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February 29, 2024

This research is funded by the ERC grant 101001179.
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Partitions

Definition

A partition of an integer n is any nonincreasing sequence

λ := {λ1, λ2, . . . , λℓ}

of positive integers which sum to n.

Notation

The partition function is given by

p(n) := # partitions of n.

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 =⇒ p(4) = 5.
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Partitions in Number Theory

Theorem (Hardy-Ramanujan, 1918)

We have that

p(n) ∼ 1

4n
√
3
· eπ

√
2n
3 .

Theorem (Ramanujan, 1919)

For every n, we have that

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).
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Parity in Partitions

Theorem (Euler, Legendre)

Let De/o(n) be the number of partitions of n into an even (resp. odd)
number of unequal parts. Then we have

(q; q)∞ =
∑
n≥0

(De(n)− Do(n)) q
n =

∑
n∈Z

(−1)nq
n(3n−1)

2 .

We use the standard notation (a; q)n :=
∏n−1

k=0

(
1− aqk

)
for n ∈ Z∪ {∞}.

Theorem (Kim–Kim–Lovejoy, 2021)

Let pe/o(n) be the number of partitions of n with more even parts than
odd parts (resp. more odd parts than even parts). Then we have

po(n)

pe(n)
→ 1 +

√
2.
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Parts Separated by Parity

Definition

Let λ be a partition. Then λ has parts separated by parity provided one of
the following is true:

Each odd part of λ is larger than every even part of λ;

Each even part of λ is larger than every odd part of λ.

Definition

A family S has parts separated by parity (PSP) if membership in S is
partly or wholly determined by the condition above.
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Examples of PSP Partitions

Example (Andrews, 2018)

Let EO(n) be the number of partitions of n where each even part is less
than each odd part. We have∑

n≥0

EO(n)qn =
∑
n≥0

q2n

(q2; q2)n (q
2n+1; q2)∞

=
1

(q; q2)∞

∑
n≥0

(
q; q2

)
n

(q2; q2)n
q2n

=

(
q3; q2

)
∞

(q; q2)∞ (q2; q2)∞

=
1

(1− q) (q2; q2)∞
.
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Examples of PSP Partitions

Definition (Andrews, 2018)

Let EO(n) be the number of partitions of n with odd parts above even
parts and with only the largest even part can have odd multiplicity.

Theorem (Andrews, 2018)

Consider the third order mock theta function ν(q) :=
∑

n≥0
qn

2+n

(−q;q2)n+1
.

Then ∑
n≥0

EO(n)qn =
1

2
(ν(q) + ν(−q)) .

Furthermore, we have

EO (10n + 8) ≡ 0 (mod 5),

and this congruence is explained by an “even-odd crank”.
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Literature on PSP Partitions

Andrews’ results and questions for EO(n) have drawn much attention:

New symmetries in PSP-type objects arise combinatorially (Chern,
Burson–Eichhorn)

Infinite families of congruences (Ray–Barman)

Parity of EO(n) (Ray–Barman, Burson–Eichhorn)

Series identities involving mock theta functions (Andrews)

Connections between Stanley rank O(λ)−O(λ′) and the even-odd
crank for EO(n) (Fu–Tang)

Andrews’ suggestions regarding EO(n) have received less attention.

Andrews, Partitions with Parts Separated by Parity, 2019.

Bringmann, Jennings-Shaffer, A Note on Andrews’ Partitions with
Parts Separated by Parity, 2019.
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Notation for PSP Partitions

Notation

A function of the form pwx
yz (n) will count the number of partitions of n in a

PSP-set Pwx
yz :

{w, y} = {e, o} signify even and odd;

x, z ∈ {u,d} signify unrestricted or distinct;

Parts of parity w must lie above parts of parity y;

Parts of parity w (resp. y) are restricted by condition x (resp. z).

Definition

We consider the following eight functions:

poueu (n), p
od
eu (n), p

eu
ou(n), p

ed
ou(n), p

ou
ed (n), p

od
ed (n), p

eu
od(n), p

ed
od(n).

