Seaweed Algebras and Partitions

William L. Craig
University of Virginia
January 27th, 2022

Partitions

Definition

- A partition of $n \in \mathbb{Z}_{\geq 0}$ is a non-increasing sequence summing to n,

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)
$$

Partitions

Definition

- A partition of $n \in \mathbb{Z}_{\geq 0}$ is a non-increasing sequence summing to n,

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)
$$

- The partition function is $p(n):=\#\{\lambda \vdash n\}$.

Partitions

Definition

- A partition of $n \in \mathbb{Z}_{\geq 0}$ is a non-increasing sequence summing to n,

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)
$$

- The partition function is $p(n):=\#\{\lambda \vdash n\}$.

Example

We have $p(4)=5$ since

$$
4=3+1=2+2=2+1+1=1+1+1+1
$$

A Theme From Euler

Fact (Euler)

- We have

$$
\sum_{\lambda} q^{|\lambda|}=\sum_{n \geq 0} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

A Theme From Euler

Fact (Euler)

- We have

$$
\sum_{\lambda} q^{|\lambda|}=\sum_{n \geq 0} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

- For $\ell(\lambda):=\#$ parts of λ,

$$
\sum_{\lambda}(-1)^{\ell(\lambda)} q^{|\lambda|}=\prod_{n=1}^{\infty} \frac{1}{1+q^{n}}
$$

A Theme From Euler

Fact (Euler)

Let $\mathcal{D}=\{\lambda$: distinct parts $\}$.

- We have

$$
\sum_{\lambda \in \mathcal{D}} q^{|\lambda|}=\prod_{n=1}^{\infty}\left(1+q^{n}\right)
$$

A Theme From Euler

Fact (Euler)

Let $\mathcal{D}=\{\lambda$: distinct parts $\}$.

- We have

$$
\sum_{\lambda \in \mathcal{D}} q^{|\lambda|}=\prod_{n=1}^{\infty}\left(1+q^{n}\right) .
$$

- We have

$$
\sum_{\lambda \in \mathcal{D}}(-1)^{\ell(\lambda)} q^{|\lambda|}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

A Theme From Euler

Definition

The q-Pochhammer symbol is $(a ; q)_{\infty}:=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)$.

A Theme From Euler

Definition

The q-Pochhammer symbol is $(a ; q)_{\infty}:=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)$.

Example

Euler's identities are

$$
\begin{array}{ll}
\sum_{\lambda} q^{|\lambda|}=(q ; q)_{\infty}^{-1} & \sum_{\lambda}(-1)^{\ell(\lambda)} q^{|\lambda|}=(-q ; q)_{\infty}^{-1} \\
\sum_{\lambda \in \mathcal{D}} q^{|\lambda|}=(-q ; q)_{\infty} & \sum_{\lambda \in \mathcal{D}}(-1)^{\ell(\lambda)} q^{|\lambda|}=(q ; q)_{\infty}
\end{array}
$$

A Theme From Euler

Definition

The q-Pochhammer symbol is $(a ; q)_{\infty}:=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)$.

Example

Euler's identities are

$$
\begin{array}{ll}
\sum_{\lambda} q^{|\lambda|}=(q ; q)_{\infty}^{-1} & \sum_{\lambda}(-1)^{\ell(\lambda)} q^{|\lambda|}=(-q ; q)_{\infty}^{-1} \\
\sum_{\lambda \in \mathcal{D}} q^{|\lambda|}=(-q ; q)_{\infty} & \sum_{\lambda \in \mathcal{D}}(-1)^{\ell(\lambda)} q^{|\lambda|}=(q ; q)_{\infty}
\end{array}
$$

A Theme From Euler

Example

We have the q-series expansions

$$
(-q ; q)_{\infty}^{-1}=\sum_{\lambda}(-1)^{\ell(\lambda)} q^{|\lambda|}=1-q-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+2 q^{8}-2 q^{9}+\ldots
$$

and

$$
(q ; q)_{\infty}=\sum_{\lambda \in \mathcal{D}}(-1)^{\ell(\lambda)} q^{|\lambda|}=1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+\ldots
$$

A Theme From Euler

Example

We have the q-series expansions

$$
(-q ; q)_{\infty}^{-1}=\sum_{\lambda}(-1)^{\ell(\lambda)} q^{|\lambda|}=1-q-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+2 q^{8}-2 q^{9}+\ldots
$$

and

$$
(q ; q)_{\infty}=\sum_{\lambda \in \mathcal{D}}(-1)^{\ell(\lambda)} q^{|\lambda|}=1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+\ldots
$$

A Theme From Euler

Example

We have the q-series expansions
$(-q ; q)_{\infty}^{-1}=\sum_{\lambda}(-1)^{\ell(\lambda)} q^{|\lambda|}=1-q-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+2 q^{8}-2 q^{9}+\ldots$
and

$$
(q ; q)_{\infty}=\sum_{\lambda \in \mathcal{D}}(-1)^{\ell(\lambda)} q^{|\lambda|}=1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+\ldots
$$

Remark

The signs of these coefficients are eventually periodic.

