_2\right) e^{2\pi i Q(\mathbf{n})\tau_1} \\ &+ \frac{\sqrt{\tau_2}}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^2 + \mu \\ \mathbf{n} \neq \mathbf{0}}} \left(1 - \operatorname{sgn}\left(B(\mathbf{n}, \mathbf{c}_1^{\perp})\right) \operatorname{sgn}\left(B(\mathbf{n}, \mathbf{c}_2^{\perp})\right) \right) \mathcal{K}_0\left(-2\pi Q(\mathbf{n})\tau_2\right) e^{2\pi i Q(\mathbf{n})\tau_1} \\ &+ (t_2 - t_1)\sqrt{\tau_2} \delta_{\mu \in \mathbb{Z}^2}. \end{split}$$

Definition

For $\mu \in A^{-1}\mathbb{Z}^2/\mathbb{Z}^2$, we define the *mock Maass theta functions* associated to $\vartheta_{\mu}(\tau)$ by (with $\tau = \tau_1 + i\tau_2$) by

$$\begin{split} \Theta_{\mu}(\tau) &= \frac{\sqrt{\tau_2}}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^2 + \mu \\ \mathbf{n} \neq \mathbf{0}}} \left(1 - \operatorname{sgn}\left(B(\mathbf{n}, \mathbf{c}_1)\right) \operatorname{sgn}\left(B(\mathbf{n}, \mathbf{c}_2)\right) \right) \mathcal{K}_0\left(2\pi Q(\mathbf{n})\tau_2\right) e^{2\pi i Q(\mathbf{n})\tau_1} \\ &+ \frac{\sqrt{\tau_2}}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^2 + \mu \\ \mathbf{n} \neq \mathbf{0}}} \left(1 - \operatorname{sgn}\left(B(\mathbf{n}, \mathbf{c}_1^{\perp})\right) \operatorname{sgn}\left(B(\mathbf{n}, \mathbf{c}_2^{\perp})\right) \right) \mathcal{K}_0\left(-2\pi Q(\mathbf{n})\tau_2\right) e^{2\pi i Q(\mathbf{n})\tau_1} \\ &+ \left(t_2 - t_1\right) \sqrt{\tau_2} \delta_{\mu \in \mathbb{Z}^2}. \end{split}$$

- We note that Θ_{μ} is an eigenvalue of the hyperbolic Laplacian.
- We will use $F_{\mu}(\tau)$ to denote the mock Maass theta function associated to $f_{\mu}(\tau)$.

Modular Completions

Modular Completions

Definition

Define the modular completion of $\Theta_{\mu}(\tau)$ by

$$\widehat{\Theta}_{\mu}(\tau) := \sqrt{\tau_2} \sum_{\mathbf{n} \in \mathbb{Z}^2 + \mu} q^{Q(\mathbf{n})} \int_{t_1}^{t_2} e^{-\pi B(\mathbf{n}, \mathbf{c}(t))^2 \tau_2} dt.$$

Modular Completions

Definition

Define the modular completion of $\Theta_{\mu}(\tau)$ by

$$\widehat{\Theta}_{\mu}(\tau) := \sqrt{\tau_2} \sum_{\mathbf{n} \in \mathbb{Z}^2 + \mu} q^{Q(\mathbf{n})} \int_{t_1}^{t_2} e^{-\pi B(\mathbf{n}, \mathbf{c}(t))^2 \tau_2} dt.$$

Theorem (Zwegers, 2012)

For
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
, we have
 $\widehat{\Theta}_{\mu}(M\tau) = \sum_{\nu \in A^{-1}\mathbb{Z}^2/\mathbb{Z}^2} \psi_M(\mu, \nu) \widehat{\Theta}_{\nu}(\tau).$

for a certain multiplier system ψ .