Observe that EO(n) = poueu (n).
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William Craig (Universität zu Köln) PSP Partitions February 29, 2024 9 / 40



Notation for PSP Partitions

Notation

A function of the form pwx
yz (n) will count the number of partitions of n in a

PSP-set Pwx
yz :

{w, y} = {e, o} signify even and odd;

x, z ∈ {u,d} signify unrestricted or distinct;

Parts of parity w must lie above parts of parity y;

Parts of parity w (resp. y) are restricted by condition x (resp. z).

Definition

We consider the following eight functions:

poueu (n), p
od
eu (n), p

eu
ou(n), p

ed
ou(n), p

ou
ed (n), p

od
ed (n), p

eu
od(n), p

ed
od(n).

Observe that EO(n) = poueu (n).
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William Craig (Universität zu Köln) PSP Partitions February 29, 2024 9 / 40



Notation for PSP Partitions

Notation

A function of the form pwx
yz (n) will count the number of partitions of n in a

PSP-set Pwx
yz :

{w, y} = {e, o} signify even and odd;

x, z ∈ {u, d} signify unrestricted or distinct;

Parts of parity w must lie above parts of parity y;

Parts of parity w (resp. y) are restricted by condition x (resp. z).

Definition

We consider the following eight functions:

poueu (n), p
od
eu (n), p

eu
ou(n), p

ed
ou(n), p

ou
ed (n), p

od
ed (n), p

eu
od(n), p

ed
od(n).

Observe that EO(n) = poueu (n).
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Asymptotics for PSP Partitions

Theorem (Bringmann–C–Nazaroglu)

As n → ∞, we have the following asymptotics:

poueu (n) ∼
eπ
√

n
3

2π
√
n
,

podeu (n) ∼
eπ
√

n
3

4
√
2 · 3

1
4 n

3
4

,

poued (n) ∼
eπ
√

n
3

4 · 3
1
4 n

3
4

,

poded (n) ∼
3

1
4

(√
2− 1

)
eπ
√

n
6

2
3
4πn

1
4

,

peuou(n) ∼
3

1
4 eπ

√
n
3

2πn
1
4

,

peuod(n) ∼
eπ
√

n
3

2
√
3n
,

pedou(n) ∼
eπ
√

n
3

4
√
2
√
n
,

pedod(n) ∼
3

1
4

(√
2− 1

)
eπ
√

n
6

2
1
4πn

1
4

.
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Generating Functions

Fact

We define the generating functions Fwx
yz (q) :=

∑
n≥0 p

wx
yz (n)q

n.

Example

We have the following constructions:

F od
eu (q) =

∑
n≥0

(
−q2n+1; q2

)
∞

(q2; q2)n
q2n;

F eu
od(q) =

∑
n≥0

(
−q; q2

)
n

(q2n+2; q2)∞
q2n+1 +

1

(q2; q2)∞
.

All eight generating functions can be constructed using q-hypergeometric
series in this very classical manner.
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Modular Structure of PSP’s

Proposition (“Modular” PSP’s)

The following generating functions hold:

F od
eu (q) =

1

(1− q) (q2; q2)∞
,

F od
ed (q) =

(
−q; q2

)
∞

1− q
−

q
(
−q2; q2

)
∞

1− q
,

F eu
ou (q) =

1

1− q

(
1

(q; q2)∞
− q

(q2; q2)∞

)
,

F ed
od(q) =

(1 + q)
(
−q2; q2

)
∞

1− q
−

q
(
−q; q2

)
∞

1− q
.
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Modular Structure of PSP’s

Definition (False/Partial ϑ-function)

A partial ϑ-function is (roughly) a summation over n ≥ 0 which, when
summed over n ∈ Z, is a modular ϑ-function. A false ϑ-function (roughly)
differs from a modular ϑ-function by a sgn(n) factor.

Proposition (Partial/False PSP’s)

The following generating functions hold:

F od
eu (q) =

1

(q2; q2)

∑
n≥0

qn
2
,

F ou
ed (−q) =

1

2 (−q; q2)∞

(−q; q)∞ + 1−
∑
n≥0

(1− qn) q
n(3n−1)

2

 .
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Modular Structure of PSP’s

Definition

Define the following series of Ramanujan:

f (q) :=
∑
n≥0

qn
2

(−q; q)2n
.