An Example of Coll-Mayers-Mayers

Definition

For $(a, b ; q)_{\infty}:=(a ; q)_{\infty}(b ; q)_{\infty}$, define

$$
G(q):=\left(q,-q^{3} ; q^{4}\right)_{\infty}^{-1}=\prod_{n=0}^{\infty} \frac{1}{1+(-1)^{n+1} q^{2 n+1}}
$$

An Example of Coll-Mayers-Mayers

Definition

For $(a, b ; q)_{\infty}:=(a ; q)_{\infty}(b ; q)_{\infty}$, define

$$
G(q):=\left(q,-q^{3} ; q^{4}\right)_{\infty}^{-1}=\prod_{n=0}^{\infty} \frac{1}{1+(-1)^{n+1} q^{2 n+1}}
$$

Fact

- Expanding the product as a sum,

$$
G(q)=1+q+q^{2}+q^{5}+2 q^{6}+q^{7}+2 q^{10}+2 q^{11}+q^{12}+q^{14}+\ldots
$$

An Example of Coll-Mayers-Mayers

Definition

For $(a, b ; q)_{\infty}:=(a ; q)_{\infty}(b ; q)_{\infty}$, define

$$
G(q):=\left(q,-q^{3} ; q^{4}\right)_{\infty}^{-1}=\prod_{n=0}^{\infty} \frac{1}{1+(-1)^{n+1} q^{2 n+1}}
$$

Fact

- Expanding the product as a sum,

$$
G(q)=1+q+q^{2}+q^{5}+2 q^{6}+q^{7}+2 q^{10}+2 q^{11}+q^{12}+q^{14}+\ldots
$$

An Example of Coll-Mayers-Mayers

Definition

For $(a, b ; q)_{\infty}:=(a ; q)_{\infty}(b ; q)_{\infty}$, define

$$
G(q):=\left(q,-q^{3} ; q^{4}\right)_{\infty}^{-1}=\prod_{n=0}^{\infty} \frac{1}{1+(-1)^{n+1} q^{2 n+1}}
$$

Fact

- Expanding the product as a sum,

$$
G(q)=1+q+q^{2}+q^{5}+2 q^{6}+q^{7}+2 q^{10}+2 q^{11}+q^{12}+q^{14}+\ldots
$$

- For $\mathcal{O D}=\{\lambda$: odd distinct parts $\}$,

$$
G(q)^{-1}=\left(q,-q^{3} ; q^{4}\right)_{\infty}=\sum_{\lambda \in \mathcal{O D}}(-1)^{\#\left\{\lambda_{i} \equiv 1 \bmod 4\right\}} q^{|\lambda|}
$$

A Natural Question

Question

Does $G(q)$ directly count anything?

A Natural Question

Question

Does $G(q)$ directly count anything?

Conjecture (Coll, Mayers, Mayers (2018))

Yes, $G(q)$ counts a parity bias arising from certain Lie algebras.

Lie Algebras

Definition

A Lie algebra is a vector space \mathfrak{g} along with a bilinear bracket $[\cdot, \cdot]$ satisfying $[X, Y]=-[Y, X]$ and the Jacobi identity

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0 .
$$

Lie Algebras

Definition

A Lie algebra is a vector space \mathfrak{g} along with a bilinear bracket $[\cdot, \cdot]$ satisfying $[X, Y]=-[Y, X]$ and the Jacobi identity

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0 .
$$

Examples

- $\mathfrak{g l}(n):=\operatorname{Mat}(n)$ with $[X, Y]=X Y-Y X$.

Lie Algebras

Definition

A Lie algebra is a vector space \mathfrak{g} along with a bilinear bracket $[\cdot, \cdot]$ satisfying $[X, Y]=-[Y, X]$ and the Jacobi identity

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0 .
$$

Examples

- $\mathfrak{g l}(n):=\operatorname{Mat}(n)$ with $[X, Y]=X Y-Y X$.
- Vector subspaces of $\mathfrak{g l}(n)$ closed under $[\cdot, \cdot]$.

Lie Algebras

Definition

A Lie algebra is a vector space \mathfrak{g} along with a bilinear bracket $[\cdot, \cdot]$ satisfying $[X, Y]=-[Y, X]$ and the Jacobi identity

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0 .
$$

Examples

- $\mathfrak{g l}(n):=\operatorname{Mat}(n)$ with $[X, Y]=X Y-Y X$.
- Vector subspaces of $\mathfrak{g l}(n)$ closed under $[\cdot, \cdot]$.
- For example, $\mathfrak{s l}(n):=\{X \in \mathfrak{g l}(n): \operatorname{tr}(X)=0\}$

Lie Algebras From Partitions

Example (Partitions of 8)

Let $\lambda=(3,3,2)$ and $\mu=(4,3,1)$. We construct an 8×8 matrix X :

Lie Algebras From Partitions

Example (Partitions of 8)

Let $\lambda=(3,3,2)$ and $\mu=(4,3,1)$. We construct an 8×8 matrix X :

$$
X=\left(\begin{array}{llllllll}
* & *_{3} & *_{3} & 0 & 0 & 0 & 0 & 0 \\
& * & *_{3} & 0 & 0 & 0 & 0 & 0 \\
& & * & 0 & 0 & 0 & 0 & 0 \\
& & & * & & & & \\
& & & & * & & & \\
& & & & & & & \\
& & & & & & & *
\end{array}\right)
$$