Modular Completions

Definition

Define the modular completion of $\Theta_{\mu}(\tau)$ by

$$\widehat{\Theta}_{\mu}(\tau) := \sqrt{\tau_2} \sum_{\mathbf{n} \in \mathbb{Z}^2 + \mu} q^{Q(\mathbf{n})} \int_{t_1}^{t_2} e^{-\pi B(\mathbf{n}, \mathbf{c}(t))^2 \tau_2} dt.$$

Theorem (Zwegers, 2012)

For
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
, we have
 $\widehat{\Theta}_{\mu}(M\tau) = \sum_{\nu \in A^{-1}\mathbb{Z}^2/\mathbb{Z}^2} \psi_M(\mu,\nu) \,\widehat{\Theta}_{\nu}(\tau).$

for a certain multiplier system ψ . Furthermore, the difference $\widehat{\Theta}_{\mu} - \Theta_{\mu}$ is explicit, and in many cases vanishes, in which case the mock Maass form is a Maass form. William Craig (Universität zu Köln) PSP Partitions February 29, 2024 25 / 40

William Craig (Universität zu Köln)

• Using Andrews-Dyson-Hickerson, it is known that

$$F_{
m od}^{
m eu}(q) = rac{1}{\left(q^2;\,q^2
ight)_{\infty}} + rac{\left(-q;\,-q
ight)_{\infty}}{2\left(q^2;\,q^2
ight)_{\infty}} - rac{\sigma(-q)}{2\left(q^2;\,q^2
ight)_{\infty}}.$$

• Using Andrews–Dyson–Hickerson, it is known that

$$F_{
m od}^{
m eu}(q) = rac{1}{(q^2;q^2)_\infty} + rac{(-q;-q)_\infty}{2(q^2;q^2)_\infty} - rac{\sigma(-q)}{2(q^2;q^2)_\infty}.$$

• Letting p(n) and sc(n) count partitions and self-conjugate partitions,

• Using Andrews–Dyson–Hickerson, it is known that

$$F_{
m od}^{
m eu}(q) = rac{1}{\left(q^2; \, q^2
ight)_\infty} + rac{\left(-q; -q
ight)_\infty}{2\left(q^2; \, q^2
ight)_\infty} - rac{\sigma(-q)}{2\left(q^2; \, q^2
ight)_\infty}.$$

• Letting p(n) and sc(n) count partitions and self-conjugate partitions, define

$$\begin{split} \alpha_0(n) &= 2p_{\mathrm{od}}^{\mathrm{eu}}(2n) - 2p(n) - \mathrm{sc}(2n),\\ \alpha_1(n) &= 2p_{\mathrm{od}}^{\mathrm{eu}}(2n+1) - \mathrm{sc}(2n+1). \end{split}$$

Then

$$\sum_{n\geq 0} \alpha_0(n) q^{2n} + \sum_{n\geq 0} \alpha_1(n) q^{2n+1} = -\frac{\sigma(-q)}{(q^2; q^2)_{\infty}}$$

William Craig (Universität zu Köln)

• For
$$u_0(au) = -q^{rac{1}{48}} rac{\sigma(q) + \sigma(-q)}{2}$$
 and $u_1(au) = q^{rac{1}{48}} rac{\sigma(q) - \sigma(-q)}{2}$,

• For
$$u_0(\tau) = -q^{\frac{1}{48}} \frac{\sigma(q) + \sigma(-q)}{2}$$
 and $u_1(\tau) = q^{\frac{1}{48}} \frac{\sigma(q) - \sigma(-q)}{2}$, we have
 $\frac{u_0(\tau)}{\eta(\tau)} = \sum_{n \ge 0} \alpha_0(n) q^{n - \frac{1}{48}}, \quad \frac{u_1(\tau)}{\eta(\tau)} = \sum_{n \ge 0} \alpha_1(n) q^{n + \frac{23}{48}}.$

• For
$$u_0(\tau) = -q^{\frac{1}{48}} \frac{\sigma(q) + \sigma(-q)}{2}$$
 and $u_1(\tau) = q^{\frac{1}{48}} \frac{\sigma(q) - \sigma(-q)}{2}$, we have
 $\frac{u_0(\tau)}{\eta(\tau)} = \sum_{n \ge 0} \alpha_0(n) q^{n - \frac{1}{48}}, \quad \frac{u_1(\tau)}{\eta(\tau)} = \sum_{n \ge 0} \alpha_1(n) q^{n + \frac{23}{48}}.$