Note that f (q) is a mock ϑ-function from Ramanujan’s last letter.

Proposition (Mock PSP’s)

The following generating functions hold:

F ed
ou (−q) =

(
−q2; q2

)
∞

2

(
2− f (q) +

1

(−q; q)∞

)
.

Remark

We will return to F eu
od(q) later...
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Ingham’s Tauberian Theorem

Theorem (Ingham)

Let B(q) =
∑

n≥0 b(n)q
n be a power series whose radius of convergence is

at least one and assume that b(n) are non-negative and weakly increasing.
Also suppose that λ, β, γ ∈ R with γ > 0 exist such that

B
(
e−t
)
∼ λtβe

γ
t as t → 0+, B

(
e−z
)
≪ |z |βe

γ
|z| as z → 0,

with the latter condition holding in each region of the form |y | ≤ ∆x for
∆ > 0 and z = x + iy with x , y ∈ R, x > 0. Then we have

b(n) ∼ λγ
β
2
+ 1

4

2
√
πn

β
2
+ 3

4

e2
√
γn as n → ∞.

Remark

For PSP’s, the parity separation condition is convenient for proving
“suitable” increasing properties.
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Asymptotics for q-products

Definition

The Dedekind η-function is defined for τ ∈ C satisfying Im(τ) > 0 by

η(τ) = q
1
24 (q; q)∞, Θ(q) :=

∑
n∈Z

q
n2

2 (q = e2πiτ ).

Lemma

Let q = e−z . Then as z → 0 in regions |y | ≤ ∆x for ∆ > 0 and
z = x + iy , we have the asymptotic behaviors

(q; q)∞ ∼
√

2π

z
e−

π2

6z , Θ(q) ∼
√

2π

z
.
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Asymptotics for infinite series

Proposition (Euler–Maclaurin summation)

Let g be a holomorphic function in a domain containing those z = x + iy
satisfying |y | ≤ ∆x, x ≥ 0. Also suppose that g, as well as all of its
derivatives, are of sufficient decay. Then for any a ∈ R and N ∈ N0, we
have

∑
m≥0

g((m + a)z) =
1

z

∫ ∞

0
g(w)dw −

N−1∑
n=0

Bn+1(a)g
(n)(0)

(n + 1)!
zn + ON

(
zN
)
,

as z → 0 uniformly in this region. Here Bn(x) denotes the n-th Bernoulli
polynomial.

Remark

Can be used to study partial ϑ-functions after completing the square in the
exponent.
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Asymptotics for infinite series

Proposition (Euler–Maclaurin summation)

Let g be a holomorphic function in a domain containing those z = x + iy
satisfying |y | ≤ ∆x, x ≥ 0. Also suppose that g, as well as all of its
derivatives, are of sufficient decay.

Then for any a ∈ R and N ∈ N0, we
have
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The Case of F eu
od

Asymptotics for all eight cases follow from asymptotic calculations
along these lines.

In the seven cases we have emphasized, full asymptotic expansions
can be derived from modular structure:

Modular forms (Hardy–Ramanujan, Rademacher)
Mock modular forms (Zwegers, Bringmann–Ono)
Partial/false ϑ-functions (Bringmann–Nazaroglu, 2019)

The function F eu
od(q) involves mock Maass forms, which have not

previously been studied in this way.
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William Craig (Universität zu Köln) PSP Partitions February 29, 2024 18 / 40



Ramanujan’s σ-function

Definition

We define Ramanujan’s σ-function by

σ(q) :=
∑
n≥0

q
n(n+1)

2

(−q; q)n
.

Theorem (Andrews–Dyson–Hickerson, 1988)

We have the generating function

σ(q) =
∑
n≥0
|j |≤n

(−1)n+j
(
1− q2n+1

)
q

n(3n+1)
2

−j2 .