Lie Algebras From Partitions

Example (Partitions of 8)

Let $\lambda=(3,3,2)$ and $\mu=(4,3,1)$. We construct an 8×8 matrix X :

$$
X=\left(\begin{array}{cccccccc}
* & *_{3} & *_{3} & 0 & 0 & 0 & 0 & 0 \\
& * & *_{3} & 0 & 0 & 0 & 0 & 0 \\
& & * & 0 & 0 & 0 & 0 & 0 \\
& & & * & *_{3} & *_{3} & 0 & 0 \\
& & & & * & *_{3} & 0 & 0 \\
& & & & & * & 0 & 0 \\
& & & & & & * & \\
& & & & &
\end{array}\right)
$$

Lie Algebras From Partitions

Example (Partitions of 8)

Let $\lambda=(3,3,2)$ and $\mu=(4,3,1)$. We construct an 8×8 matrix X :

$$
X=\left(\begin{array}{cccccccc}
* & *_{3} & *_{3} & 0 & 0 & 0 & 0 & 0 \\
& * & *_{3} & 0 & 0 & 0 & 0 & 0 \\
& & * & 0 & 0 & 0 & 0 & 0 \\
& & & * & *_{3} & *_{3} & 0 & 0 \\
& & & & * & *_{3} & 0 & 0 \\
& & & & & * & 0 & 0 \\
& & & & & & * & *_{2} \\
& & & & & & *
\end{array}\right)
$$

Lie Algebras From Partitions

Example (Partitions of 8)

Let $\lambda=(3,3,2)$ and $\mu=(4,3,1)$. We construct an 8×8 matrix X :

$$
X=\left(\begin{array}{cccccccc}
* & *_{3} & *_{3} & 0 & 0 & 0 & 0 & 0 \\
*_{4} & * & *_{3} & 0 & 0 & 0 & 0 & 0 \\
*_{4} & *_{4} & * & 0 & 0 & 0 & 0 & 0 \\
*_{4} & *_{4} & *_{4} & * & *_{3} & *_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & * & *_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & & * & 0 & 0 \\
0 & 0 & 0 & 0 & & & * & *_{2} \\
0 & 0 & 0 & 0 & & & & *
\end{array}\right)
$$

Lie Algebras From Partitions

Example (Partitions of 8)

Let $\lambda=(3,3,2)$ and $\mu=(4,3,1)$. We construct an 8×8 matrix X :

$$
X=\left(\begin{array}{cccccccc}
* & *_{3} & *_{3} & 0 & 0 & 0 & 0 & 0 \\
*_{4} & * & *_{3} & 0 & 0 & 0 & 0 & 0 \\
*_{4} & *_{4} & * & 0 & 0 & 0 & 0 & 0 \\
*_{4} & *_{4} & *_{4} & * & *_{3} & *_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & * & *_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & *_{3} & * & 0 & 0 \\
0 & 0 & 0 & 0 & *_{3} & *_{3} & * & *_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & *
\end{array}\right)
$$

Lie Algebras From Partitions

Example (Partitions of 8)

Let $\lambda=(3,3,2)$ and $\mu=(4,3,1)$. We construct an 8×8 matrix X :

$$
X=\left(\begin{array}{cccccccc}
* & *_{3} & *_{3} & 0 & 0 & 0 & 0 & 0 \\
*_{4} & * & *_{3} & 0 & 0 & 0 & 0 & 0 \\
*_{4} & *_{4} & * & 0 & 0 & 0 & 0 & 0 \\
*_{4} & *_{4} & *_{4} & * & *_{3} & *_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & * & *_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & *_{3} & * & 0 & 0 \\
0 & 0 & 0 & 0 & *_{3} & *_{3} & * & *_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & *
\end{array}\right)
$$

Definition (Dergachev, Kirillov)

Subsets of $\mathfrak{g l}(n)$ formed this way from $\lambda, \mu \vdash n$ are called seaweed algebras.

Index of a Seaweed

Definition

A meander is an undirected graph G on n vertices whose connected components are all either paths or cycles.

Index of a Seaweed

Definition

A meander is an undirected graph G on n vertices whose connected components are all either paths or cycles.

Example

Index of a Seaweed

Definition

A meander is an undirected graph G on n vertices whose connected components are all either paths or cycles.

Example

The meander above has one cycle and two paths.

Index of a Seaweed

Theorem (Dergachev, Kirillov (2000))

Let \mathfrak{g} be the seaweed algebra arising from λ, μ.

Index of a Seaweed

Theorem (Dergachev, Kirillov (2000))
Let \mathfrak{g} be the seaweed algebra arising from λ, μ.

- \mathfrak{g} has a naturally associated meander \mathcal{M}.

Index of a Seaweed

Theorem (Dergachev, Kirillov (2000))

Let \mathfrak{g} be the seaweed algebra arising from λ, μ.

- \mathfrak{g} has a naturally associated meander \mathcal{M}.
- The index of \mathfrak{g} depends only on the component structure of \mathcal{M}.