 Using the Andrews–Dyson–Hickerson, we relate u₀, u₁ to false indefinite θ-functions by

$$u_{0} = -f_{\left(\frac{1}{24},0\right)} + f_{\left(\frac{7}{24},0\right)} + f_{\left(\frac{13}{24},\frac{1}{2}\right)} - f_{\left(\frac{19}{24},\frac{1}{2}\right)}$$
$$u_{1} = -f_{\left(\frac{1}{24},\frac{1}{2}\right)} + f_{\left(\frac{7}{24},\frac{1}{2}\right)} + f_{\left(\frac{13}{24},0\right)} - f_{\left(\frac{19}{24},0\right)}.$$

• For
$$u_0(\tau) = -q^{\frac{1}{48}} \frac{\sigma(q) + \sigma(-q)}{2}$$
 and $u_1(\tau) = q^{\frac{1}{48}} \frac{\sigma(q) - \sigma(-q)}{2}$, we have
 $\frac{u_0(\tau)}{\eta(\tau)} = \sum_{n \ge 0} \alpha_0(n) q^{n - \frac{1}{48}}, \quad \frac{u_1(\tau)}{\eta(\tau)} = \sum_{n \ge 0} \alpha_1(n) q^{n + \frac{23}{48}}.$

 Using the Andrews–Dyson–Hickerson, we relate u₀, u₁ to false indefinite θ-functions by

$$u_{0} = -f_{\left(\frac{1}{24},0\right)} + f_{\left(\frac{7}{24},0\right)} + f_{\left(\frac{13}{24},\frac{1}{2}\right)} - f_{\left(\frac{19}{24},\frac{1}{2}\right)}$$
$$u_{1} = -f_{\left(\frac{1}{24},\frac{1}{2}\right)} + f_{\left(\frac{7}{24},\frac{1}{2}\right)} + f_{\left(\frac{13}{24},0\right)} - f_{\left(\frac{19}{24},0\right)}.$$

• Using $f_{\mu} = f_{-\mu}$, we can naturally write for $0 \le j \le 2$:

$$u_j = rac{1}{2} \left(\sum_{\mu \in \mathcal{S}_j^+} f_\mu - \sum_{\mu \in \mathcal{S}_j^-} f_\mu
ight)$$

.

William Craig (Universität zu Köln)

Lemma (Bringmann–C–Nazaroglu)

We define for $0 \le j \le 2$

$$egin{aligned} u_j &= rac{1}{2} \left(\sum_{\mu \in \mathcal{S}_j^+} f_\mu - \sum_{\mu \in \mathcal{S}_j^-} f_\mu
ight), \ U_j &= rac{1}{2} \left(\sum_{\mu \in \mathcal{S}_j^+} F_\mu - \sum_{\mu \in \mathcal{S}_j^-} F_\mu
ight), \ \widehat{U}_j &= rac{1}{2} \left(\sum_{\mu \in \mathcal{S}_j^+} \widehat{F}_\mu - \sum_{\mu \in \mathcal{S}_j^-} \widehat{F}_\mu
ight). \end{aligned}$$

William Craig (Universität zu Köln)

Lemma (Bringmann–C–Nazaroglu)

We define for $0 \le j \le 2$

$$egin{aligned} \mu_j &= rac{1}{2} \left(\sum_{\mu \in \mathcal{S}_j^+} f_\mu - \sum_{\mu \in \mathcal{S}_j^-} f_\mu
ight), \ \mathcal{U}_j &= rac{1}{2} \left(\sum_{\mu \in \mathcal{S}_j^+} \mathcal{F}_\mu - \sum_{\mu \in \mathcal{S}_j^-} \mathcal{F}_\mu
ight), \ \hat{\mathcal{U}}_j &= rac{1}{2} \left(\sum_{\mu \in \mathcal{S}_j^+} \widehat{\mathcal{F}}_\mu - \sum_{\mu \in \mathcal{S}_j^-} \widehat{\mathcal{F}}_\mu
ight). \end{aligned}$$

For each j, we have $U_j = \widehat{U}_j$.

Modular Transformations

For
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$$
, we have

$$U_j(M\tau) = \sum_{k=0}^2 \Psi_M(j,k) U_k(\tau)$$

for a certain multiplier system $\Psi_M(j, k)$.

For
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$$
, we have

$$U_j(M\tau) = \sum_{k=0}^2 \Psi_M(j,k) U_k(\tau)$$

for a certain multiplier system $\Psi_M(j, k)$.