Remark

Observe that this is a false indefinite ϑ-function.
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Connections to PSP’s

Theorem

We have the generating function identity

F eu
od(−q) = − 1

(q2; q2)∞

∑
j≥1

∑
n≥j

(−1)n+j
(
1− q2n+1

)
q

n(3n+1)
2

−j2 − 1


=

1

(q2; q2)∞

(
1− σ(q)

2
+

(q; q)∞
2

)
.

Question

What is the modular structure of σ(q)?
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William Craig (Universität zu Köln) PSP Partitions February 29, 2024 20 / 40



Cohen’s discovery

Definition

Define the q-series σ∗(q) by σ∗(q) := 2
∑

n≥1
(−1)nqn

2

(q;q2)n
, and further define

φ(q) :=
∑

n∈24Z+1

T (n)q|n|/24 := q1/24σ(q) + q−1/24σ∗(q).

Theorem (Cohen, 1988)

The nonholomorphic series (q = e−z = e−x−iy )

φ0(q) := y1/2
∑

n∈Z\{0}

T (n)K0

(
2π|n|y
24

)
e

2πinx
24

is an eigenvalue of the hyperbolic Laplacian ∆ := −y2
(

∂2

∂x2
+ ∂2

∂y2

)
with

eigenvalue 1
4 and transforms as a modular form with multiplier for Γ0(2).
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Mock Maass Forms: Notation

Let B(n,m) := nTAm be an integral, symmetric bilinear form on Z2

of signature (1, 1). Let Q(n) = 1
2B(n,n) be the associated quadratic

form.

Since Q has signature (1, 1), we can choose P so that

A = PT

(
0 1
1 0

)
P,

i.e. so that Q(Pn) = n1n2.

Let

c(t) = P−1

(
exp(t)

− exp(−t)

)
, c⊥(t) = P−1

(
exp(t)
exp(−t)

)
.

For fixed c0, let CQ := {c ∈ R2 : Q(c) = −1,B(c , c0) < 0}; c(t)
parameterizes CQ , c

⊥(t) its complement, and we choose t1, t2 and
set c(ti ) = ci , c

⊥(ti ) = c⊥i .
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False indefinite quadratic forms

Using the previous notation, we consider the false indefinite
ϑ-functions

ϑµ(τ) :=
1

2

∑
n∈Z2+µ
n̸=0

(1− sgn (B(n, c1)) sgn (B(n, c2))) q
Q(n)

− t2 − t1
π

δµ∈Z2

In our PSP study, we will make use of the example associated with

A =

(
24 0
0 4

)
:

fµ(τ) :=
1

2

∑
n∈Z2+µ

(1 + sgn (2n1 + n2) sgn (2n1 − n2)) q
12n21−2n22

− arccosh(5)

π
δµ∈Z2 .
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Mock Maass Forms

Definition

For µ ∈ A−1Z2/Z2, we define the mock Maass theta functions associated
to ϑµ(τ) by (with τ = τ1 + iτ2) by

Θµ(τ) =

√
τ2

2

∑
n∈Z2+µ

n̸=0

(1− sgn (B(n, c1)) sgn (B(n, c2)))K0 (2πQ(n)τ2) e
2πiQ(n)τ1

+

√
τ2

2

∑
n∈Z2+µ

n̸=0

(
1− sgn

(
B(n, c⊥1 )

)
sgn

(
B(n, c⊥2 )

))
K0 (−2πQ(n)τ2) e

2πiQ(n)τ1

+ (t2 − t1)
√
τ2δµ∈Z2 .

We note that Θµ is an eigenvalue of the hyperbolic Laplacian.

We will use Fµ(τ) to denote the mock Maass theta function
associated to fµ(τ).
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K0 (−2πQ(n)τ2) e

2πiQ(n)τ1

+ (t2 − t1)
√
τ2δµ∈Z2 .

We note that Θµ is an eigenvalue of the hyperbolic Laplacian.