Index of a Seaweed

Theorem (Dergachev, Kirillov (2000))

Let \mathfrak{g} be the seaweed algebra arising from λ, μ.

- \mathfrak{g} has a naturally associated meander \mathcal{M}.
- The index of \mathfrak{g} depends only on the component structure of \mathcal{M}.
- If \mathcal{M} has C cycles and P paths,

$$
\operatorname{ind}(\mathfrak{g})=2 C+P-1
$$

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

Partitions and Meanders

Example

We construct the meander associated to $\lambda=(3,3,2)$ and $\mu=(4,3,1)$:

The associated seaweed algebra has index $2(0)+2-1=1$.

Index as a Partition Statistic

Index as a Partition Statistic

Question

- What properties does $\operatorname{ind}_{\mu}(\lambda)$ have as a partition statistic?

Index as a Partition Statistic

Question

- What properties does $\operatorname{ind}_{\mu}(\lambda)$ have as a partition statistic?
- Natural maps f for which $\operatorname{ind}_{f(\lambda)}(\lambda)$ is interesting?

Index as a Partition Statistic

Question

- What properties does $\operatorname{ind}_{\mu}(\lambda)$ have as a partition statistic?
- Natural maps f for which $\operatorname{ind}_{f(\lambda)}(\lambda)$ is interesting?

Fact (Coll, Mayers, Mayers)

 $\operatorname{ind}_{(1,1, \ldots, 1)}(\lambda)$ is connected to 2 -color partitions.
The Main Conjecture

Conjecture (Coll-Mayers-Mayers Conjecture)

Let $\mathcal{O}=\{\lambda$: odd parts $\}$ and ind $(\lambda):=\operatorname{ind}_{(n)}(\lambda)$. If $o(n)($ resp. $e(n))$ is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index,

The Main Conjecture

Conjecture (Coll-Mayers-Mayers Conjecture)

Let $\mathcal{O}=\{\lambda$: odd parts $\}$ and ind $(\lambda):=\operatorname{ind}_{(n)}(\lambda)$. If o(n) (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index, Then

$$
G(q)=\left(q,-q^{3} ; q^{4}\right)_{\infty}^{-1}=\sum_{n \geq 0}|o(n)-e(n)| q^{n} .
$$

Conjecture is True Up to Sign

Theorem (Seo, Yee (2019))

We have

$$
G(q)=\sum_{n \geq 0}(-1)^{\left\lceil\frac{n}{2}\right\rceil}(o(n)-e(n)) q^{n} .
$$

Conjecture is True Up to Sign

Theorem (Seo, Yee (2019))

We have

$$
G(q)=\sum_{n \geq 0}(-1)^{\left\lceil\frac{n}{2}\right\rceil}(o(n)-e(n)) q^{n}
$$

Remark

Later, $(-1)^{\left\lceil\frac{n}{2}\right\rceil}$ leads to eventually periodic signs for $o(n)-e(n)$.

Conjecture is True Up to Sign

- Vertices of \mathcal{M} not hit by a top edge arise from odd parts of λ.

Conjecture is True Up to Sign

- Vertices of \mathcal{M} not hit by a top edge arise from odd parts of λ. Thus for op $(\lambda):=\#$ odd parts,

$$
P=\frac{\mathrm{op}(\lambda)+\mathrm{op}(\mu)}{2} .
$$

Conjecture is True Up to Sign

- Vertices of \mathcal{M} not hit by a top edge arise from odd parts of λ. Thus for op $(\lambda):=\#$ odd parts,

$$
P=\frac{\mathrm{op}(\lambda)+\mathrm{op}(\mu)}{2} .
$$

- Since $\operatorname{ind}_{\mu}(\lambda)=2 C+P-1 \equiv P-1(\bmod 2)$,

Conjecture is True Up to Sign

- Vertices of \mathcal{M} not hit by a top edge arise from odd parts of λ. Thus for op $(\lambda):=\#$ odd parts,

$$
P=\frac{\mathrm{op}(\lambda)+\mathrm{op}(\mu)}{2}
$$

- Since $\operatorname{ind}_{\mu}(\lambda)=2 C+P-1 \equiv P-1(\bmod 2)$,

$$
o(n)-e(n)=\left\{\begin{array}{lll}
N_{0}(n)-N_{2}(n) & \text { if } n \equiv 0 & (\bmod 2) \\
N_{3}(n)-N_{1}(n) & \text { if } n \equiv 1 & (\bmod 2)
\end{array}\right.
$$

where $N_{k}(n):=\#\{\lambda \in \mathcal{O}:$ op $(\lambda) \equiv k \bmod 4\}$.

Conjecture is True Up to Sign

- Vertices of \mathcal{M} not hit by a top edge arise from odd parts of λ. Thus for op $(\lambda):=\#$ odd parts,

$$
P=\frac{\mathrm{op}(\lambda)+\mathrm{op}(\mu)}{2}
$$

- Since $\operatorname{ind}_{\mu}(\lambda)=2 C+P-1 \equiv P-1(\bmod 2)$,

$$
o(n)-e(n)=\left\{\begin{array}{lll}
N_{0}(n)-N_{2}(n) & \text { if } n \equiv 0 & (\bmod 2) \\
N_{3}(n)-N_{1}(n) & \text { if } n \equiv 1 & (\bmod 2)
\end{array}\right.
$$

where $N_{k}(n):=\#\{\lambda \in \mathcal{O}:$ op $(\lambda) \equiv k \bmod 4\}$.