Remark

Follows from the mock Maass form theory.

Proposition (Bringmann–Nazaroglu, Bringmann–C–Nazaroglu)

for
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
, we have
 $u_j(M\tau) = (c\tau + d) \sum_{k=0}^2 \Psi_M(j,k) \left(u_k(\tau) + \mathcal{E}_{k,-\frac{d}{c}}(\tau) \right)$

F

Proposition (Bringmann–Nazaroglu, Bringmann–C–Nazaroglu)

For
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
, we have
 $u_j(M\tau) = (c\tau + d) \sum_{k=0}^2 \Psi_M(j,k) \left(u_k(\tau) + \frac{\mathcal{E}_{k,-\frac{d}{c}}(\tau) \right)$

where

$$\mathcal{E}_{k,-rac{d}{c}}(au) := rac{2}{\pi} \int_{-rac{d}{c}}^{i\infty} \left[U_k(z), R_{ au}(z)
ight] dz$$

for a certain function $R_{\tau}(z)$ and certain differential form $[\cdot, \cdot]$.

Proposition (Bringmann-Nazaroglu, Bringmann-C-Nazaroglu)

For
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
, we have
 $u_j(M\tau) = (c\tau + d) \sum_{k=0}^2 \Psi_M(j,k) \left(u_k(\tau) + \mathcal{E}_{k,-\frac{d}{c}}(\tau) \right)$

where

$$\mathcal{E}_{k,-\frac{d}{c}}(\tau) := \frac{2}{\pi} \int_{-\frac{d}{c}}^{i\infty} \left[U_k(z), R_\tau(z) \right] dz$$

for a certain function $R_{\tau}(z)$ and certain differential form $[\cdot, \cdot]$.

Remark

It is crucial to understand the size of
$$u_k(\tau) + \mathcal{E}_{k-\frac{d}{\tau}}(\tau)$$
.

William Craig (Universität zu Köln)

• We use the Fourier expansions

$$egin{aligned} u_j(au) &= \sum_{\substack{n \in \mathbb{Z} + lpha_j \ n > 0}} d_j(n) q^n, \ U_j(au) &= \sqrt{ au_2} \sum_{\substack{n \in \mathbb{Z} + lpha_j \ n \in \mathbb{Z} + lpha_j}} d_j(n) \mathcal{K}_0\left(2\pi |n| au_2
ight) e^{2\pi i n au_1}. \end{aligned}$$

• We use the Fourier expansions

$$egin{aligned} u_j(au) &= \sum_{\substack{n \in \mathbb{Z} + lpha_j \ n > 0}} d_j(n) q^n, \ U_j(au) &= \sqrt{ au_2} \sum_{n \in \mathbb{Z} + lpha_j} d_j(n) \mathcal{K}_0\left(2\pi |n| au_2
ight) e^{2\pi i n au_1}. \end{aligned}$$

• Expanding q-series and using the differential $[\cdot, \cdot]$,

$$\begin{aligned} \mathcal{E}_{k,-\frac{d}{c}}(\tau) &= -\frac{1}{\pi} \int_0^\infty \sum_{n \in \mathbb{Z} + \alpha_k} d_k(n) e^{-\frac{2\pi i dn}{c}} \frac{t \mathcal{K}_0\left(2\pi |n|t\right)}{\sqrt{t^2 + \left(\tau + \frac{d}{c}\right)^2}} \\ &\cdot \left(2\pi n + \frac{i\left(\tau + \frac{d}{c}\right)}{t^2 + \left(\tau + \frac{d}{c}\right)^2}\right) dt. \end{aligned}$$

• We use the Fourier expansions

$$egin{aligned} u_j(au) &= \sum_{\substack{n \in \mathbb{Z} + lpha_j \ n > 0}} d_j(n) q^n, \ U_j(au) &= \sqrt{ au_2} \sum_{n \in \mathbb{Z} + lpha_j} d_j(n) \mathcal{K}_0\left(2\pi |n| au_2
ight) e^{2\pi i n au_1}. \end{aligned}$$

