Analytic aspects of partitions with parts separated by parity

William Craig

Universität zu Köln

February 29, 2024

Established by the European Commission
This research is funded by the ERC grant 101001179.

Partitions

Partitions

Definition

A partition of an integer n is any nonincreasing sequence

$$
\lambda:=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right\}
$$

of positive integers which sum to n.

Partitions

Definition

A partition of an integer n is any nonincreasing sequence

$$
\lambda:=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right\}
$$

of positive integers which sum to n.

Notation

The partition function is given by

$$
p(n):=\# \text { partitions of } n .
$$

$4=3+1=2+2=2+1+1=1+1+1+1 \quad \Longrightarrow \quad p(4)=5$.

Partitions in Number Theory

Partitions in Number Theory

Theorem (Hardy-Ramanujan, 1918)

We have that

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \cdot e^{\pi \sqrt{\frac{2 n}{3}}} .
$$

Partitions in Number Theory

Theorem (Hardy-Ramanujan, 1918)

We have that

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \cdot e^{\pi \sqrt{\frac{2 n}{3}}} .
$$

Theorem (Ramanujan, 1919)

For every n, we have that

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \\
p(11 n+6) & \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

Parity in Partitions

Parity in Partitions

Theorem (Euler, Legendre)

Let $D_{\mathrm{e} / \mathrm{o}}(n)$ be the number of partitions of n into an even (resp. odd) number of unequal parts.

Parity in Partitions

Theorem (Euler, Legendre)

Let $D_{\mathrm{e} / \mathrm{o}}(n)$ be the number of partitions of n into an even (resp. odd) number of unequal parts. Then we have

$$
(q ; q)_{\infty}=\sum_{n \geq 0}\left(D_{\mathrm{e}}(n)-D_{\mathrm{o}}(n)\right) q^{n}=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{n(3 n-1)}{2}}
$$

We use the standard notation $(a ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)$ for $n \in \mathbb{Z} \cup\{\infty\}$.

Parity in Partitions

Theorem (Euler, Legendre)

Let $D_{\mathrm{e} / \mathrm{o}}(n)$ be the number of partitions of n into an even (resp. odd) number of unequal parts. Then we have

$$
(q ; q)_{\infty}=\sum_{n \geq 0}\left(D_{\mathrm{e}}(n)-D_{\mathrm{o}}(n)\right) q^{n}=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{n(3 n-1)}{2}}
$$

We use the standard notation $(a ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)$ for $n \in \mathbb{Z} \cup\{\infty\}$.

Theorem (Kim-Kim-Lovejoy, 2021)

Let $p_{e / o}(n)$ be the number of partitions of n with more even parts than odd parts (resp. more odd parts than even parts). Then we have

$$
\frac{p_{\circ}(n)}{p_{e}(n)} \rightarrow 1+\sqrt{2} .
$$

Parts Separated by Parity

Parts Separated by Parity

Definition

Let λ be a partition. Then λ has parts separated by parity provided one of the following is true:

Parts Separated by Parity

Definition

Let λ be a partition. Then λ has parts separated by parity provided one of the following is true:

- Each odd part of λ is larger than every even part of λ;

Parts Separated by Parity

Definition

Let λ be a partition. Then λ has parts separated by parity provided one of the following is true:

- Each odd part of λ is larger than every even part of λ;
- Each even part of λ is larger than every odd part of λ.

Parts Separated by Parity

Definition

Let λ be a partition. Then λ has parts separated by parity provided one of the following is true:

- Each odd part of λ is larger than every even part of λ;
- Each even part of λ is larger than every odd part of λ.

Definition

A family \mathcal{S} has parts separated by parity (PSP) if membership in \mathcal{S} is partly or wholly determined by the condition above.

Examples of PSP Partitions

Examples of PSP Partitions

Example (Andrews, 2018)

Let $\mathcal{E O}(n)$ be the number of partitions of n where each even part is less than each odd part.

Examples of PSP Partitions

Example (Andrews, 2018)

Let $\mathcal{E O}(n)$ be the number of partitions of n where each even part is less than each odd part. We have

$$
\begin{aligned}
\sum_{n \geq 0} \mathcal{E} \mathcal{O}(n) q^{n} & =\sum_{n \geq 0} \frac{q^{2 n}}{\left(q^{2} ; q^{2}\right)_{n}\left(q^{2 n+1} ; q^{2}\right)_{\infty}} \\
& =\frac{1}{\left(q ; q^{2}\right)_{\infty}} \sum_{n \geq 0} \frac{\left(q ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n} \\
& =\frac{\left(q^{3} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}} \\
& =\frac{1}{(1-q)\left(q^{2} ; q^{2}\right)_{\infty}}
\end{aligned}
$$

Examples of PSP Partitions

Example (Andrews, 2018)

Let $\mathcal{E O}(n)$ be the number of partitions of n where each even part is less than each odd part. We have

$$
\begin{aligned}
\sum_{n \geq 0} \mathcal{E} \mathcal{O}(n) q^{n} & =\sum_{n \geq 0} \frac{q^{2 n}}{\left(q^{2} ; q^{2}\right)_{n}\left(q^{2 n+1} ; q^{2}\right)_{\infty}} \\
& =\frac{1}{\left(q ; q^{2}\right)_{\infty}} \sum_{n \geq 0} \frac{\left(q ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n} \\
& =\frac{\left(q^{3} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}} \\
& =\frac{1}{(1-q)\left(q^{2} ; q^{2}\right)_{\infty}}
\end{aligned}
$$

Examples of PSP Partitions

Examples of PSP Partitions

Definition (Andrews, 2018)

Let $\overline{\mathcal{E} \mathcal{O}}(n)$ be the number of partitions of n with odd parts above even parts and with only the largest even part can have odd multiplicity.

Examples of PSP Partitions

Definition (Andrews, 2018)

Let $\overline{\mathcal{E O}}(n)$ be the number of partitions of n with odd parts above even parts and with only the largest even part can have odd multiplicity.

Theorem (Andrews, 2018)
Consider the third order mock theta function $\nu(q):=\sum_{n \geq 0} \frac{q^{n^{2}+n}}{\left(-q ; q^{2}\right)_{n+1}}$.

Examples of PSP Partitions

Definition (Andrews, 2018)

Let $\overline{\mathcal{E O}}(n)$ be the number of partitions of n with odd parts above even parts and with only the largest even part can have odd multiplicity.

Theorem (Andrews, 2018)

Consider the third order mock theta function $\nu(q):=\sum_{n \geq 0} \frac{q^{n^{2}+n}}{\left(-q ; q^{2}\right)_{n+1}}$. Then

$$
\sum_{n \geq 0} \overline{\mathcal{E O}}(n) q^{n}=\frac{1}{2}(\nu(q)+\nu(-q))
$$

Examples of PSP Partitions

Definition (Andrews, 2018)

Let $\overline{\mathcal{E O}}(n)$ be the number of partitions of n with odd parts above even parts and with only the largest even part can have odd multiplicity.

Theorem (Andrews, 2018)

Consider the third order mock theta function $\nu(q):=\sum_{n \geq 0} \frac{q^{n^{2}+n}}{\left(-q ; q^{2}\right)_{n+1}}$. Then

$$
\sum_{n \geq 0} \overline{\mathcal{E O}}(n) q^{n}=\frac{1}{2}(\nu(q)+\nu(-q))
$$

Furthermore, we have

$$
\overline{\mathcal{E O}}(10 n+8) \equiv 0 \quad(\bmod 5)
$$

and this congruence is explained by an "even-odd crank".

Literature on PSP Partitions

Literature on PSP Partitions

Andrews' results and questions for $\overline{\mathcal{E O}}(n)$ have drawn much attention:

Literature on PSP Partitions

Andrews' results and questions for $\overline{\mathcal{E O}}(n)$ have drawn much attention:

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson-Eichhorn)

Literature on PSP Partitions

Andrews' results and questions for $\overline{\mathcal{E O}}(n)$ have drawn much attention:

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson-Eichhorn)
- Infinite families of congruences (Ray-Barman)

Literature on PSP Partitions

Andrews' results and questions for $\overline{\mathcal{E O}}(n)$ have drawn much attention:

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson-Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{E O}}(n)$ (Ray-Barman, Burson-Eichhorn)

Literature on PSP Partitions

Andrews' results and questions for $\overline{\mathcal{E O}}(n)$ have drawn much attention:

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson-Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{E O}}(n)$ (Ray-Barman, Burson-Eichhorn)
- Series identities involving mock theta functions (Andrews)

Literature on PSP Partitions

Andrews' results and questions for $\overline{\mathcal{E O}}(n)$ have drawn much attention:

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson-Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{E O}}(n)$ (Ray-Barman, Burson-Eichhorn)
- Series identities involving mock theta functions (Andrews)
- Connections between Stanley rank $\mathcal{O}(\lambda)-\mathcal{O}\left(\lambda^{\prime}\right)$ and the even-odd crank for $\overline{\mathcal{E O}}(n)$ (Fu-Tang)

Literature on PSP Partitions

Andrews' results and questions for $\overline{\mathcal{E O}}(n)$ have drawn much attention:

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson-Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{E O}}(n)$ (Ray-Barman, Burson-Eichhorn)
- Series identities involving mock theta functions (Andrews)
- Connections between Stanley rank $\mathcal{O}(\lambda)-\mathcal{O}\left(\lambda^{\prime}\right)$ and the even-odd crank for $\overline{\mathcal{E O}}(n)$ (Fu-Tang)
Andrews' suggestions regarding $\mathcal{E O}(n)$ have received less attention.