- Using generating functions for $N_{k}(n)$,

$$
G(q)=\sum_{n \geq 0}(-1)^{\left\lceil\frac{n}{2}\right\rceil}(o(n)-e(n))
$$

A Theorem of Chern

A Theorem of Chern

Theorem (Chern (2019))
For $G(q)=: \sum_{n \geq 0} a(n) q^{n}$, we have $a(n) \geq 0$ for all $n>2.4 \times 10^{14}$.

A Theorem of Chern

Theorem (Chern (2019))

For $G(q)=: \sum_{n \geq 0} a(n) q^{n}$, we have $a(n) \geq 0$ for all $n>2.4 \times 10^{14}$. Furthermore, as $n \rightarrow \infty$

$$
a(n) \sim \frac{\pi^{1 / 4} \Gamma(1 / 4)}{2^{9 / 4} 3^{3 / 8} n^{3 / 8}} I_{-3 / 4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right)+(-1)^{n} \frac{\pi^{3 / 4} \Gamma(3 / 4)}{2^{11 / 4} 3^{5 / 8} n^{5 / 8}} I_{-5 / 4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right) .
$$

A Theorem of Chern

Theorem (Chern (2019))

For $G(q)=: \sum_{n \geq 0} a(n) q^{n}$, we have $a(n) \geq 0$ for all $n>2.4 \times 10^{14}$. Furthermore, as $n \rightarrow \infty$

$$
a(n) \sim \frac{\pi^{1 / 4} \Gamma(1 / 4)}{2^{9 / 4} 3^{3 / 8} n^{3 / 8}} I_{-3 / 4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right)+(-1)^{n} \frac{\pi^{3 / 4} \Gamma(3 / 4)}{2^{11 / 4} 3^{5 / 8} n^{5 / 8}} I_{-5 / 4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right) .
$$

Remark

- In principle, "Chern + Good Computer \Longrightarrow Coll-Mayers-Mayers"

A Theorem of Chern

Theorem (Chern (2019))

For $G(q)=: \sum_{n \geq 0} a(n) q^{n}$, we have $a(n) \geq 0$ for all $n>2.4 \times 10^{14}$. Furthermore, as $n \rightarrow \infty$

$$
a(n) \sim \frac{\pi^{1 / 4} \Gamma(1 / 4)}{2^{9 / 4} 3^{3 / 8} n^{3 / 8}} I_{-3 / 4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right)+(-1)^{n} \frac{\pi^{3 / 4} \Gamma(3 / 4)}{2^{11 / 4} 3^{5 / 8} n^{5 / 8}} I_{-5 / 4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right) .
$$

Remark

- In principle, "Chern + Good Computer \Longrightarrow Coll-Mayers-Mayers"
- 2.4×10^{5} took ≈ 9 hours.

Main Theorem

Theorem (C. (2021))

Using a different method, we get

$$
a(n)=\text { Chern's Formula }+ \text { Error, }
$$

Main Theorem

Theorem (C. (2021))

Using a different method, we get

$$
a(n)=\text { Chern's Formula }+ \text { Error },
$$

with error term small enough to show $a(n) \geq 0$ for $n>4800$.

Proof by Circle Method

- By Cauchy's theorem,

$$
a(n)=\frac{1}{2 \pi i} \int_{C} \frac{G(q)}{q^{n+1}} d q
$$

for circles C centered at $q=0$ inside the unit disk.

Proof by Circle Method

- By Cauchy's theorem,

$$
a(n)=\frac{1}{2 \pi i} \int_{C} \frac{G(q)}{q^{n+1}} d q
$$

for circles C centered at $q=0$ inside the unit disk.

- Since $G(q)$ is not modular, we use "Wright's variant" of the circle method to estimate $a(n)$.

Proof by Circle Method

- This variation of Wright's method decomposes $a(n)$ into three integrals

$$
a(n)=\frac{1}{2 \pi i}\left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} d q+\int_{\tilde{C}} \frac{G(q)-\tilde{G}(q)}{q^{n+1}} d q+\int_{C \backslash \tilde{C}} \frac{G(q)}{q^{n+1}} d q\right)
$$

Proof by Circle Method

- This variation of Wright's method decomposes $a(n)$ into three integrals

$$
a(n)=\frac{1}{2 \pi i}\left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} d q+\int_{\tilde{C}} \frac{G(q)-\tilde{G}(q)}{q^{n+1}} d q+\int_{C \backslash \tilde{C}} \frac{G(q)}{q^{n+1}} d q\right)
$$

where

- The major arc \tilde{C} is where $G(q)$ is largest,

Proof by Circle Method

- This variation of Wright's method decomposes $a(n)$ into three integrals

$$
a(n)=\frac{1}{2 \pi i}\left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} d q+\int_{\tilde{C}} \frac{G(q)-\tilde{G}(q)}{q^{n+1}} d q+\int_{C \backslash \tilde{C}} \frac{G(q)}{q^{n+1}} d q\right)
$$

where

- The major arc \tilde{C} is where $G(q)$ is largest,
- The minor arc is the complement of \tilde{C},