• Expanding q-series and using the differential $[\cdot, \cdot]$,

$$\begin{aligned} \mathcal{E}_{k,-\frac{d}{c}}(\tau) &= -\frac{1}{\pi} \int_0^\infty \sum_{n \in \mathbb{Z} + \alpha_k} d_k(n) e^{-\frac{2\pi i dn}{c}} \frac{t \mathcal{K}_0\left(2\pi |n|t\right)}{\sqrt{t^2 + \left(\tau + \frac{d}{c}\right)^2}} \\ &\cdot \left(2\pi n + \frac{i\left(\tau + \frac{d}{c}\right)}{t^2 + \left(\tau + \frac{d}{c}\right)^2}\right) dt. \end{aligned}$$

• Problem: Absolute convergence not clear for sum-integral swap

Lemma (Bringmann–C–Nazaroglu)

We have

$$\begin{aligned} \mathcal{E}_{k,-\frac{d}{c}}(\tau) &= -\frac{1}{2\pi^2 \left(\tau + \frac{d}{c}\right)} \lim_{\delta \to 0^+} \sum_{n \in \mathbb{Z} + \alpha_k} \frac{d_k(n) e^{-\frac{2\pi i dn}{c}}}{n} \mathcal{K}\left(2\pi |n|\delta\right) \\ &- \frac{1}{\pi} \sum_{n \in \mathbb{Z} + \alpha_k} d_k(n) e^{-\frac{2\pi i dn}{c}} \mathcal{K}_{\tau,-\frac{d}{c}}(n), \end{aligned}$$

Lemma (Bringmann–C–Nazaroglu)

We have

$$\begin{aligned} \mathcal{E}_{k,-\frac{d}{c}}(\tau) &= -\frac{1}{2\pi^2 \left(\tau + \frac{d}{c}\right)} \lim_{\delta \to 0^+} \sum_{n \in \mathbb{Z} + \alpha_k} \frac{d_k(n)e^{-\frac{2\pi idn}{c}}}{n} \mathcal{K}\left(2\pi |n|\delta\right) \\ &- \frac{1}{\pi} \sum_{n \in \mathbb{Z} + \alpha_k} d_k(n)e^{-\frac{2\pi idn}{c}} \mathcal{K}_{\tau,-\frac{d}{c}}(n), \end{aligned}$$

where $\mathcal{K}(x) := x \mathcal{K}_1(x)$

Lemma (Bringmann–C–Nazaroglu)

We have

$$\begin{aligned} \mathcal{E}_{k,-\frac{d}{c}}(\tau) &= -\frac{1}{2\pi^2 \left(\tau + \frac{d}{c}\right)} \lim_{\delta \to 0^+} \sum_{n \in \mathbb{Z} + \alpha_k} \frac{d_k(n) e^{-\frac{2\pi i dn}{c}}}{n} \mathcal{K}\left(2\pi |n|\delta\right) \\ &- \frac{1}{\pi} \sum_{n \in \mathbb{Z} + \alpha_k} d_k(n) e^{-\frac{2\pi i dn}{c}} \mathcal{K}_{\tau,-\frac{d}{c}}(n), \end{aligned}$$

where $\mathcal{K}(x) := x\mathcal{K}_1(x)$ and

$$\mathcal{K}_{\tau,\frac{d}{c}}(n) = \operatorname{sgn}(n)f\left(2\pi|n|\left(\tau+\frac{d}{c}\right)\right) + ig\left(2\pi|n|\left(\tau+\frac{d}{c}\right)\right) - \frac{1}{2\pi n\left(\tau+\frac{d}{c}\right)}$$

for

$$f(w) := i \operatorname{PV} \int_0^\infty \frac{e^{iwt}}{t^2 - 1} dt + \frac{\pi}{2} e^{iw}, \quad g(w) := \operatorname{PV} \int_0^\infty \frac{t e^{iwt}}{t^2 - 1} dt - \frac{\pi i}{2} e^{iw}.$$
William Craig (Universität zu Köln)

Define the function

$$\mathcal{I}_{k,-\frac{d}{c}}(\tau) := \frac{1}{\pi i} \sum_{n \in \mathbb{Z} + \alpha_k}^{*} d_k(n) e^{-\frac{2\pi i dn}{c}} \operatorname{PV} \int_0^\infty \frac{e^{2\pi i \left(\tau + \frac{d}{c}\right)t}}{t-n} dt.$$