Literature on PSP Partitions

Andrews' results and questions for $\overline{\mathcal{E O}}(n)$ have drawn much attention:

- New symmetries in PSP-type objects arise combinatorially (Chern, Burson-Eichhorn)
- Infinite families of congruences (Ray-Barman)
- Parity of $\overline{\mathcal{E O}}(n)$ (Ray-Barman, Burson-Eichhorn)
- Series identities involving mock theta functions (Andrews)
- Connections between Stanley rank $\mathcal{O}(\lambda)-\mathcal{O}\left(\lambda^{\prime}\right)$ and the even-odd crank for $\overline{\mathcal{E} \mathcal{O}}(n)$ (Fu-Tang)
Andrews' suggestions regarding $\mathcal{E O}(n)$ have received less attention.
- Andrews, Partitions with Parts Separated by Parity, 2019.
- Bringmann, Jennings-Shaffer, A Note on Andrews' Partitions with Parts Separated by Parity, 2019.

Notation for PSP Partitions

Notation for PSP Partitions

Notation

A function of the form $p_{y z}^{\mathrm{wx}}(n)$ will count the number of partitions of n in a PSP-set $\mathcal{P}_{\mathrm{yz}}^{\mathrm{wx}}$:

Notation for PSP Partitions

Notation

A function of the form $p_{y z}^{\mathrm{wx}}(n)$ will count the number of partitions of n in a PSP-set $\mathcal{P}_{\mathrm{yz}}^{\mathrm{wx}}$:

- $\{\mathrm{w}, \mathrm{y}\}=\{\mathrm{e}, \mathrm{o}\}$ signify even and odd;

Notation for PSP Partitions

Notation

A function of the form $p_{y z}^{\mathrm{wx}}(n)$ will count the number of partitions of n in a PSP-set $\mathcal{P}_{\mathrm{yz}}^{\mathrm{wx}}$:

- $\{\mathrm{w}, \mathrm{y}\}=\{\mathrm{e}, \mathrm{o}\}$ signify even and odd;
- $\mathrm{x}, \mathrm{z} \in\{\mathrm{u}, \mathrm{d}\}$ signify unrestricted or distinct;

Notation for PSP Partitions

Notation

A function of the form $p_{y z}^{\mathrm{wx}}(n)$ will count the number of partitions of n in a PSP-set $\mathcal{P}_{\mathrm{yz}}^{\mathrm{wx}}$:

- $\{\mathrm{w}, \mathrm{y}\}=\{\mathrm{e}, \mathrm{o}\}$ signify even and odd;
- $\mathrm{x}, \mathrm{z} \in\{\mathrm{u}, \mathrm{d}\}$ signify unrestricted or distinct;
- Parts of parity w must lie above parts of parity y;

Notation for PSP Partitions

Notation

A function of the form $p_{y z}^{\mathrm{wx}}(n)$ will count the number of partitions of n in a PSP-set $\mathcal{P}_{\mathrm{yz}}^{\mathrm{wx}}$:

- $\{\mathrm{w}, \mathrm{y}\}=\{\mathrm{e}, \mathrm{o}\}$ signify even and odd;
- $\mathrm{x}, \mathrm{z} \in\{\mathrm{u}, \mathrm{d}\}$ signify unrestricted or distinct;
- Parts of parity w must lie above parts of parity y;
- Parts of parity w (resp. y) are restricted by condition x (resp. z).

Notation for PSP Partitions

Notation

A function of the form $p_{y z}^{\mathrm{wx}}(n)$ will count the number of partitions of n in a PSP-set $\mathcal{P}_{\mathrm{yz}}^{\mathrm{wx}}$:

- $\{\mathrm{w}, \mathrm{y}\}=\{\mathrm{e}, \mathrm{o}\}$ signify even and odd;
- $\mathrm{x}, \mathrm{z} \in\{\mathrm{u}, \mathrm{d}\}$ signify unrestricted or distinct;
- Parts of parity w must lie above parts of parity y;
- Parts of parity w (resp. y) are restricted by condition x (resp. z).

Definition

We consider the following eight functions:

$$
p_{\mathrm{eu}}^{\mathrm{ou}}(n), p_{\mathrm{eu}}^{\mathrm{od}}(n), p_{\mathrm{ou}}^{\mathrm{eu}}(n), p_{\mathrm{ou}}^{\mathrm{ed}}(n), p_{\mathrm{ed}}^{\mathrm{ou}}(n), p_{\mathrm{ed}}^{\mathrm{od}}(n), p_{\mathrm{od}}^{\mathrm{eu}}(n), p_{\mathrm{od}}^{\mathrm{ed}}(n) .
$$

Notation for PSP Partitions

Notation

A function of the form $p_{y z}^{\mathrm{wx}}(n)$ will count the number of partitions of n in a PSP-set $\mathcal{P}_{\mathrm{yz}}^{\mathrm{wx}}$:

- $\{\mathrm{w}, \mathrm{y}\}=\{\mathrm{e}, \mathrm{o}\}$ signify even and odd;
- $\mathrm{x}, \mathrm{z} \in\{\mathrm{u}, \mathrm{d}\}$ signify unrestricted or distinct;
- Parts of parity w must lie above parts of parity y;
- Parts of parity w (resp. y) are restricted by condition x (resp. z).

Definition

We consider the following eight functions:

$$
p_{\mathrm{eu}}^{\mathrm{ou}}(n), p_{\mathrm{eu}}^{\mathrm{od}}(n), p_{\mathrm{ou}}^{\mathrm{eu}}(n), p_{\mathrm{ou}}^{\mathrm{ed}}(n), p_{\mathrm{ed}}^{\mathrm{ou}}(n), p_{\mathrm{ed}}^{\mathrm{od}}(n), p_{\mathrm{od}}^{\mathrm{eu}}(n), p_{\mathrm{od}}^{\mathrm{ed}}(n) .
$$

Observe that $\mathcal{E O}(n)=p_{\text {eu }}^{\text {ou }}(n)$.

Asymptotics for PSP Partitions

Asymptotics for PSP Partitions

Theorem (Bringmann-C-Nazaroglu)
 As $n \rightarrow \infty$, we have the following asymptotics:

Asymptotics for PSP Partitions

Theorem (Bringmann-C-Nazaroglu)

As $n \rightarrow \infty$, we have the following asymptotics:

$$
\begin{array}{ll}
p_{\mathrm{eu}}^{\mathrm{ou}}(n) \sim \frac{e^{\pi \sqrt{\frac{n}{3}}}}{2 \pi \sqrt{n}}, & p_{\mathrm{ou}}^{\mathrm{eu}}(n) \sim \frac{3^{\frac{1}{4}} e^{\pi \sqrt{\frac{n}{3}}}}{2 \pi n^{\frac{1}{4}}}, \\
p_{\mathrm{eu}}^{\mathrm{od}}(n) \sim \frac{e^{\pi \sqrt{\frac{n}{3}}}}{4 \sqrt{2} \cdot 3^{\frac{1}{4}} n^{\frac{3}{4}}}, & p_{\mathrm{od}}^{\mathrm{eu}}(n) \sim \frac{e^{\pi \sqrt{\frac{n}{3}}}}{2 \sqrt{3} n}, \\
p_{\mathrm{ed}}^{\mathrm{ou}}(n) \sim \frac{e^{\pi \sqrt{\frac{\pi}{3}}}}{4 \cdot 3^{\frac{1}{4}} n^{\frac{3}{4}}}, & p_{\mathrm{ou}}^{\mathrm{ed}}(n) \sim \frac{e^{\pi \sqrt{\frac{\pi}{3}}}}{4 \sqrt{2} \sqrt{n}}, \\
p_{\mathrm{ed}}^{\mathrm{od}}(n) \sim \frac{3^{\frac{1}{4}}(\sqrt{2}-1) e^{\pi \sqrt{\frac{n}{6}}}}{2^{\frac{3}{4}} \pi n^{\frac{1}{4}}}, & p_{\mathrm{od}}^{\mathrm{ed}}(n) \sim \frac{3^{\frac{1}{4}}(\sqrt{2}-1) e^{\pi \sqrt{\frac{\pi}{6}}}}{2^{\frac{1}{4}} \pi n^{\frac{1}{4}}} .
\end{array}
$$

Generating Functions

Generating Functions

Fact

We define the generating functions $F_{\mathrm{yz}}^{\mathrm{wx}}(q):=\sum_{n \geq 0} p_{\mathrm{yz}}^{\mathrm{wx}}(n) q^{n}$.

Generating Functions

Fact

We define the generating functions $F_{\mathrm{yz}}^{\mathrm{wx}}(q):=\sum_{n \geq 0} p_{\mathrm{yz}}^{\mathrm{wx}}(n) q^{n}$.

Example

We have the following constructions:

$$
\begin{aligned}
& F_{\mathrm{eu}}^{\mathrm{od}}(q)=\sum_{n \geq 0} \frac{\left(-q^{2 n+1} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n} \\
& F_{\mathrm{od}}^{\mathrm{eu}}(q)=\sum_{n \geq 0} \frac{\left(-q ; q^{2}\right)_{n}}{\left(q^{2 n+2} ; q^{2}\right)_{\infty}} q^{2 n+1}+\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}
\end{aligned}
$$

Generating Functions

Fact

We define the generating functions $F_{\mathrm{yz}}^{\mathrm{wx}}(q):=\sum_{n \geq 0} p_{\mathrm{yz}}^{\mathrm{wx}}(n) q^{n}$.

Example

We have the following constructions:

$$
\begin{aligned}
& F_{\mathrm{eu}}^{\mathrm{od}}(q)=\sum_{n \geq 0} \frac{\left(-q^{2 n+1} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n} \\
& F_{\mathrm{od}}^{\mathrm{eu}}(q)=\sum_{n \geq 0} \frac{\left(-q ; q^{2}\right)_{n}}{\left(q^{2 n+2} ; q^{2}\right)_{\infty}} q^{2 n+1}+\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}
\end{aligned}
$$

All eight generating functions can be constructed using q-hypergeometric series in this very classical manner.