We will use Fµ(τ) to denote the mock Maass theta function
associated to fµ(τ).
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Modular Completions

Definition

Define the modular completion of Θµ(τ) by

Θ̂µ(τ) :=
√
τ2

∑
n∈Z2+µ

qQ(n)

∫ t2

t1

e−πB(n,c(t))2τ2dt.

Theorem (Zwegers, 2012)

For M =

(
a b
c d

)
∈ SL2 (Z), we have

Θ̂µ (Mτ) =
∑

ν∈A−1Z2/Z2

ψM (µ, ν) Θ̂ν(τ).

for a certain multiplier system ψ. Furthermore, the difference Θ̂µ −Θµ is
explicit, and in many cases vanishes, in which case the mock Maass form
is a Maass form.
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Connections to PSP’s

Using Andrews–Dyson–Hickerson, it is known that

F eu
od(q) =

1

(q2; q2)∞
+

(−q;−q)∞
2 (q2; q2)∞

− σ(−q)

2 (q2; q2)∞
.

Letting p(n) and sc(n) count partitions and self-conjugate partitions,
define

α0(n) = 2peuod(2n)− 2p(n)− sc(2n),

α1(n) = 2peuod(2n + 1)− sc(2n + 1).

Then ∑
n≥0

α0(n)q
2n +

∑
n≥0

α1(n)q
2n+1 = − σ(−q)

(q2; q2)∞
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Connection to PSP’s

For u0(τ) = −q
1
48

σ(q)+σ(−q)
2 and u1(τ) = q

1
48

σ(q)−σ(−q)
2 , we have

u0(τ)

η(τ)
=
∑
n≥0

α0(n)q
n− 1

48 ,
u1(τ)

η(τ)
=
∑
n≥0

α1(n)q
n+ 23

48 .

Using the Andrews–Dyson–Hickerson, we relate u0, u1 to false
indefinite ϑ-functions by

u0 = −f( 1
24
,0) + f( 7

24
,0) + f( 13

24
, 1
2)

− f( 19
24
, 1
2)

u1 = −f( 1
24
, 1
2)

+ f( 7
24
, 1
2)

+ f( 13
24
,0) − f( 19

24
,0).

Using fµ = f−µ, we can naturally write for 0 ≤ j ≤ 2:

uj =
1

2

∑
µ∈S+

j

fµ −
∑
µ∈S−

j

fµ

 .
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Connection to PSP’s

Lemma (Bringmann–C–Nazaroglu)

We define for 0 ≤ j ≤ 2

uj =
1

2

∑
µ∈S+

j

fµ −
∑
µ∈S−

j

fµ

 ,

Uj =
1

2

∑
µ∈S+

j

Fµ −
∑
µ∈S−

j

Fµ

 ,

Ûj =
1

2

∑
µ∈S+

j

F̂µ −
∑
µ∈S−

j

F̂µ

 .

For each j, we have Uj = Ûj .

William Craig (Universität zu Köln) PSP Partitions February 29, 2024 28 / 40



Connection to PSP’s

Lemma (Bringmann–C–Nazaroglu)

We define for 0 ≤ j ≤ 2

uj =
1

2

∑
µ∈S+

j

fµ −
∑
µ∈S−

j

fµ

 ,

Uj =
1

2

∑
µ∈S+

j

Fµ −
∑
µ∈S−

j

Fµ

 ,

Ûj =
1

2

∑
µ∈S+

j

F̂µ −
∑
µ∈S−

j

F̂µ

 .

For each j, we have Uj = Ûj .
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Modular Transformations

Proposition (Bringmann–C–Nazaroglu)

For M =

(
a b
c d

)
∈ SL2 (Z), we have

Uj (Mτ) =
2∑

k=0

ΨM(j , k)Uk(τ)

for a certain multiplier system ΨM(j , k).

Remark

Follows from the mock Maass form theory.
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William Craig (Universität zu Köln) PSP Partitions February 29, 2024 29 / 40



Modular Transformations

Proposition (Bringmann–C–Nazaroglu)

For M =

(
a b
c d

)
∈ SL2 (Z), we have

Uj (Mτ) =
2∑

k=0

ΨM(j , k)Uk(τ)

for a certain multiplier system ΨM(j , k).