Define the function

$$\mathcal{I}_{k,-\frac{d}{c}}(\tau) := \frac{1}{\pi i} \sum_{n \in \mathbb{Z} + \alpha_k}^{*} d_k(n) e^{-\frac{2\pi i dn}{c}} \operatorname{PV} \int_0^\infty \frac{e^{2\pi i \left(\tau + \frac{d}{c}\right)t}}{t-n} dt.$$

Then we have

$$u_k(\tau) + \mathcal{E}_{k,-\frac{d}{c}}(\tau) = \mathcal{I}_{k,-\frac{d}{c}}(\tau).$$

Define the function

$$\mathcal{I}_{k,-\frac{d}{c}}(\tau) := \frac{1}{\pi i} \sum_{n \in \mathbb{Z} + \alpha_k}^{*} d_k(n) e^{-\frac{2\pi i dn}{c}} \operatorname{PV} \int_0^\infty \frac{e^{2\pi i \left(\tau + \frac{d}{c}\right)t}}{t-n} dt.$$

Then we have

$$u_k(\tau) + \mathcal{E}_{k,-\frac{d}{c}}(\tau) = \mathcal{I}_{k,-\frac{d}{c}}(\tau).$$

Question

What is the "principal part" of
$$\mathcal{I}_{k,-\frac{d}{c}}(\tau)$$
?

Finding the Principal Part

Finding the Principal Part

• We fix the notation

$$\frac{u_j(\tau)}{\eta(\tau)} = \sum_{n=0}^{\infty} \alpha_j(n) q^{n+\Delta_j}, \ \Delta_0 := -\frac{1}{48}, \ \Delta_1 := \frac{23}{48}, \ \Delta_2 := \frac{11}{12}.$$

Finding the Principal Part

• We fix the notation

$$\frac{u_j(\tau)}{\eta(\tau)} = \sum_{n=0}^{\infty} \alpha_j(n) q^{n+\Delta_j}, \ \Delta_0 := -\frac{1}{48}, \ \Delta_1 := \frac{23}{48}, \ \Delta_2 := \frac{11}{12}.$$

• By Cauchy's theorem, we have

$$lpha_j(n) = \int_i^{i+1} \frac{u_j(\tau)}{\eta(\tau)} e^{-2\pi i \left(n+\Delta_j\right) \tau} d\tau,$$

Finding the Principal Part

We fix the notation

$$\frac{u_j(\tau)}{\eta(\tau)} = \sum_{n=0}^{\infty} \alpha_j(n) q^{n+\Delta_j}, \ \Delta_0 := -\frac{1}{48}, \ \Delta_1 := \frac{23}{48}, \ \Delta_2 := \frac{11}{12}.$$

• By Cauchy's theorem, we have

$$\alpha_j(n) = \int_i^{i+1} \frac{u_j(\tau)}{\eta(\tau)} e^{-2\pi i (n+\Delta_j)\tau} d\tau,$$

• Goal: Estimate this integral using Rademacher's techniques.

Circle Method: Rademacher's Path

Circle Method: Rademacher's Path

• Using Rademacher's path of integration (i.e. using Farey arcs of order N and Ford circles) we have

$$\alpha_j(n) = i \sum_{k=1}^N k^{-2} \sum_{\substack{0 \le h < k \\ \gcd(h,k) = 1}} \int_{Z_1}^{Z_2} \frac{u_j\left(\frac{h}{k} + \frac{iZ}{k^2}\right)}{\eta\left(\frac{h}{k} + \frac{iZ}{k^2}\right)} e^{-2\pi i (n+\Delta_j)\left(\frac{h}{k} + \frac{iZ}{k^2}\right)} dZ,$$

where $\tau = \frac{h}{k} + \frac{iZ}{k^2}$ and Z_1, Z_2 are certain points on the circle of radius $\frac{1}{2}$ and center $\frac{1}{2}$.