Modular Structure of PSP's

Modular Structure of PSP's

Proposition ("Modular" PSP's)

The following generating functions hold:

Modular Structure of PSP's

Proposition ("Modular" PSP's)

The following generating functions hold:

$$
\begin{aligned}
& F_{\mathrm{eu}}^{\mathrm{od}}(q)=\frac{1}{(1-q)\left(q^{2} ; q^{2}\right)_{\infty}}, \\
& F_{\mathrm{ed}}^{\mathrm{od}}(q)=\frac{\left(-q ; q^{2}\right)_{\infty}}{1-q}-\frac{q\left(-q^{2} ; q^{2}\right)_{\infty}}{1-q}, \\
& F_{\mathrm{ou}}^{\mathrm{eu}}(q)=\frac{1}{1-q}\left(\frac{1}{\left(q ; q^{2}\right)_{\infty}}-\frac{q}{\left(q^{2} ; q^{2}\right)_{\infty}}\right) \\
& F_{\mathrm{od}}^{\mathrm{ed}}(q)=\frac{(1+q)\left(-q^{2} ; q^{2}\right)_{\infty}}{1-q}-\frac{q\left(-q ; q^{2}\right)_{\infty}}{1-q} .
\end{aligned}
$$

Modular Structure of PSP's

Modular Structure of PSP's

Definition (False/Partial ϑ-function)

A partial ϑ-function is (roughly) a summation over $n \geq 0$ which, when summed over $n \in \mathbb{Z}$, is a modular ϑ-function.

Modular Structure of PSP's

Definition (False/Partial ϑ-function)

A partial ϑ-function is (roughly) a summation over $n \geq 0$ which, when summed over $n \in \mathbb{Z}$, is a modular ϑ-function. A false ϑ-function (roughly) differs from a modular ϑ-function by a $\operatorname{sgn}(n)$ factor.

Modular Structure of PSP's

Definition (False/Partial ϑ-function)

A partial ϑ-function is (roughly) a summation over $n \geq 0$ which, when summed over $n \in \mathbb{Z}$, is a modular ϑ-function. A false ϑ-function (roughly) differs from a modular ϑ-function by a $\operatorname{sgn}(n)$ factor.

Proposition (Partial/False PSP's)

The following generating functions hold:

Modular Structure of PSP's

Definition (False/Partial ϑ-function)

A partial ϑ-function is (roughly) a summation over $n \geq 0$ which, when summed over $n \in \mathbb{Z}$, is a modular ϑ-function. A false ϑ-function (roughly) differs from a modular ϑ-function by a $\operatorname{sgn}(n)$ factor.

Proposition (Partial/False PSP's)

The following generating functions hold:

$$
\begin{aligned}
F_{\mathrm{eu}}^{\mathrm{od}}(q) & =\frac{1}{\left(q^{2} ; q^{2}\right)} \sum_{n \geq 0} q^{n^{2}} \\
F_{\mathrm{ed}}^{\mathrm{ou}}(-q) & =\frac{1}{2\left(-q ; q^{2}\right)_{\infty}}\left((-q ; q)_{\infty}+1-\sum_{n \geq 0}\left(1-q^{n}\right) q^{\frac{n(3 n-1)}{2}}\right) .
\end{aligned}
$$

Modular Structure of PSP's

Modular Structure of PSP's

Definition

Define the following series of Ramanujan:

$$
f(q):=\sum_{n \geq 0} \frac{q^{n^{2}}}{(-q ; q)_{n}^{2}}
$$

Modular Structure of PSP's

Definition

Define the following series of Ramanujan:

$$
f(q):=\sum_{n \geq 0} \frac{q^{n^{2}}}{(-q ; q)_{n}^{2}}
$$

Note that $f(q)$ is a mock ϑ-function from Ramanujan's last letter.

Modular Structure of PSP's

Definition

Define the following series of Ramanujan:

$$
f(q):=\sum_{n \geq 0} \frac{q^{n^{2}}}{(-q ; q)_{n}^{2}}
$$

Note that $f(q)$ is a mock ϑ-function from Ramanujan's last letter.

Proposition (Mock PSP's)

The following generating functions hold:

$$
F_{\mathrm{ou}}^{\mathrm{ed}}(-q)=\frac{\left(-q^{2} ; q^{2}\right)_{\infty}}{2}\left(2-f(q)+\frac{1}{(-q ; q)_{\infty}}\right)
$$

Modular Structure of PSP's

Definition

Define the following series of Ramanujan:

$$
f(q):=\sum_{n \geq 0} \frac{q^{n^{2}}}{(-q ; q)_{n}^{2}}
$$

Note that $f(q)$ is a mock ϑ-function from Ramanujan's last letter.

Proposition (Mock PSP's)

The following generating functions hold:

$$
F_{\mathrm{ou}}^{\mathrm{ed}}(-q)=\frac{\left(-q^{2} ; q^{2}\right)_{\infty}}{2}\left(2-f(q)+\frac{1}{(-q ; q)_{\infty}}\right)
$$

Remark

We will return to $F_{\text {od }}^{\mathrm{eu}}(q)$ later...

Ingham's Tauberian Theorem

Ingham's Tauberian Theorem

Theorem (Ingham)

Let $B(q)=\sum_{n \geq 0} b(n) q^{n}$ be a power series whose radius of convergence is at least one and assume that $b(n)$ are non-negative and weakly increasing.

Ingham's Tauberian Theorem

Theorem (Ingham)

Let $B(q)=\sum_{n \geq 0} b(n) q^{n}$ be a power series whose radius of convergence is at least one and assume that $b(n)$ are non-negative and weakly increasing. Also suppose that $\lambda, \beta, \gamma \in \mathbb{R}$ with $\gamma>0$ exist such that

$$
B\left(e^{-t}\right) \sim \lambda t^{\beta} e^{\frac{\gamma}{t}} \quad \text { as } t \rightarrow 0^{+}, \quad B\left(e^{-z}\right) \ll|z|^{\beta} e^{\frac{\gamma}{|z|}} \quad \text { as } z \rightarrow 0
$$

with the latter condition holding in each region of the form $|y| \leq \Delta x$ for $\Delta>0$ and $z=x+i y$ with $x, y \in \mathbb{R}, x>0$.

Ingham's Tauberian Theorem

Theorem (Ingham)

Let $B(q)=\sum_{n \geq 0} b(n) q^{n}$ be a power series whose radius of convergence is at least one and assume that $b(n)$ are non-negative and weakly increasing. Also suppose that $\lambda, \beta, \gamma \in \mathbb{R}$ with $\gamma>0$ exist such that

$$
B\left(e^{-t}\right) \sim \lambda t^{\beta} e^{\frac{\gamma}{t}} \quad \text { as } t \rightarrow 0^{+}, \quad B\left(e^{-z}\right) \ll|z|^{\beta} e^{\frac{\gamma}{|z|}} \quad \text { as } z \rightarrow 0
$$

with the latter condition holding in each region of the form $|y| \leq \Delta x$ for $\Delta>0$ and $z=x+i y$ with $x, y \in \mathbb{R}, x>0$. Then we have

$$
b(n) \sim \frac{\lambda \gamma^{\frac{\beta}{2}+\frac{1}{4}}}{2 \sqrt{\pi} n^{\frac{\beta}{2}+\frac{3}{4}}} e^{2 \sqrt{\gamma n}} \quad \text { as } n \rightarrow \infty
$$

Ingham's Tauberian Theorem

Theorem (Ingham)

Let $B(q)=\sum_{n \geq 0} b(n) q^{n}$ be a power series whose radius of convergence is at least one and assume that $b(n)$ are non-negative and weakly increasing. Also suppose that $\lambda, \beta, \gamma \in \mathbb{R}$ with $\gamma>0$ exist such that

$$
B\left(e^{-t}\right) \sim \lambda t^{\beta} e^{\frac{\gamma}{t}} \quad \text { as } t \rightarrow 0^{+}, \quad B\left(e^{-z}\right) \ll|z|^{\beta} e^{\frac{\gamma}{|z|}} \quad \text { as } z \rightarrow 0
$$

with the latter condition holding in each region of the form $|y| \leq \Delta x$ for $\Delta>0$ and $z=x+i y$ with $x, y \in \mathbb{R}, x>0$. Then we have

$$
b(n) \sim \frac{\lambda \gamma^{\frac{\beta}{2}+\frac{1}{4}}}{2 \sqrt{\pi} n^{\frac{\beta}{2}+\frac{3}{4}}} e^{2 \sqrt{\gamma n}} \quad \text { as } n \rightarrow \infty
$$

Remark

For PSP's, the parity separation condition is convenient for proving "suitable" increasing properties.

Asymptotics for q-products

Asymptotics for q-products

Definition

The Dedekind η-function is defined for $\tau \in \mathbb{C}$ satisfying $\operatorname{Im}(\tau)>0$ by

$$
\eta(\tau)=q^{\frac{1}{24}}(q ; q)_{\infty}, \quad \Theta(q):=\sum_{n \in \mathbb{Z}} q^{\frac{n^{2}}{2}} \quad\left(q=e^{2 \pi i \tau}\right)
$$

Asymptotics for q-products

Definition

The Dedekind η-function is defined for $\tau \in \mathbb{C}$ satisfying $\operatorname{Im}(\tau)>0$ by

$$
\eta(\tau)=q^{\frac{1}{24}}(q ; q)_{\infty}, \quad \Theta(q):=\sum_{n \in \mathbb{Z}} q^{\frac{n^{2}}{2}} \quad\left(q=e^{2 \pi i \tau}\right)
$$

Lemma

Let $q=e^{-z}$. Then as $z \rightarrow 0$ in regions $|y| \leq \Delta x$ for $\Delta>0$ and $z=x+i y$, we have the asymptotic behaviors

$$
(q ; q)_{\infty} \sim \sqrt{\frac{2 \pi}{z}} e^{-\frac{\pi^{2}}{6 z}}, \quad \Theta(q) \sim \sqrt{\frac{2 \pi}{z}} .
$$

Asymptotics for infinite series

Asymptotics for infinite series

Proposition (Euler-Maclaurin summation)

Let g be a holomorphic function in a domain containing those $z=x+i y$ satisfying $|y| \leq \Delta x, x \geq 0$. Also suppose that g, as well as all of its derivatives, are of sufficient decay.