Proof by Circle Method

- This variation of Wright's method decomposes $a(n)$ into three integrals

$$
a(n)=\frac{1}{2 \pi i}\left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} d q+\int_{\tilde{C}} \frac{G(q)-\tilde{G}(q)}{q^{n+1}} d q+\int_{C \backslash \tilde{C}} \frac{G(q)}{q^{n+1}} d q\right)
$$

where

- The major arc \tilde{C} is where $G(q)$ is largest,
- The minor arc is the complement of \tilde{C},
- $\tilde{G}(q) \sim G(q)$ on \tilde{C} as $|q| \rightarrow 1^{-}$.

Proof by Circle Method

- This variation of Wright's method decomposes $a(n)$ into three integrals

$$
a(n)=\frac{1}{2 \pi i}\left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} d q+\int_{\tilde{C}} \frac{G(q)-\tilde{G}(q)}{q^{n+1}} d q+\int_{C \backslash \tilde{C}} \frac{G(q)}{q^{n+1}} d q\right)
$$

where

- The major arc \tilde{C} is where $G(q)$ is largest,
- The minor arc is the complement of \tilde{C},
- $\tilde{G}(q) \sim G(q)$ on \tilde{C} as $|q| \rightarrow 1^{-}$.
- Proof uses effective estimates for $G(q)$. (Tedious!)

Asymptotics for $G(q)$

Theorem (C. (2021))

- We have as $z=x+i y \rightarrow 0$ on the major arc $0<|y|<30 x<\pi$ that

$$
G(q) \sim \tilde{G}(q):=\frac{2^{1 / 4} e^{\gamma / 4}}{\sqrt{2 \pi} \Gamma(1 / 4)} \cdot \frac{\exp \left(\frac{\pi^{2}}{48 z}\right)}{z^{1 / 4}} .
$$

Asymptotics for $G(q)$

Theorem (C. (2021))

- We have as $z=x+i y \rightarrow 0$ on the major arc $0<|y|<30 x<\pi$ that

$$
G(q) \sim \tilde{G}(q):=\frac{2^{1 / 4} e^{\gamma / 4}}{\sqrt{2 \pi} \Gamma(1 / 4)} \cdot \frac{\exp \left(\frac{\pi^{2}}{48 z}\right)}{z^{1 / 4}} .
$$

- For z on the major arc with $0<x<\frac{\pi}{480}$,

$$
|G(q)-\tilde{G}(q)|<\frac{23}{10} x^{1 / 4} \exp \left(\frac{\pi^{2}}{48 x}+\frac{\sqrt{901}}{2} x+\frac{217}{5} x^{2}\right) .
$$

Asymptotics for $G(q)$

Theorem (C. (2021))

- We have as $z=x+i y \rightarrow 0$ on the major arc $0<|y|<30 x<\pi$ that

$$
G(q) \sim \tilde{G}(q):=\frac{2^{1 / 4} e^{\gamma / 4}}{\sqrt{2 \pi} \Gamma(1 / 4)} \cdot \frac{\exp \left(\frac{\pi^{2}}{4 z}\right)}{z^{1 / 4}} .
$$

- For z on the major arc with $0<x<\frac{\pi}{480}$,

$$
|G(q)-\tilde{G}(q)|<\frac{23}{10} x^{1 / 4} \exp \left(\frac{\pi^{2}}{48 x}+\frac{\sqrt{901}}{2} x+\frac{217}{5} x^{2}\right) .
$$

Remark

- $\tilde{G}(q)$ connects to the modified Bessel function $I_{-3 / 4}(z)$.

Asymptotics for $G(q)$

Theorem (C. (2021))

- We have as $z=x+i y \rightarrow 0$ on the major arc $0<|y|<30 x<\pi$ that

$$
G(q) \sim \tilde{G}(q):=\frac{2^{1 / 4} e^{\gamma / 4}}{\sqrt{2 \pi} \Gamma(1 / 4)} \cdot \frac{\exp \left(\frac{\pi^{2}}{4 z}\right)}{z^{1 / 4}} .
$$

- For z on the major arc with $0<x<\frac{\pi}{480}$,

$$
|G(q)-\tilde{G}(q)|<\frac{23}{10} x^{1 / 4} \exp \left(\frac{\pi^{2}}{48 x}+\frac{\sqrt{901}}{2} x+\frac{217}{5} x^{2}\right) .
$$

Remark

- $\tilde{G}(q)$ connects to the modified Bessel function $I_{-3 / 4}(z)$.
- $0<x<\frac{\pi}{480}$ gives rise to $n>4800$.