Circle Method: Rademacher's Path

• Using Rademacher's path of integration (i.e. using Farey arcs of order N and Ford circles) we have

$$\alpha_j(n) = i \sum_{k=1}^N k^{-2} \sum_{\substack{0 \le h < k \\ \gcd(h,k) = 1}} \int_{Z_1}^{Z_2} \frac{u_j\left(\frac{h}{k} + \frac{iZ}{k^2}\right)}{\eta\left(\frac{h}{k} + \frac{iZ}{k^2}\right)} e^{-2\pi i (n+\Delta_j)\left(\frac{h}{k} + \frac{iZ}{k^2}\right)} dZ,$$

where $\tau = \frac{h}{k} + \frac{iZ}{k^2}$ and Z_1, Z_2 are certain points on the circle of radius $\frac{1}{2}$ and center $\frac{1}{2}$.

• Using previously derived modular transformations and $\tau=\frac{h'}{k}+\frac{i}{Z}$ we will apply the calculation

$$u_j\left(\frac{h}{k}+\frac{iZ}{k^2}\right)=\frac{ik}{Z}\sum_{\ell=0}^2\Psi_{M_{h,k}}(j,\ell)\mathcal{I}_{\ell,\frac{h'}{k}}\left(\frac{h'}{k}+\frac{i}{Z}\right).$$

William Craig (Universität zu Köln)

Circle Method: Principal Parts

• Using the modular transformation for the eta function,

$$\begin{aligned} \alpha_{j}(n) &= \sum_{\ell=0}^{2} \sum_{k=1}^{N} k^{-\frac{3}{2}} \sum_{\substack{0 \leq h < k \\ \gcd(h,k) = 1}} \frac{e^{\frac{3\pi i}{4}} \Psi_{M_{h,k}}(j,\ell)}{\nu_{\eta}(M_{h,k})} \\ &\cdot \int_{Z_{1}}^{Z_{2}} Z^{-\frac{1}{2}} \frac{\mathcal{I}_{\ell,\frac{h'}{k}}\left(\frac{h'}{k} + \frac{j}{Z}\right)}{\eta\left(\frac{h'}{k} + \frac{j}{Z}\right)} e^{-2\pi i (n+\Delta_{j})\left(\frac{h}{k} + \frac{jZ}{k}\right)} dZ. \end{aligned}$$

Circle Method: Principal Parts

• Using the modular transformation for the eta function,

$$\begin{aligned} \alpha_{j}(n) &= \sum_{\ell=0}^{2} \sum_{k=1}^{N} k^{-\frac{3}{2}} \sum_{\substack{0 \leq h < k \\ \gcd(h,k) = 1}} \frac{e^{\frac{3\pi i}{4}} \Psi_{M_{h,k}}(j,\ell)}{\nu_{\eta}(M_{h,k})} \\ &\cdot \int_{Z_{1}}^{Z_{2}} Z^{-\frac{1}{2}} \frac{\mathcal{I}_{\ell,\frac{h'}{k}}\left(\frac{h'}{k} + \frac{j}{Z}\right)}{\eta\left(\frac{h'}{k} + \frac{j}{Z}\right)} e^{-2\pi i (n+\Delta_{j})\left(\frac{h}{k} + \frac{jZ}{k}\right)} dZ. \end{aligned}$$

• We now split off the principal parts using Now we split off the principal part contributions by writing

$$\begin{split} \frac{\mathcal{I}_{\ell,\frac{h'}{k}}\left(\frac{h'}{k}+\frac{i}{Z}\right)}{\eta\left(\frac{h'}{k}+\frac{i}{Z}\right)} &= e^{-\frac{\pi i h'}{12k}} \mathcal{I}_{\ell,\frac{h'}{k},\frac{1}{24}}^* \left(\frac{h'}{k}+\frac{i}{Z}\right) + e^{-\frac{\pi i h'}{12k}} \mathcal{I}_{\ell,\frac{h'}{k},\frac{1}{24}}^e \left(\frac{h'}{k}+\frac{i}{Z}\right) \\ &+ \mathcal{I}_{\ell,\frac{h'}{k}}\left(\frac{h'}{k}+\frac{i}{Z}\right) \left(\frac{1}{\eta\left(\frac{h'}{k}+\frac{i}{Z}\right)} - e^{-\frac{\pi i (h'+1)}{12k}\left(\frac{h'+1}{k}+\frac{i}{Z}\right)}\right). \end{split}$$