Asymptotics for infinite series

Proposition (Euler-Maclaurin summation)

Let g be a holomorphic function in a domain containing those $z=x+i y$ satisfying $|y| \leq \Delta x, x \geq 0$. Also suppose that g, as well as all of its derivatives, are of sufficient decay. Then for any $a \in \mathbb{R}$ and $N \in \mathbb{N}_{0}$, we have

$$
\sum_{m \geq 0} g((m+a) z)=\frac{1}{z} \int_{0}^{\infty} g(w) d w-\sum_{n=0}^{N-1} \frac{B_{n+1}(a) g^{(n)}(0)}{(n+1)!} z^{n}+O_{N}\left(z^{N}\right)
$$

as $z \rightarrow 0$ uniformly in this region. Here $B_{n}(x)$ denotes the n-th Bernoulli polynomial.

Asymptotics for infinite series

Proposition (Euler-Maclaurin summation)

Let g be a holomorphic function in a domain containing those $z=x+i y$ satisfying $|y| \leq \Delta x, x \geq 0$. Also suppose that g, as well as all of its derivatives, are of sufficient decay. Then for any $a \in \mathbb{R}$ and $N \in \mathbb{N}_{0}$, we have
$\sum_{m \geq 0} g((m+a) z)=\frac{1}{z} \int_{0}^{\infty} g(w) d w-\sum_{n=0}^{N-1} \frac{B_{n+1}(a) g^{(n)}(0)}{(n+1)!} z^{n}+O_{N}\left(z^{N}\right)$,
as $z \rightarrow 0$ uniformly in this region. Here $B_{n}(x)$ denotes the n-th Bernoulli polynomial.

Remark

Can be used to study partial ϑ-functions after completing the square in the exponent.

The Case of $F_{\mathrm{od}}^{\mathrm{eu}}$

The Case of $F_{\mathrm{od}}^{\mathrm{eu}}$

The Case of $F_{\mathrm{od}}^{\mathrm{el}}$

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.

The Case of $F_{\text {od }}^{\mathrm{eu}}$

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:

The Case of $F_{\text {od }}^{\mathrm{eu}}$

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:
- Modular forms (Hardy-Ramanujan, Rademacher)

The Case of $F_{\text {od }}^{\mathrm{eu}}$

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:
- Modular forms (Hardy-Ramanujan, Rademacher)
- Mock modular forms (Zwegers, Bringmann-Ono)

The Case of $F_{\text {od }}^{\mathrm{eu}}$

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:
- Modular forms (Hardy-Ramanujan, Rademacher)
- Mock modular forms (Zwegers, Bringmann-Ono)
- Partial/false ϑ-functions (Bringmann-Nazaroglu, 2019)

The Case of $F_{\text {od }}^{\mathrm{eu}}$

- Asymptotics for all eight cases follow from asymptotic calculations along these lines.
- In the seven cases we have emphasized, full asymptotic expansions can be derived from modular structure:
- Modular forms (Hardy-Ramanujan, Rademacher)
- Mock modular forms (Zwegers, Bringmann-Ono)
- Partial/false ϑ-functions (Bringmann-Nazaroglu, 2019)
- The function $F_{\mathrm{od}}^{\mathrm{eu}}(q)$ involves mock Maass forms, which have not previously been studied in this way.

Ramanujan's σ-function

Ramanujan's σ-function

Definition

We define Ramanujan's σ-function by

$$
\sigma(q):=\sum_{n \geq 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q ; q)_{n}}
$$

Ramanujan's σ-function

Definition

We define Ramanujan's σ-function by

$$
\sigma(q):=\sum_{n \geq 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q ; q)_{n}}
$$

Theorem (Andrews-Dyson-Hickerson, 1988)
We have the generating function

$$
\sigma(q)=\sum_{\substack{n \geq 0 \\|j| \leq n}}(-1)^{n+j}\left(1-q^{2 n+1}\right) q^{\frac{n(3 n+1)}{2}-j^{2}}
$$

Ramanujan's σ-function

Definition

We define Ramanujan's σ-function by

$$
\sigma(q):=\sum_{n \geq 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q ; q)_{n}}
$$

Theorem (Andrews-Dyson-Hickerson, 1988)
We have the generating function

$$
\sigma(q)=\sum_{\substack{n \geq 0 \\|j| \leq n}}(-1)^{n+j}\left(1-q^{2 n+1}\right) q^{\frac{n(3 n+1)}{2}-j^{2}} .
$$

Remark

Observe that this is a false indefinite ϑ-function.

Connections to PSP's

Connections to PSP's

Theorem

We have the generating function identity

$$
\begin{aligned}
F_{\mathrm{od}}^{\mathrm{eu}}(-q) & =-\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(\sum_{j \geq 1} \sum_{n \geq j}(-1)^{n+j}\left(1-q^{2 n+1}\right) q^{\frac{n(3 n+1)}{2}-j^{2}}-1\right) \\
& =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(1-\frac{\sigma(q)}{2}+\frac{(q ; q)_{\infty}}{2}\right) .
\end{aligned}
$$

Connections to PSP's

Theorem

We have the generating function identity

$$
\begin{aligned}
F_{\mathrm{od}}^{\mathrm{eu}}(-q) & =-\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(\sum_{j \geq 1} \sum_{n \geq j}(-1)^{n+j}\left(1-q^{2 n+1}\right) q^{\frac{n(3 n+1)}{2}-j^{2}}-1\right) \\
& =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(1-\frac{\sigma(q)}{2}+\frac{(q ; q)_{\infty}}{2}\right) .
\end{aligned}
$$

Question

What is the modular structure of $\sigma(q)$?

Cohen's discovery

Cohen's discovery

Definition

Define the q-series $\sigma^{*}(q)$ by $\sigma^{*}(q):=2 \sum_{n \geq 1} \frac{(-1)^{n} q^{n^{2}}}{\left(q ; q^{2}\right)_{n}}$,

Cohen's discovery

Definition

Define the q-series $\sigma^{*}(q)$ by $\sigma^{*}(q):=2 \sum_{n \geq 1} \frac{(-1)^{n} q^{n^{2}}}{\left(q ; q^{2}\right)_{n}}$, and further define

$$
\varphi(q):=\sum_{n \in 24 \mathbb{Z}+1} T(n) q^{|n| / 24}:=q^{1 / 24} \sigma(q)+q^{-1 / 24} \sigma^{*}(q) .
$$

Cohen's discovery

Definition

Define the q-series $\sigma^{*}(q)$ by $\sigma^{*}(q):=2 \sum_{n \geq 1} \frac{(-1)^{n} q^{n^{2}}}{\left(q ; q^{2}\right)_{n}}$, and further define

$$
\varphi(q):=\sum_{n \in 24 \mathbb{Z}+1} T(n) q^{|n| / 24}:=q^{1 / 24} \sigma(q)+q^{-1 / 24} \sigma^{*}(q)
$$

Theorem (Cohen, 1988)

The nonholomorphic series $\left(q=e^{-z}=e^{-x-i y}\right)$

$$
\varphi_{0}(q):=y^{1 / 2} \sum_{n \in \mathbb{Z} \backslash\{0\}} T(n) K_{0}\left(\frac{2 \pi|n| y}{24}\right) e^{\frac{2 \pi i n x}{24}}
$$

is an eigenvalue of the hyperbolic Laplacian $\Delta:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$ with eigenvalue $\frac{1}{4}$ and transforms as a modular form with multiplier for $\Gamma_{0}(2)$.

Mock Maass Forms: Notation

Mock Maass Forms: Notation

- Let $B(\mathbf{n}, \mathbf{m}):=\mathbf{n}^{T} A \mathbf{m}$ be an integral, symmetric bilinear form on \mathbb{Z}^{2} of signature $(1,1)$.

Mock Maass Forms: Notation

- Let $B(\mathbf{n}, \mathbf{m}):=\mathbf{n}^{T} A \mathbf{m}$ be an integral, symmetric bilinear form on \mathbb{Z}^{2} of signature $(1,1)$. Let $Q(\mathbf{n})=\frac{1}{2} B(\mathbf{n}, \mathbf{n})$ be the associated quadratic form.

Mock Maass Forms: Notation

- Let $B(\mathbf{n}, \mathbf{m}):=\mathbf{n}^{T} A \mathbf{m}$ be an integral, symmetric bilinear form on \mathbb{Z}^{2} of signature $(1,1)$. Let $Q(\mathbf{n})=\frac{1}{2} B(\mathbf{n}, \mathbf{n})$ be the associated quadratic form.
- Since Q has signature $(1,1)$, we can choose P so that

$$
A=P^{T}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) P
$$

i.e. so that $Q(P \mathbf{n})=n_{1} n_{2}$.

Mock Maass Forms: Notation

- Let $B(\mathbf{n}, \mathbf{m}):=\mathbf{n}^{T} A \mathbf{m}$ be an integral, symmetric bilinear form on \mathbb{Z}^{2} of signature $(1,1)$. Let $Q(\mathbf{n})=\frac{1}{2} B(\mathbf{n}, \mathbf{n})$ be the associated quadratic form.
- Since Q has signature $(1,1)$, we can choose P so that

$$
A=P^{T}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) P
$$

i.e. so that $Q(P \mathbf{n})=n_{1} n_{2}$.