Asymptotics for $G(q)$

- By Euler-Maclaurin summation,

$$
\sum_{n=a}^{b} f(n) \sim \int_{a}^{b} f(x) d x+\frac{f(b)+f(a)}{2}+\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!}\left(f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right) .
$$

Asymptotics for $G(q)$

- By Euler-Maclaurin summation,

$$
\sum_{n=a}^{b} f(n) \sim \int_{a}^{b} f(x) d x+\frac{f(b)+f(a)}{2}+\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!}\left(f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right) .
$$

- If $f(z) \sim \sum_{n=0}^{\infty} c_{n} z^{n}$ as $z \rightarrow 0$, we have for $0<a \leq 1$ that

$$
\sum_{n \geq 0} f((n+a) z) \sim \frac{1}{z} \int_{0}^{\infty} f(x) d x-\sum_{n=0}^{\infty} \frac{c_{n} B_{n+1}(a)}{(n+1)!} z^{n}
$$

Asymptotics for $G(q)$

- Suppose $f(z) \sim \sum_{n=n_{0}}^{\infty} c_{n} z^{n}$ as $z \rightarrow 0$. Then $\sum_{n \geq 0} f((n+a) z)$ is

Asymptotics for $G(q)$

- Suppose $f(z) \sim \sum_{n=n_{0}}^{\infty} c_{n} z^{n}$ as $z \rightarrow 0$. Then $\sum_{n \geq 0} f((n+a) z)$ is

$$
\sum_{n=n_{0}}^{-2} c_{n} \zeta(-n, a) z^{n}
$$

Asymptotics for $G(q)$

- Suppose $f(z) \sim \sum_{n=n_{0}}^{\infty} c_{n} z^{n}$ as $z \rightarrow 0$. Then $\sum_{n \geq 0} f((n+a) z)$ is

$$
\sum_{n=n_{0}}^{-2} c_{n} \zeta(-n, a) z^{n}-\frac{c_{-1}}{z}(\log (A z)+\psi(a)+\gamma)
$$

Asymptotics for $G(q)$

- Suppose $f(z) \sim \sum_{n=n_{0}}^{\infty} c_{n} z^{n}$ as $z \rightarrow 0$. Then $\sum_{n \geq 0} f((n+a) z)$ is

$$
\sum_{n=n_{0}}^{-2} c_{n} \zeta(-n, a) z^{n}-\frac{c_{-1}}{z}(\log (A z)+\psi(a)+\gamma)+\frac{l_{f, A}^{*}}{z}-\sum_{n=0}^{\infty} c_{n} \frac{B_{n+1}(a)}{n+1} z^{n}
$$

Asymptotics for $G(q)$

- Suppose $f(z) \sim \sum_{n=n_{0}}^{\infty} c_{n} z^{n}$ as $z \rightarrow 0$. Then $\sum_{n \geq 0} f((n+a) z)$ is

$$
\sum_{n=n_{0}}^{-2} c_{n} \zeta(-n, a) z^{n}-\frac{c_{-1}}{z}(\log (A z)+\psi(a)+\gamma)+\frac{I_{f, A}^{*}}{z}-\sum_{n=0}^{\infty} c_{n} \frac{B_{n+1}(a)}{n+1} z^{n}
$$

where $A>0$ and

$$
l_{f, A}^{*}:=\int_{0}^{\infty}\left(f(u)-\sum_{n=n_{0}}^{-2} c_{n} u^{n}-\frac{c_{-1} e^{-A u}}{u}\right) d u
$$

Asymptotics for $G(q)$

- Suppose $f(z) \sim \sum_{n=n_{0}}^{\infty} c_{n} z^{n}$ as $z \rightarrow 0$. Then $\sum_{n \geq 0} f((n+a) z)$ is

$$
\sum_{n=n_{0}}^{-2} c_{n} \zeta(-n, a) z^{n}-\frac{c_{-1}}{z}(\log (A z)+\psi(a)+\gamma)+\frac{l_{f, A}^{*}}{z}-\sum_{n=0}^{\infty} c_{n} \frac{B_{n+1}(a)}{n+1} z^{n}
$$

where $A>0$ and

$$
l_{f, A}^{*}:=\int_{0}^{\infty}\left(f(u)-\sum_{n=n_{0}}^{-2} c_{n} u^{n}-\frac{c_{-1} e^{-A u}}{u}\right) d u
$$

- Using classical Euler-Maclaurin, find explicit error terms $O\left(|z|^{N}\right)$.

Asymptotics for $G(q)$

- For $q=e^{-z}$,

$$
\begin{aligned}
\log (G(q)) & =\log \left(q ; q^{4}\right)_{\infty}^{-1}+\log \left(-q^{3} ; q^{4}\right)_{\infty}^{-1} \\
& =4 z \sum_{m \geq 1} \frac{e^{-m z}}{4 m z\left(1-e^{-4 m z}\right)}+4 z \sum_{m \geq 1} \frac{(-1)^{m} e^{-3 m z}}{4 m z\left(1-e^{-4 m z}\right)}
\end{aligned}
$$

Asymptotics for $G(q)$

- For $q=e^{-z}$,

$$
\begin{aligned}
\log (G(q)) & =\log \left(q ; q^{4}\right)_{\infty}^{-1}+\log \left(-q^{3} ; q^{4}\right)_{\infty}^{-1} \\
& =4 z \sum_{m \geq 1} \frac{e^{-m z}}{4 m z\left(1-e^{-4 m z}\right)}+4 z \sum_{m \geq 1} \frac{(-1)^{m} e^{-3 m z}}{4 m z\left(1-e^{-4 m z}\right)}
\end{aligned}
$$