Remark

Follows from the mock Maass form theory.
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Modularity for false indefinite ϑ-functions

Proposition (Bringmann–Nazaroglu, Bringmann–C–Nazaroglu)

For M =

(
a b
c d

)
∈ SL2 (Z), we have

uj (Mτ) = (cτ + d)
2∑

k=0

ΨM (j , k)
(
uk(τ) + Ek,− d

c
(τ)
)

where

Ek,− d
c
(τ) :=

2

π

∫ i∞

− d
c

[Uk(z),Rτ (z)] dz

for a certain function Rτ (z) and certain differential form [·, ·].

Remark

It is crucial to understand the size of uk(τ) + Ek− d
c
(τ).
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Mordell-type Representation

We use the Fourier expansions

uj(τ) =
∑

n∈Z+αj
n>0

dj(n)q
n,

Uj(τ) =
√
τ2

∑
n∈Z+αj

dj(n)K0 (2π|n|τ2) e2πinτ1 .

Expanding q-series and using the differential [·, ·],

Ek,− d
c
(τ) = − 1

π

∫ ∞

0

∑
n∈Z+αk

dk(n)e
− 2πidn

c
tK0 (2π|n|t)√
t2 +

(
τ + d

c

)2
·

(
2πn +

i
(
τ + d

c

)
t2 +

(
τ + d

c

)2
)
dt.

Problem: Absolute convergence not clear for sum-integral swap
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Mordell-type Representation

Lemma (Bringmann–C–Nazaroglu)

We have

Ek,− d
c
(τ) = − 1

2π2
(
τ + d

c

) lim
δ→0+

∑
n∈Z+αk

dk(n)e
− 2πidn

c

n
K (2π|n|δ)

− 1

π

∑
n∈Z+αk

dk(n)e
− 2πidn

c Kτ,− d
c
(n),

where K(x) := xK1(x) and

Kτ, dc
(n) = sgn(n)f

(
2π|n|

(
τ +

d

c

))
+ ig
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2π|n|

(
τ +

d

c
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− 1

2πn
(
τ + d

c

)
for

f (w) := iPV
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e iwt

t2 − 1
dt +

π
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Mordell-type Representation

Proposition (Bringmann–C–Nazaroglu)

Define the function

Ik,− d
c
(τ) :=

1

πi

∑∗

n∈Z+αk

dk(n)e
− 2πidn

c PV

∫ ∞

0

e2πi(τ+
d
c )t

t − n
dt.

Then we have

uk(τ) + Ek,− d
c
(τ) = Ik,− d

c
(τ).

Question

What is the “principal part” of Ik,− d
c
(τ)?
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Finding the Principal Part

We fix the notation

uj(τ)

η(τ)
=

∞∑
n=0

αj(n)q
n+∆j , ∆0 := − 1

48
, ∆1 :=

23

48
, ∆2 :=

11

12
.

By Cauchy’s theorem, we have

αj(n) =

∫ i+1

i

uj(τ)

η(τ)
e−2πi(n+∆j)τdτ,

Goal: Estimate this integral using Rademacher’s techniques.
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Circle Method: Rademacher’s Path

Using Rademacher’s path of integration (i.e. using Farey arcs of order
N and Ford circles) we have

αj(n) = i
N∑

k=1

k−2
∑

0≤h<k
gcd(h,k)=1

∫ Z2

Z1

uj
(
h
k + iZ

k2

)
η
(
h
k + iZ

k2

) e−2πi(n+∆j )
(

h
k
+ iZ

k2

)
dZ ,

where τ = h
k + iZ

k2 and Z1,Z2 are certain points on the circle of radius
1
2 and center 1

2 .