- Let

$$
c(t)=P^{-1}\binom{\exp (t)}{-\exp (-t)}, \quad c^{\perp}(t)=P^{-1}\binom{\exp (t)}{\exp (-t)}
$$

Mock Maass Forms: Notation

- Let $B(\mathbf{n}, \mathbf{m}):=\mathbf{n}^{T} A \mathbf{m}$ be an integral, symmetric bilinear form on \mathbb{Z}^{2} of signature $(1,1)$. Let $Q(\mathbf{n})=\frac{1}{2} B(\mathbf{n}, \mathbf{n})$ be the associated quadratic form.
- Since Q has signature $(1,1)$, we can choose P so that

$$
A=P^{T}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) P
$$

i.e. so that $Q(P \mathbf{n})=n_{1} n_{2}$.

- Let

$$
c(t)=P^{-1}\binom{\exp (t)}{-\exp (-t)}, \quad c^{\perp}(t)=P^{-1}\binom{\exp (t)}{\exp (-t)} .
$$

- For fixed c_{0}, let $C_{Q}:=\left\{c \in \mathbb{R}^{2}: Q(c)=-1, B\left(c, c_{0}\right)<0\right\} ; c(t)$ parameterizes $C_{Q}, c^{\perp}(t)$ its complement, and we choose t_{1}, t_{2} and set $c\left(t_{i}\right)=c_{i}, c^{\perp}\left(t_{i}\right)=c_{i}^{\perp}$.

False indefinite quadratic forms

False indefinite quadratic forms

- Using the previous notation, we consider the false indefinite ϑ-functions

$$
\begin{aligned}
\vartheta_{\mu}(\tau) & :=\frac{1}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{2}+\mu \\
\mathbf{n} \neq \mathbf{0}}}\left(1-\operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{1}\right)\right) \operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{2}\right)\right)\right) q^{Q(\mathbf{n})} \\
& -\frac{t_{2}-t_{1}}{\pi} \delta_{\mu \in \mathbb{Z}^{2}}
\end{aligned}
$$

False indefinite quadratic forms

- Using the previous notation, we consider the false indefinite ϑ-functions

$$
\begin{aligned}
\vartheta_{\mu}(\tau) & :=\frac{1}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{2}+\mu \\
\mathbf{n} \neq \mathbf{0}}}\left(1-\operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{1}\right)\right) \operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{2}\right)\right)\right) q^{Q(\mathbf{n})} \\
& -\frac{t_{2}-t_{1}}{\pi} \delta_{\mu \in \mathbb{Z}^{2}}
\end{aligned}
$$

- In our PSP study, we will make use of the example associated with

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
24 & 0 \\
0 & 4
\end{array}\right): \\
& f_{\mu}(\tau):=\frac{1}{2} \sum_{\mathbf{n} \in \mathbb{Z}^{2}+\mu}\left(1+\operatorname{sgn}\left(2 n_{1}+n_{2}\right) \operatorname{sgn}\left(2 n_{1}-n_{2}\right)\right) q^{12 n_{1}^{2}-2 n_{2}^{2}} \\
&-\frac{\operatorname{arccosh}(5)}{\pi} \delta_{\mu \in \mathbb{Z}^{2}} .
\end{aligned}
$$

Mock Maass Forms

Mock Maass Forms

Definition

For $\mu \in A^{-1} \mathbb{Z}^{2} / \mathbb{Z}^{2}$, we define the mock Maass theta functions associated to $\vartheta_{\mu}(\tau)$ by (with $\tau=\tau_{1}+i \tau_{2}$) by

Mock Maass Forms

Definition

For $\mu \in A^{-1} \mathbb{Z}^{2} / \mathbb{Z}^{2}$, we define the mock Maass theta functions associated to $\vartheta_{\mu}(\tau)$ by (with $\tau=\tau_{1}+i \tau_{2}$) by

$$
\begin{aligned}
\Theta_{\mu}(\tau) & =\frac{\sqrt{\tau_{2}}}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{2}+\mu \\
\mathbf{n} \neq 0}}\left(1-\operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{1}\right)\right) \operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{2}\right)\right)\right) K_{0}\left(2 \pi Q(\mathbf{n}) \tau_{2}\right) e^{2 \pi i Q(\mathbf{n}) \tau_{1}} \\
& +\frac{\sqrt{\tau_{2}}}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{2}+\mu \\
\mathbf{n}=0}}\left(1-\operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{1}^{\perp}\right)\right) \operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{2}^{\perp}\right)\right)\right) K_{0}\left(-2 \pi Q(\mathbf{n}) \tau_{2}\right) e^{2 \pi i Q(\mathbf{n}) \tau_{1}} \\
& +\left(t_{2}-t_{1}\right) \sqrt{\tau_{2}} \delta_{\mu \in \mathbb{Z}^{2}} .
\end{aligned}
$$

Mock Maass Forms

Definition

For $\mu \in A^{-1} \mathbb{Z}^{2} / \mathbb{Z}^{2}$, we define the mock Maass theta functions associated to $\vartheta_{\mu}(\tau)$ by (with $\tau=\tau_{1}+i \tau_{2}$) by

$$
\begin{aligned}
\Theta_{\mu}(\tau) & =\frac{\sqrt{\tau_{2}}}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{2}+\mu \\
\mathbf{n} \neq 0}}\left(1-\operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{1}\right)\right) \operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{2}\right)\right)\right) K_{0}\left(2 \pi Q(\mathbf{n}) \tau_{2}\right) e^{2 \pi i Q(\mathbf{n}) \tau_{1}} \\
& +\frac{\sqrt{\tau_{2}}}{2} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{2}+\mu \\
\mathbf{n} \neq 0}}\left(1-\operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{1}^{\perp}\right)\right) \operatorname{sgn}\left(B\left(\mathbf{n}, \mathbf{c}_{2}^{\perp}\right)\right)\right) K_{0}\left(-2 \pi Q(\mathbf{n}) \tau_{2}\right) e^{2 \pi i Q(\mathbf{n}) \tau_{1}} \\
& +\left(t_{2}-t_{1}\right) \sqrt{\tau_{2}} \delta_{\mu \in \mathbb{Z}^{2}} .
\end{aligned}
$$

- We note that Θ_{μ} is an eigenvalue of the hyperbolic Laplacian.
- We will use $F_{\mu}(\tau)$ to denote the mock Maass theta function associated to $f_{\mu}(\tau)$.

Modular Completions

Modular Completions

Definition

Define the modular completion of $\Theta_{\mu}(\tau)$ by

$$
\widehat{\Theta}_{\mu}(\tau):=\sqrt{\tau_{2}} \sum_{\mathbf{n} \in \mathbb{Z}^{2}+\mu} q^{Q(\mathbf{n})} \int_{t_{1}}^{t_{2}} e^{-\pi B(\mathbf{n}, \mathbf{c}(t))^{2} \tau_{2}} d t
$$

Modular Completions

Definition

Define the modular completion of $\Theta_{\mu}(\tau)$ by

$$
\widehat{\Theta}_{\mu}(\tau):=\sqrt{\tau_{2}} \sum_{\mathbf{n} \in \mathbb{Z}^{2}+\mu} q^{Q(\mathbf{n})} \int_{t_{1}}^{t_{2}} e^{-\pi B(\mathbf{n} \mathbf{, c}(t))^{2} \tau_{2}} d t
$$

Theorem (Zwegers, 2012)
For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
\widehat{\Theta}_{\mu}(M \tau)=\sum_{\nu \in A^{-1} \mathbb{Z}^{2} / \mathbb{Z}^{2}} \psi_{M}(\mu, \nu) \widehat{\Theta}_{\nu}(\tau)
$$

for a certain multiplier system ψ.

Modular Completions

Definition

Define the modular completion of $\Theta_{\mu}(\tau)$ by

$$
\widehat{\Theta}_{\mu}(\tau):=\sqrt{\tau_{2}} \sum_{\mathbf{n} \in \mathbb{Z}^{2}+\mu} q^{Q(\mathbf{n})} \int_{t_{1}}^{t_{2}} e^{-\pi B(\mathbf{n} \mathbf{, c}(t))^{2} \tau_{2}} d t
$$

Theorem (Zwegers, 2012)
For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
\widehat{\Theta}_{\mu}(M \tau)=\sum_{\nu \in A^{-1} \mathbb{Z}^{2} / \mathbb{Z}^{2}} \psi_{M}(\mu, \nu) \widehat{\Theta}_{\nu}(\tau)
$$

for a certain multiplier system ψ. Furthermore, the difference $\widehat{\Theta}_{\mu}-\Theta_{\mu}$ is explicit, and in many cases vanishes, in which case the mock Maass form is a Maass form.