• After estimating the error terms and setting $N = \lfloor \sqrt{n} \rfloor$, we obtain

$$\begin{aligned} \alpha_{j}(n) &= \sum_{\ell=0}^{2} \sum_{k=1}^{\lfloor \sqrt{n} \rfloor} k^{-\frac{3}{2}} \sum_{\substack{0 \le h < k \\ \gcd(h,k) = 1}} \frac{e^{\frac{3\pi i}{4}} \Psi_{M_{h,k}}(j,\ell)}{\nu_{\eta}(M_{h,k})} e^{-\frac{\pi i h'}{12k}} \\ &\times \int_{Z_{1}}^{Z_{2}} Z^{-\frac{1}{2}} \mathcal{I}_{\ell,\frac{h'}{k},\frac{1}{24}}^{*} \left(\frac{h'}{k} + \frac{i}{Z}\right) e^{-2\pi i (n+\Delta_{j}) \left(\frac{h}{k} + \frac{iZ}{k^{2}}\right)} dZ + O\left(n^{\frac{3}{4}}\right). \end{aligned}$$

Final Theorem

Theorem (Bringmann–C–Nazaroglu)

We have

$$\begin{split} \alpha_{j}(n) &= 2(n+\Delta_{j})^{-\frac{1}{4}} \sum_{\ell=0}^{2} \sum_{k=1}^{\lfloor\sqrt{n}\rfloor} \frac{1}{k} \sum_{\substack{0 \le h < k \\ \gcd(h,k) = 1}} \psi_{h,k}(j,\ell) \\ &\times \operatorname{PV} \int_{0}^{\frac{1}{24}} \Phi_{\ell,\frac{h'}{k}}(t) \left(\frac{1}{24} - t\right)^{\frac{1}{4}} I_{\frac{1}{2}} \left(\frac{4\pi}{k} \sqrt{(n+\Delta_{j})\left(\frac{1}{24} - t\right)}\right) dt + O\left(n^{\frac{3}{4}}\right). \end{split}$$

where

$$\Phi_{\ell,rac{h'}{k}}(t):=\sum_{n\in\mathbb{Z}+lpha_\ell}^*rac{d_\ell(n)e^{rac{2\pi ih'n}{k}}}{t-n}$$

Open Questions

$$\begin{aligned} p_{\mathrm{ed}}^{\mathrm{od}}(n) &< p_{\mathrm{od}}^{\mathrm{ed}}(n) < p_{\mathrm{od}}^{\mathrm{eu}}(n) < p_{\mathrm{ed}}^{\mathrm{ou}}(n) \\ &< p_{\mathrm{eu}}^{\mathrm{od}}(n) < p_{\mathrm{eu}}^{\mathrm{ou}}(n) < p_{\mathrm{ou}}^{\mathrm{ed}}(n) < p_{\mathrm{ou}}^{\mathrm{eu}}(n). \end{aligned}$$

$$\begin{aligned} p_{\mathrm{ed}}^{\mathrm{od}}(n) &< p_{\mathrm{od}}^{\mathrm{ed}}(n) < p_{\mathrm{od}}^{\mathrm{eu}}(n) < p_{\mathrm{ed}}^{\mathrm{ou}}(n) \\ &< p_{\mathrm{eu}}^{\mathrm{od}}(n) < p_{\mathrm{eu}}^{\mathrm{ou}}(n) < p_{\mathrm{ou}}^{\mathrm{ed}}(n) < p_{\mathrm{ou}}^{\mathrm{eu}}(n). \end{aligned}$$

• Modifications with congruence properties similar to $\overline{\mathcal{EO}}(n)$?

39 / 4<u>0</u>

$$\begin{aligned} p_{\mathrm{ed}}^{\mathrm{od}}(n) &< p_{\mathrm{od}}^{\mathrm{ed}}(n) < p_{\mathrm{od}}^{\mathrm{eu}}(n) < p_{\mathrm{ed}}^{\mathrm{ou}}(n) \\ &< p_{\mathrm{eu}}^{\mathrm{od}}(n) < p_{\mathrm{eu}}^{\mathrm{ou}}(n) < p_{\mathrm{ou}}^{\mathrm{ed}}(n) < p_{\mathrm{ou}}^{\mathrm{eu}}(n). \end{aligned}$$

- Modifications with congruence properties similar to $\overline{\mathcal{EO}}(n)$?
- Connections between hypergeometric representations and Jacobi properties?

Questions?