Using previously derived modular transformations and τ = h′

k + i
Z we

will apply the calculation

uj

(
h

k
+

iZ

k2

)
=

ik

Z

2∑
ℓ=0

ΨMh,k
(j , ℓ)I

ℓ, h
′
k

(
h′

k
+

i

Z

)
.
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Circle Method: Principal Parts

Using the modular transformation for the eta function,

αj(n) =
2∑

ℓ=0

N∑
k=1

k− 3
2

∑
0≤h<k

gcd(h,k)=1

e
3πi
4 ΨMh,k (j , ℓ)

νη(Mh,k)

·
∫ Z2

Z1

Z− 1
2

I
ℓ, h

′
k

(
h′

k
+ i

Z

)
η
(
h′
k
+ i

Z

) e
−2πi(n+∆j )

(
h
k
+ iZ

k2

)
dZ .

We now split off the principal parts using Now we split off the
principal part contributions by writing

I
ℓ, h

′
k

(
h′

k + i
Z

)
η
(
h′

k + i
Z

) = e−
πih′
12k I∗

ℓ, h
′
k
, 1
24

(
h′

k
+

i

Z

)
+ e−

πih′
12k Ie

ℓ, h
′
k
, 1
24

(
h′

k
+

i

Z

)

+ I
ℓ, h

′
k

(
h′

k
+

i

Z

)(
1

η
(
h′

k + i
Z

) − e
−πi

12

(
h′
k
+ i

Z

))
.
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William Craig (Universität zu Köln) PSP Partitions February 29, 2024 36 / 40



Circle Method: Principal Parts

Using the modular transformation for the eta function,

αj(n) =
2∑

ℓ=0

N∑
k=1

k− 3
2

∑
0≤h<k

gcd(h,k)=1

e
3πi
4 ΨMh,k (j , ℓ)

νη(Mh,k)

·
∫ Z2

Z1

Z− 1
2

I
ℓ, h

′
k

(
h′

k
+ i

Z

)
η
(
h′
k
+ i

Z

) e
−2πi(n+∆j )

(
h
k
+ iZ

k2

)
dZ .

We now split off the principal parts using Now we split off the
principal part contributions by writing

I
ℓ, h

′
k

(
h′

k + i
Z

)
η
(
h′

k + i
Z

) = e−
πih′
12k I∗

ℓ, h
′
k
, 1
24

(
h′

k
+

i

Z

)
+ e−

πih′
12k Ie

ℓ, h
′
k
, 1
24

(
h′

k
+

i

Z

)

+ I
ℓ, h

′
k

(
h′

k
+

i

Z

)(
1

η
(
h′

k + i
Z

) − e
−πi

12

(
h′
k
+ i

Z

))
.
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Circle Method: Error Estimation

After estimating the error terms and setting N = ⌊
√
n⌋, we obtain

αj(n) =
2∑

ℓ=0

⌊
√
n⌋∑

k=1

k−
3
2

∑
0≤h<k

gcd(h,k)=1

e
3πi
4 ΨMh,k

(j , ℓ)

νη(Mh,k)
e−

πih′
12k

×
∫ Z2

Z1

Z− 1
2I∗

ℓ, h
′
k
, 1
24

(
h′

k
+

i

Z

)
e
−2πi(n+∆j )

(
h
k
+ iZ

k2

)
dZ + O

(
n

3
4

)
.
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Final Theorem

Theorem (Bringmann–C–Nazaroglu)

We have

αj(n) = 2(n +∆j)
− 1

4

2∑
ℓ=0

⌊
√
n⌋∑

k=1

1

k

∑
0≤h<k

gcd(h,k)=1

ψh,k(j , ℓ)

× PV

∫ 1
24

0

Φℓ, h
′
k
(t)

(
1

24
− t

) 1
4

I 1
2

(
4π

k

√
(n +∆j)

(
1

24
− t

))
dt + O

(
n

3
4

)
.

where

Φ
ℓ, h

′
k

(t) :=
∑∗

n∈Z+αℓ

dℓ(n)e
2πih′n

k

t − n
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Open Questions

Combinatorial explanation for inequalities between PSP’s:

poded (n) < pedod(n) < peuod(n) < poued (n)

< podeu (n) < poueu (n) < pedou(n) < peuou(n).

Modifications with congruence properties similar to EO(n)?

Connections between hypergeometric representations and Jacobi
properties?
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End of Talk

Questions?
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