Connections to PSP's

Connections to PSP's

- Using Andrews-Dyson-Hickerson, it is known that

$$
F_{\mathrm{od}}^{\mathrm{eu}}(q)=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}+\frac{(-q ;-q)_{\infty}}{2\left(q^{2} ; q^{2}\right)_{\infty}}-\frac{\sigma(-q)}{2\left(q^{2} ; q^{2}\right)_{\infty}}
$$

Connections to PSP's

- Using Andrews-Dyson-Hickerson, it is known that

$$
F_{\mathrm{od}}^{\mathrm{eu}}(q)=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}+\frac{(-q ;-q)_{\infty}}{2\left(q^{2} ; q^{2}\right)_{\infty}}-\frac{\sigma(-q)}{2\left(q^{2} ; q^{2}\right)_{\infty}}
$$

- Letting $p(n)$ and $\mathrm{sc}(n)$ count partitions and self-conjugate partitions,

Connections to PSP's

- Using Andrews-Dyson-Hickerson, it is known that

$$
F_{\mathrm{od}}^{\mathrm{eu}}(q)=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}+\frac{(-q ;-q)_{\infty}}{2\left(q^{2} ; q^{2}\right)_{\infty}}-\frac{\sigma(-q)}{2\left(q^{2} ; q^{2}\right)_{\infty}}
$$

- Letting $p(n)$ and $\mathrm{sc}(n)$ count partitions and self-conjugate partitions, define

$$
\begin{aligned}
& \alpha_{0}(n)=2 p_{\mathrm{od}}^{\mathrm{eu}}(2 n)-2 p(n)-\mathrm{sc}(2 n) \\
& \alpha_{1}(n)=2 p_{\mathrm{od}}^{\mathrm{ed}}(2 n+1)-\operatorname{sc}(2 n+1)
\end{aligned}
$$

Then

$$
\sum_{n \geq 0} \alpha_{0}(n) q^{2 n}+\sum_{n \geq 0} \alpha_{1}(n) q^{2 n+1}=-\frac{\sigma(-q)}{\left(q^{2} ; q^{2}\right)_{\infty}}
$$

Connection to PSP's

Connection to PSP's

- For $u_{0}(\tau)=-q^{\frac{1}{48}} \frac{\sigma(q)+\sigma(-q)}{2}$ and $u_{1}(\tau)=q^{\frac{1}{48} \frac{\sigma(q)-\sigma(-q)}{2}}$,

Connection to PSP's

- For $u_{0}(\tau)=-q^{\frac{1}{48}} \frac{\sigma(q)+\sigma(-q)}{2}$ and $u_{1}(\tau)=q^{\frac{1}{48}} \frac{\sigma(q)-\sigma(-q)}{2}$, we have

$$
\frac{u_{0}(\tau)}{\eta(\tau)}=\sum_{n \geq 0} \alpha_{0}(n) q^{n-\frac{1}{48}}, \quad \frac{u_{1}(\tau)}{\eta(\tau)}=\sum_{n \geq 0} \alpha_{1}(n) q^{n+\frac{23}{48}}
$$

Connection to PSP's

- For $u_{0}(\tau)=-q^{\frac{1}{48}} \frac{\sigma(q)+\sigma(-q)}{2}$ and $u_{1}(\tau)=q^{\frac{1}{48}} \frac{\sigma(q)-\sigma(-q)}{2}$, we have

$$
\frac{u_{0}(\tau)}{\eta(\tau)}=\sum_{n \geq 0} \alpha_{0}(n) q^{n-\frac{1}{48}}, \quad \frac{u_{1}(\tau)}{\eta(\tau)}=\sum_{n \geq 0} \alpha_{1}(n) q^{n+\frac{23}{48}}
$$

- Using the Andrews-Dyson-Hickerson, we relate u_{0}, u_{1} to false indefinite ϑ-functions by

$$
\begin{aligned}
& u_{0}=-f_{\left(\frac{1}{24}, 0\right)}+f_{\left(\frac{7}{24}, 0\right)}+f_{\left(\frac{13}{24}, \frac{1}{2}\right)}-f_{\left(\frac{19}{24}, \frac{1}{2}\right)} \\
& u_{1}=-f_{\left(\frac{1}{24}, \frac{1}{2}\right)}+f_{\left(\frac{7}{24}, \frac{1}{2}\right)}+f_{\left(\frac{13}{24}, 0\right)}-f_{\left(\frac{19}{24}, 0\right)} .
\end{aligned}
$$

Connection to PSP's

$$
\frac{u_{0}(\tau)}{\eta(\tau)}=\sum_{n \geq 0} \alpha_{0}(n) q^{n-\frac{1}{48}}, \quad \frac{u_{1}(\tau)}{\eta(\tau)}=\sum_{n \geq 0} \alpha_{1}(n) q^{n+\frac{23}{48}}
$$

- Using the Andrews-Dyson-Hickerson, we relate u_{0}, u_{1} to false indefinite ϑ-functions by

$$
\begin{aligned}
& u_{0}=-f_{\left(\frac{1}{24}, 0\right)}+f_{\left(\frac{7}{24}, 0\right)}+f_{\left(\frac{13}{24}, \frac{1}{2}\right)}-f_{\left(\frac{19}{24}, \frac{1}{2}\right)} \\
& u_{1}=-f_{\left(\frac{1}{24}, \frac{1}{2}\right)}+f_{\left(\frac{7}{24}, \frac{1}{2}\right)}+f_{\left(\frac{13}{24}, 0\right)}-f_{\left(\frac{19}{24}, 0\right)} .
\end{aligned}
$$

- Using $f_{\mu}=f_{-\mu}$, we can naturally write for $0 \leq j \leq 2$:

$$
u_{j}=\frac{1}{2}\left(\sum_{\mu \in \mathcal{S}_{j}^{+}} f_{\mu}-\sum_{\mu \in \mathcal{S}_{j}^{-}} f_{\mu}\right)
$$

Connection to PSP's

Connection to PSP's

Lemma (Bringmann-C-Nazaroglu)

We define for $0 \leq j \leq 2$

$$
\begin{aligned}
& u_{j}=\frac{1}{2}\left(\sum_{\mu \in \mathcal{S}_{j}^{+}} f_{\mu}-\sum_{\mu \in \mathcal{S}_{j}^{-}} f_{\mu}\right), \\
& U_{j}=\frac{1}{2}\left(\sum_{\mu \in \mathcal{S}_{j}^{+}} F_{\mu}-\sum_{\mu \in \mathcal{S}_{j}^{-}} F_{\mu}\right), \\
& \widehat{U}_{j}=\frac{1}{2}\left(\sum_{\mu \in \mathcal{S}_{j}^{+}} \widehat{F}_{\mu}-\sum_{\mu \in \mathcal{S}_{j}^{-}} \widehat{F}_{\mu}\right) .
\end{aligned}
$$

Connection to PSP's

Lemma (Bringmann-C-Nazaroglu)

We define for $0 \leq j \leq 2$

$$
\begin{aligned}
& u_{j}=\frac{1}{2}\left(\sum_{\mu \in \mathcal{S}_{j}^{+}} f_{\mu}-\sum_{\mu \in \mathcal{S}_{j}^{-}} f_{\mu}\right), \\
& U_{j}=\frac{1}{2}\left(\sum_{\mu \in \mathcal{S}_{j}^{+}} F_{\mu}-\sum_{\mu \in \mathcal{S}_{j}^{-}} F_{\mu}\right), \\
& \widehat{U}_{j}=\frac{1}{2}\left(\sum_{\mu \in \mathcal{S}_{j}^{+}} \widehat{F}_{\mu}-\sum_{\mu \in \mathcal{S}_{j}^{-}} \widehat{F}_{\mu}\right) .
\end{aligned}
$$

For each j, we have $U_{j}=\widehat{U}_{j}$.

Modular Transformations

Modular Transformations

Proposition (Bringmann-C-Nazaroglu)

For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
U_{j}(M \tau)=\sum_{k=0}^{2} \Psi_{M}(j, k) U_{k}(\tau)
$$

for a certain multiplier system $\Psi_{M}(j, k)$.

Modular Transformations

Proposition (Bringmann-C-Nazaroglu)

For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
U_{j}(M \tau)=\sum_{k=0}^{2} \Psi_{M}(j, k) U_{k}(\tau)
$$

for a certain multiplier system $\Psi_{M}(j, k)$.

Remark

Follows from the mock Maass form theory.

Modularity for false indefinite ϑ-functions

Modularity for false indefinite ϑ-functions

Proposition (Bringmann-Nazaroglu, Bringmann-C-Nazaroglu)
For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
u_{j}(M \tau)=(c \tau+d) \sum_{k=0}^{2} \Psi_{M}(j, k)\left(u_{k}(\tau)+\mathcal{E}_{k,-\frac{d}{c}}(\tau)\right)
$$

Modularity for false indefinite ϑ-functions

Proposition (Bringmann-Nazaroglu, Bringmann-C-Nazaroglu)

For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
u_{j}(M \tau)=(c \tau+d) \sum_{k=0}^{2} \Psi_{M}(j, k)\left(u_{k}(\tau)+\mathcal{E}_{k,-\frac{d}{c}}(\tau)\right)
$$

where

$$
\mathcal{E}_{k,-\frac{d}{c}}(\tau):=\frac{2}{\pi} \int_{-\frac{d}{c}}^{i \infty}\left[U_{k}(z), R_{\tau}(z)\right] d z
$$

for a certain function $R_{\tau}(z)$ and certain differential form $[\cdot, \cdot]$.

Modularity for false indefinite ϑ-functions

Proposition (Bringmann-Nazaroglu, Bringmann-C-Nazaroglu)
For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
u_{j}(M \tau)=(c \tau+d) \sum_{k=0}^{2} \Psi_{M}(j, k)\left(u_{k}(\tau)+\mathcal{E}_{k,-\frac{d}{c}}(\tau)\right)
$$

where

$$
\mathcal{E}_{k,-\frac{d}{c}}(\tau):=\frac{2}{\pi} \int_{-\frac{d}{c}}^{i \infty}\left[U_{k}(z), R_{\tau}(z)\right] d z
$$

for a certain function $R_{\tau}(z)$ and certain differential form $[\cdot, \cdot]$.

Remark

It is crucial to understand the size of $u_{k}(\tau)+\mathcal{E}_{k-\frac{d}{c}}(\tau)$.