- Euler-Maclaurin shows $G(q) \sim \tilde{G}(q)$ and bounds $|G(q)-\tilde{G}(q)|$ via

$$
|\log (G(q))-\log (\tilde{G}(q))| \leq \frac{1}{2}|z|+\frac{7}{5}|z|^{2} .
$$

Sketch of Minor Arc Bound

Theorem (C. (2021))

If $z=x+$ iy satisfies $0<x<\frac{\pi}{480}$ and $30 x \leq|y|<\pi$, then

$$
|G(q)|<\exp \left(\frac{1}{5 x}\right) .
$$

Sketch of Minor Arc Bound

Theorem (C. (2021))

If $z=x+i y$ satisfies $0<x<\frac{\pi}{480}$ and $30 x \leq|y|<\pi$, then

$$
|G(q)|<\exp \left(\frac{1}{5 x}\right) .
$$

- The result would follow from

$$
\operatorname{Re}(\log (G(q)))=\sum_{m \geq 1} \frac{\cos (m y) e^{-m x}}{m\left(1+(-1)^{m} e^{-2 m x}\right)}<\frac{1}{5 x}
$$

Sketch of Minor Arc Bound

Theorem (C. (2021))

If $z=x+$ iy satisfies $0<x<\frac{\pi}{480}$ and $30 x \leq|y|<\pi$, then

$$
|G(q)|<\exp \left(\frac{1}{5 x}\right) .
$$

- The result would follow from

$$
\operatorname{Re}(\log (G(q)))=\sum_{m \geq 1} \frac{\cos (m y) e^{-m x}}{m\left(1+(-1)^{m} e^{-2 m x}\right)}<\frac{1}{5 x}
$$

- This is proven by repeatedly "splitting off" early terms of the infinite sum along with bounds on the denominator arising from the Law of Cosines. \square

Wrapping up the Circle Method

- The main term of $a(n)$ is essentially an I-Bessel function (see Chern), with an error term $E_{\text {main }}(n)$.

Wrapping up the Circle Method

- The main term of $a(n)$ is essentially an I-Bessel function (see Chern), with an error term $E_{\text {main }}(n)$.
- The two other integrals making up $a(n)$ are error terms bounded by $E_{\text {maj }}(n)$ and $E_{\text {min }}(n)$ respectively.

Wrapping up the Circle Method

- $a(n) \geq 0$ follows from

$$
\frac{\pi^{1 / 4} \Gamma(1 / 4)}{2^{9 / 4} 3^{3 / 8} n^{3 / 8}} I_{-3 / 4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right)>E_{\text {main }}(n)+E_{\operatorname{maj}}(n)+E_{\min }(n)
$$

Wrapping up the Circle Method

- $a(n) \geq 0$ follows from

$$
\frac{\pi^{1 / 4} \Gamma(1 / 4)}{2^{9 / 4} 3^{3 / 8} n^{3 / 8}} I_{-3 / 4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right)>E_{\text {main }}(n)+E_{\operatorname{maj}}(n)+E_{\min }(n)
$$

- Follows for $n>4800$ by tedious estimations.

Main Results

Conjecture (Coll-Mayers-Mayers)

Let $\mathcal{O}=\{\lambda$: odd parts $\}$ and ind $(\lambda):=\operatorname{ind}_{(n)}(\lambda)$. If $o(n)$ (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index, then

$$
G(q):=\left(q,-q^{3} ; q^{4}\right)_{\infty}^{-1}=\sum_{n \geq 0}|o(n)-e(n)| q^{n}
$$

Main Results

Conjecture (Coll-Mayers-Mayers)

Let $\mathcal{O}=\{\lambda$: odd parts $\}$ and ind $(\lambda):=\operatorname{ind}_{(n)}(\lambda)$. If o(n) (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index, then

$$
G(q):=\left(q,-q^{3} ; q^{4}\right)_{\infty}^{-1}=\sum_{n \geq 0}|o(n)-e(n)| q^{n}
$$

Theorem (Seo, Yee)

We have

$$
G(q)=\sum_{n \geq 0}(-1)^{\left\lceil\frac{n}{2}\right\rceil}(o(n)-e(n)) q^{n}
$$

Main Results

Conjecture (Coll-Mayers-Mayers)

Let $\mathcal{O}=\{\lambda$: odd parts $\}$ and ind $(\lambda):=\operatorname{ind}_{(n)}(\lambda)$. If o(n) (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index, then

$$
G(q):=\left(q,-q^{3} ; q^{4}\right)_{\infty}^{-1}=\sum_{n \geq 0}|o(n)-e(n)| q^{n}
$$

Theorem (Seo, Yee)

We have

$$
G(q)=\sum_{n \geq 0}(-1)^{\left\lceil\frac{n}{2}\right\rceil}(o(n)-e(n)) q^{n}
$$

Theorem (C.)

The coefficients of $G(q)$ are non-negative.

End of Talk

Thank You!