Mordell-type Representation

Mordell-type Representation

- We use the Fourier expansions

$$
\begin{aligned}
& u_{j}(\tau)=\sum_{\substack{n \in \mathbb{Z}+\alpha_{j} \\
n>0}} d_{j}(n) q^{n}, \\
& U_{j}(\tau)=\sqrt{\tau_{2}} \sum_{n \in \mathbb{Z}+\alpha_{j}} d_{j}(n) K_{0}\left(2 \pi|n| \tau_{2}\right) e^{2 \pi i n \tau_{1}} .
\end{aligned}
$$

Mordell-type Representation

- We use the Fourier expansions

$$
\begin{aligned}
& u_{j}(\tau)=\sum_{\substack{n \in \mathbb{Z}+\alpha_{j} \\
n>0}} d_{j}(n) q^{n} \\
& U_{j}(\tau)=\sqrt{\tau_{2}} \sum_{n \in \mathbb{Z}+\alpha_{j}} d_{j}(n) K_{0}\left(2 \pi|n| \tau_{2}\right) e^{2 \pi i n \tau_{1}}
\end{aligned}
$$

- Expanding q-series and using the differential $[\cdot, \cdot]$,

$$
\begin{aligned}
\mathcal{E}_{k,-\frac{d}{c}}(\tau)=-\frac{1}{\pi} \int_{0}^{\infty} \sum_{n \in \mathbb{Z}+\alpha_{k}} d_{k}(n) e^{-\frac{2 \pi i d n}{c}} & \frac{t K_{0}(2 \pi|n| t)}{\sqrt{t^{2}+\left(\tau+\frac{d}{c}\right)^{2}}} \\
& \cdot\left(2 \pi n+\frac{i\left(\tau+\frac{d}{c}\right)}{t^{2}+\left(\tau+\frac{d}{c}\right)^{2}}\right) d t
\end{aligned}
$$

Mordell-type Representation

- We use the Fourier expansions

$$
\begin{aligned}
& u_{j}(\tau)=\sum_{\substack{n \in \mathbb{Z}+\alpha_{j} \\
n>0}} d_{j}(n) q^{n} \\
& U_{j}(\tau)=\sqrt{\tau_{2}} \sum_{n \in \mathbb{Z}+\alpha_{j}} d_{j}(n) K_{0}\left(2 \pi|n| \tau_{2}\right) e^{2 \pi i n \tau_{1}}
\end{aligned}
$$

- Expanding q-series and using the differential $[\cdot, \cdot]$,

$$
\begin{aligned}
& \mathcal{E}_{k,-\frac{d}{c}}(\tau)=-\frac{1}{\pi} \int_{0}^{\infty} \sum_{n \in \mathbb{Z}+\alpha_{k}} d_{k}(n) e^{-\frac{2 \pi i d n}{c}} \frac{t K_{0}(2 \pi|n| t)}{\sqrt{t^{2}+\left(\tau+\frac{d}{c}\right)^{2}}} \\
& \cdot\left(2 \pi n+\frac{i\left(\tau+\frac{d}{c}\right)}{t^{2}+\left(\tau+\frac{d}{c}\right)^{2}}\right) d t
\end{aligned}
$$

- Problem: Absolute convergence not clear for sum-integral swap

Mordell-type Representation

Mordell-type Representation

Lemma (Bringmann-C-Nazaroglu)

We have

$$
\begin{aligned}
\mathcal{E}_{k,-\frac{d}{c}}(\tau) & =-\frac{1}{2 \pi^{2}\left(\tau+\frac{d}{c}\right)} \lim _{\delta \rightarrow 0^{+}} \sum_{n \in \mathbb{Z}+\alpha_{k}} \frac{d_{k}(n) e^{-\frac{2 \pi i d n}{c}}}{n} \mathcal{K}(2 \pi|n| \delta) \\
& -\frac{1}{\pi} \sum_{n \in \mathbb{Z}+\alpha_{k}} d_{k}(n) e^{-\frac{2 \pi i d n}{c}} \mathcal{K}_{\tau,-\frac{d}{c}}(n)
\end{aligned}
$$

Mordell-type Representation

Lemma (Bringmann-C-Nazaroglu)

We have

$$
\begin{aligned}
\mathcal{E}_{k,-\frac{d}{c}}(\tau) & =-\frac{1}{2 \pi^{2}\left(\tau+\frac{d}{c}\right)} \lim _{\delta \rightarrow 0^{+}} \sum_{n \in \mathbb{Z}+\alpha_{k}} \frac{d_{k}(n) e^{-\frac{2 \pi i d n}{c}}}{n} \mathcal{K}(2 \pi|n| \delta) \\
& -\frac{1}{\pi} \sum_{n \in \mathbb{Z}+\alpha_{k}} d_{k}(n) e^{-\frac{2 \pi i d n}{c}} \mathcal{K}_{\tau,-\frac{d}{c}}(n)
\end{aligned}
$$

where $\mathcal{K}(x):=x K_{1}(x)$

Mordell-type Representation

Lemma (Bringmann-C-Nazaroglu)

We have

$$
\begin{aligned}
\mathcal{E}_{k,-\frac{d}{c}}(\tau) & =-\frac{1}{2 \pi^{2}\left(\tau+\frac{d}{c}\right)} \lim _{\delta \rightarrow 0^{+}} \sum_{n \in \mathbb{Z}+\alpha_{k}} \frac{d_{k}(n) e^{-\frac{2 \pi i d n}{c}}}{n} \mathcal{K}(2 \pi|n| \delta) \\
& -\frac{1}{\pi} \sum_{n \in \mathbb{Z}+\alpha_{k}} d_{k}(n) e^{-\frac{2 \pi i d n}{c}} \mathcal{K}_{\tau,-\frac{d}{c}}(n)
\end{aligned}
$$

where $\mathcal{K}(x):=x K_{1}(x)$ and

$$
\mathcal{K}_{\tau, \frac{d}{c}}(n)=\operatorname{sgn}(n) f\left(2 \pi|n|\left(\tau+\frac{d}{c}\right)\right)+i g\left(2 \pi|n|\left(\tau+\frac{d}{c}\right)\right)-\frac{1}{2 \pi n\left(\tau+\frac{d}{c}\right)}
$$

for
$f(w):=i \mathrm{PV} \int_{0}^{\infty} \frac{e^{i w t}}{t^{2}-1} d t+\frac{\pi}{2} e^{i w}, \quad g(w):=\mathrm{PV} \int_{0}^{\infty} \frac{t e^{i w t}}{t^{2}-1} d t-\frac{\pi i}{2} e^{i w}$.

Mordell-type Representation

Mordell-type Representation

Proposition (Bringmann-C-Nazaroglu)

Define the function

$$
\mathcal{I}_{k,-\frac{d}{c}}(\tau):=\frac{1}{\pi i} \sum_{n \in \mathbb{Z}+\alpha_{k}}^{*} d_{k}(n) e^{-\frac{2 \pi i d n}{c}} \mathrm{PV} \int_{0}^{\infty} \frac{e^{2 \pi i\left(\tau+\frac{d}{c}\right) t}}{t-n} d t
$$

Mordell-type Representation

Proposition (Bringmann-C-Nazaroglu)

Define the function

$$
\mathcal{I}_{k,-\frac{d}{c}}(\tau):=\frac{1}{\pi i} \sum_{n \in \mathbb{Z}+\alpha_{k}}^{*} d_{k}(n) e^{-\frac{2 \pi i d n}{c}} \mathrm{PV} \int_{0}^{\infty} \frac{e^{2 \pi i\left(\tau+\frac{d}{c}\right) t}}{t-n} d t
$$

Then we have

$$
u_{k}(\tau)+\mathcal{E}_{k,-\frac{d}{c}}(\tau)=\mathcal{I}_{k,-\frac{d}{c}}(\tau)
$$

Mordell-type Representation

Proposition (Bringmann-C-Nazaroglu)

Define the function

$$
\mathcal{I}_{k,-\frac{d}{c}}(\tau):=\frac{1}{\pi i} \sum_{n \in \mathbb{Z}+\alpha_{k}}^{*} d_{k}(n) e^{-\frac{2 \pi i d n}{c}} \mathrm{PV} \int_{0}^{\infty} \frac{e^{2 \pi i\left(\tau+\frac{d}{c}\right) t}}{t-n} d t
$$

Then we have

$$
u_{k}(\tau)+\mathcal{E}_{k,-\frac{d}{c}}(\tau)=\mathcal{I}_{k,-\frac{d}{c}}(\tau)
$$

Question

What is the "principal part" of $\mathcal{I}_{k,-\frac{d}{c}}(\tau)$?

Finding the Principal Part

Finding the Principal Part

- We fix the notation

$$
\frac{u_{j}(\tau)}{\eta(\tau)}=\sum_{n=0}^{\infty} \alpha_{j}(n) q^{n+\Delta_{j}}, \Delta_{0}:=-\frac{1}{48}, \Delta_{1}:=\frac{23}{48}, \Delta_{2}:=\frac{11}{12} .
$$

Finding the Principal Part

- We fix the notation

$$
\frac{u_{j}(\tau)}{\eta(\tau)}=\sum_{n=0}^{\infty} \alpha_{j}(n) q^{n+\Delta_{j}}, \Delta_{0}:=-\frac{1}{48}, \Delta_{1}:=\frac{23}{48}, \Delta_{2}:=\frac{11}{12}
$$

- By Cauchy's theorem, we have

$$
\alpha_{j}(n)=\int_{i}^{i+1} \frac{u_{j}(\tau)}{\eta(\tau)} e^{-2 \pi i\left(n+\Delta_{j}\right) \tau} d \tau
$$

Finding the Principal Part

- We fix the notation

$$
\frac{u_{j}(\tau)}{\eta(\tau)}=\sum_{n=0}^{\infty} \alpha_{j}(n) q^{n+\Delta_{j}}, \Delta_{0}:=-\frac{1}{48}, \Delta_{1}:=\frac{23}{48}, \Delta_{2}:=\frac{11}{12}
$$

- By Cauchy's theorem, we have

$$
\alpha_{j}(n)=\int_{i}^{i+1} \frac{u_{j}(\tau)}{\eta(\tau)} e^{-2 \pi i\left(n+\Delta_{j}\right) \tau} d \tau
$$

- Goal: Estimate this integral using Rademacher's techniques.

Circle Method: Rademacher's Path

Circle Method: Rademacher's Path

- Using Rademacher's path of integration (i.e. using Farey arcs of order N and Ford circles) we have

$$
\alpha_{j}(n)=i \sum_{k=1}^{N} k^{-2} \sum_{\substack{0 \leq h<k \\ \operatorname{gcd}(h, k)=1}} \int_{Z_{1}}^{Z_{2}} \frac{u_{j}\left(\frac{h}{k}+\frac{i Z}{k^{2}}\right)}{\eta\left(\frac{h}{k}+\frac{i Z}{k^{2}}\right)} e^{-2 \pi i\left(n+\Delta_{j}\right)\left(\frac{h}{k}+\frac{i z}{k^{2}}\right)} d Z,
$$

where $\tau=\frac{h}{k}+\frac{i Z}{k^{2}}$ and Z_{1}, Z_{2} are certain points on the circle of radius $\frac{1}{2}$ and center $\frac{1}{2}$.

Circle Method: Rademacher's Path

- Using Rademacher's path of integration (i.e. using Farey arcs of order N and Ford circles) we have

$$
\alpha_{j}(n)=i \sum_{k=1}^{N} k^{-2} \sum_{\substack{0 \leq h<k \\ \operatorname{gcd}(h, k)=1}} \int_{Z_{1}}^{Z_{2}} \frac{u_{j}\left(\frac{h}{k}+\frac{i Z}{k^{2}}\right)}{\eta\left(\frac{h}{k}+\frac{i Z}{k^{2}}\right)} e^{-2 \pi i\left(n+\Delta_{j}\right)\left(\frac{h}{k}+\frac{i z}{k^{2}}\right)} d Z,
$$

where $\tau=\frac{h}{k}+\frac{i Z}{k^{2}}$ and Z_{1}, Z_{2} are certain points on the circle of radius $\frac{1}{2}$ and center $\frac{1}{2}$.

- Using previously derived modular transformations and $\tau=\frac{h^{\prime}}{k}+\frac{i}{Z}$ we will apply the calculation

$$
u_{j}\left(\frac{h}{k}+\frac{i Z}{k^{2}}\right)=\frac{i k}{Z} \sum_{\ell=0}^{2} \Psi_{M_{h, k}}(j, \ell) \mathcal{I}_{\ell, \frac{h^{\prime}}{k}}\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)
$$

Circle Method: Principal Parts

Circle Method: Principal Parts

- Using the modular transformation for the eta function,

$$
\begin{aligned}
& \alpha_{j}(n)=\sum_{\ell=0}^{2} \sum_{k=1}^{N} k^{-\frac{3}{2}} \sum_{\substack{0 \leq h<k \\
\operatorname{gcd}(h, k)=1}} \frac{e^{\frac{3 \pi i}{4}} \Psi_{M_{h, k}(j, \ell)}^{\nu_{\eta}\left(M_{h, k}\right)}}{} \\
& \cdot \int_{Z_{1}}^{Z_{2}} Z^{-\frac{1}{2}} \frac{\mathcal{I}_{\ell, \frac{h^{\prime}}{k}\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)}^{\eta\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)} e^{-2 \pi i\left(n+\Delta_{j}\right)\left(\frac{h}{k}+\frac{i Z}{k^{2}}\right)} d Z}{} .
\end{aligned}
$$

Circle Method: Principal Parts

- Using the modular transformation for the eta function,

$$
\begin{aligned}
& \alpha_{j}(n)=\sum_{\ell=0}^{2} \sum_{k=1}^{N} k^{-\frac{3}{2}} \sum_{\substack{0 \leq h<k \\
\operatorname{gcd}(h, k)=1}} \frac{e^{\frac{3 \pi i}{4}} \Psi_{M_{h, k}(j, \ell)}}{\nu_{\eta}\left(M_{h, k}\right)} \\
& \cdot \int_{Z_{1}}^{Z_{2}} Z^{-\frac{1}{2}} \frac{\mathcal{I}_{\ell, \frac{h^{\prime}}{k}}\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)}{\eta\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)} e^{-2 \pi i\left(n+\Delta_{j}\right)\left(\frac{h}{k}+\frac{i z}{k^{2}}\right)} d Z
\end{aligned}
$$

- We now split off the principal parts using Now we split off the principal part contributions by writing

$$
\begin{aligned}
\frac{\mathcal{I}_{\ell, \frac{h^{\prime}}{k}}\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)}{\eta\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)}= & e^{-\frac{\pi i h^{\prime}}{12 k}} \mathcal{I}_{\ell, \frac{h^{\prime}}{k}, \frac{1}{24}}^{*}\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)+e^{-\frac{\pi i h^{\prime}}{12 k}} \mathcal{I}_{\ell, \frac{h^{\prime}, \frac{1}{k}}{e},}^{e}\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right) \\
& +\mathcal{I}_{\ell, \frac{h^{\prime}}{k}}\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)\left(\frac{1}{\eta\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right)}-e^{-\frac{\pi i}{12}\left(\frac{h^{\prime}}{k}+\frac{i}{z}\right)}\right) .
\end{aligned}
$$

Circle Method: Error Estimation

Circle Method: Error Estimation

- After estimating the error terms and setting $N=\lfloor\sqrt{n}\rfloor$, we obtain

$$
\begin{aligned}
& \alpha_{j}(n)=\sum_{\ell=0}^{2} \sum_{k=1}^{\lfloor\sqrt{n}\rfloor} k^{-\frac{3}{2}} \sum_{\substack{0 \leq h<k \\
\operatorname{gcd}(h, k)=1}} \frac{e^{\frac{3 \pi i}{4}} \Psi_{M_{h, k}}(j, \ell)}{\nu_{\eta}\left(M_{h, k}\right)} e^{-\frac{\pi i h^{\prime}}{12 k}} \\
& \quad \times \int_{Z_{1}}^{Z_{2}} Z^{-\frac{1}{2}} \mathcal{I}_{\ell, \frac{h^{\prime}}{k}, \frac{1}{24}}^{*}\left(\frac{h^{\prime}}{k}+\frac{i}{Z}\right) e^{-2 \pi i\left(n+\Delta_{j}\right)\left(\frac{h}{k}+\frac{i z}{k^{2}}\right)} d Z+O\left(n^{\frac{3}{4}}\right) .
\end{aligned}
$$

Final Theorem

Final Theorem

Theorem (Bringmann-C-Nazaroglu)

We have

$$
\begin{aligned}
\alpha_{j}(n) & =2\left(n+\Delta_{j}\right)^{-\frac{1}{4}} \sum_{\ell=0}^{2} \sum_{k=1}^{\lfloor\sqrt{n}\rfloor} \frac{1}{k} \sum_{\substack{0 \leq h<k \\
\operatorname{gcd}(h, k)=1}} \psi_{h, k}(j, \ell) \\
& \times \operatorname{PV} \int_{0}^{\frac{1}{24}} \Phi_{\ell, \frac{h^{\prime}}{k}}(t)\left(\frac{1}{24}-t\right)^{\frac{1}{4}} I_{\frac{1}{2}}\left(\frac{4 \pi}{k} \sqrt{\left(n+\Delta_{j}\right)\left(\frac{1}{24}-t\right)}\right) d t+O\left(n^{\frac{3}{4}}\right) .
\end{aligned}
$$

where

$$
\Phi_{\ell, \frac{h^{\prime}}{k}}(t):=\sum_{n \in \mathbb{Z}+\alpha_{\ell}}^{*} \frac{d_{\ell}(n) e^{\frac{2 \pi i h^{\prime} n}{k}}}{t-n}
$$

Open Questions

Open Questions

- Combinatorial explanation for inequalities between PSP's:

Open Questions

- Combinatorial explanation for inequalities between PSP's:

$$
\begin{aligned}
p_{\mathrm{ed}}^{\mathrm{od}}(n)<p_{\mathrm{od}}^{\mathrm{ed}}(n) & <p_{\mathrm{od}}^{\mathrm{eu}}(n)<p_{\mathrm{ed}}^{\mathrm{ou}}(n) \\
& <p_{\mathrm{eu}}^{\mathrm{od}}(n)<p_{\mathrm{eu}}^{\mathrm{ou}}(n)<p_{\mathrm{ou}}^{\mathrm{ed}}(n)<p_{\mathrm{ou}}^{\mathrm{eu}}(n) .
\end{aligned}
$$

Open Questions

- Combinatorial explanation for inequalities between PSP's:

$$
\begin{aligned}
p_{\mathrm{ed}}^{\mathrm{od}}(n)<p_{\mathrm{od}}^{\mathrm{ed}}(n) & <p_{\mathrm{od}}^{\mathrm{eu}}(n)<p_{\mathrm{ed}}^{\mathrm{ou}}(n) \\
& <p_{\mathrm{eu}}^{\mathrm{od}}(n)<p_{\mathrm{eu}}^{\mathrm{ou}}(n)<p_{\mathrm{ou}}^{\mathrm{ed}}(n)<p_{\mathrm{ou}}^{\mathrm{eu}}(n) .
\end{aligned}
$$

- Modifications with congruence properties similar to $\overline{\mathcal{E O}}(n)$?

Open Questions

- Combinatorial explanation for inequalities between PSP's:

$$
\begin{aligned}
p_{\mathrm{ed}}^{\mathrm{od}}(n)<p_{\mathrm{od}}^{\mathrm{ed}}(n) & <p_{\mathrm{od}}^{\mathrm{eu}}(n)<p_{\mathrm{ed}}^{\mathrm{ou}}(n) \\
& <p_{\mathrm{eu}}^{\mathrm{od}}(n)<p_{\mathrm{eu}}^{\mathrm{ou}}(n)<p_{\mathrm{ou}}^{\mathrm{ed}}(n)<p_{\mathrm{ou}}^{\mathrm{eu}}(n) .
\end{aligned}
$$

- Modifications with congruence properties similar to $\overline{\mathcal{E O}}(n)$?
- Connections between hypergeometric representations and Jacobi properties?

End of Talk

Questions?

