Seaweed Algebras and Partitions

William L. Craig

University of Virginia

January 27th, 2022

Will Craig (University of Virginia)

Seaweed Algebras and Partitions

January 27th, 2022

Partitions

Definition

• A partition of $n \in \mathbb{Z}_{\geq 0}$ is a non-increasing sequence summing to n,

$$\lambda = (\lambda_1, \ldots, \lambda_k).$$

Partitions

Definition

• A partition of $n \in \mathbb{Z}_{\geq 0}$ is a non-increasing sequence summing to n,

$$\lambda = (\lambda_1, \ldots, \lambda_k).$$

• The partition function is $p(n) := \#\{\lambda \vdash n\}$.

• A partition of $n \in \mathbb{Z}_{\geq 0}$ is a non-increasing sequence summing to n,

$$\lambda = (\lambda_1, \ldots, \lambda_k).$$

• The partition function is
$$p(n) := \#\{\lambda \vdash n\}$$
.

Example

We have p(4) = 5 since

$$4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.$$

Fact (Euler)

• We have

$$\sum_{\lambda} q^{|\lambda|} = \sum_{n \ge 0} p(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1-q^n}.$$

Fact (Euler)

• We have

$$\sum_{\lambda}q^{|\lambda|}=\sum_{n\geq 0}p(n)q^n=\prod_{n=1}^{\infty}rac{1}{1-q^n}.$$

• For $\ell(\lambda) := \#$ parts of λ ,

$$\sum_{\lambda} \left(-1
ight)^{\ell(\lambda)} q^{|\lambda|} = \prod_{n=1}^{\infty} rac{1}{1+q^n}.$$

3/30

Fact (Euler)

Let $\mathcal{D} = \{\lambda : distinct \ parts\}.$

• We have

$$\sum_{\lambda\in\mathcal{D}}q^{|\lambda|}=\prod_{n=1}^\infty\left(1+q^n
ight).$$

Fact (Euler)

Let $\mathcal{D} = \{\lambda : distinct \ parts\}.$

• We have

$$\sum_{\lambda\in\mathcal{D}}q^{|\lambda|}=\prod_{n=1}^\infty\left(1+q^n
ight).$$

• We have

$$\sum_{\lambda\in\mathcal{D}} {(-1)^{\ell(\lambda)}} q^{|\lambda|} = \prod_{n=1}^\infty \left(1-q^n
ight).$$

The *q*-Pochhammer symbol is $(a; q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n)$.

The *q*-Pochhammer symbol is
$$(a; q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n)$$
.

Example

Euler's identities are

$$egin{aligned} &\sum_{\lambda} q^{|\lambda|} = (q;q)_{\infty}^{-1} &\sum_{\lambda} (-1)^{\ell(\lambda)} \, q^{|\lambda|} = (-q;q)_{\infty}^{-1} \ &\sum_{\lambda \in \mathcal{D}} q^{|\lambda|} = (-q;q)_{\infty} &\sum_{\lambda \in \mathcal{D}} (-1)^{\ell(\lambda)} \, q^{|\lambda|} = (q;q)_{\infty} \end{aligned}$$

The *q*-Pochhammer symbol is
$$(a; q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n)$$
.

Example

Euler's identities are

$$\sum_{\lambda} q^{|\lambda|} = (q;q)_{\infty}^{-1} \qquad \sum_{\lambda} (-1)^{\ell(\lambda)} q^{|\lambda|} = (-q;q)_{\infty}^{-1}$$
 $\sum_{\lambda \in \mathcal{D}} q^{|\lambda|} = (-q;q)_{\infty} \qquad \sum_{\lambda \in \mathcal{D}} (-1)^{\ell(\lambda)} q^{|\lambda|} = (q;q)_{\infty}$

Example

We have the q-series expansions

$$(-q;q)_{\infty}^{-1} = \sum_{\lambda} (-1)^{\ell(\lambda)} q^{|\lambda|} = 1 - q - q^3 + q^4 - q^5 + q^6 - q^7 + 2q^8 - 2q^9 + \dots$$

and

$$(q;q)_{\infty} = \sum_{\lambda \in \mathcal{D}} (-1)^{\ell(\lambda)} q^{|\lambda|} = 1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + \dots$$

Example

We have the q-series expansions

$$(-q;q)_{\infty}^{-1} = \sum_{\lambda} (-1)^{\ell(\lambda)} q^{|\lambda|} = 1 - q - q^3 + q^4 - q^5 + q^6 - q^7 + 2q^8 - 2q^9 + \dots$$

and

$$(q;q)_{\infty} = \sum_{\lambda \in \mathcal{D}} (-1)^{\ell(\lambda)} q^{|\lambda|} = 1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + \dots$$

Example

We have the q-series expansions

$$(-q;q)_{\infty}^{-1} = \sum_{\lambda} (-1)^{\ell(\lambda)} q^{|\lambda|} = 1 - q - q^3 + q^4 - q^5 + q^6 - q^7 + 2q^8 - 2q^9 + \dots$$

and

$$(q;q)_{\infty} = \sum_{\lambda \in \mathcal{D}} (-1)^{\ell(\lambda)} q^{|\lambda|} = 1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + \dots$$

Remark

The signs of these coefficients are eventually periodic.

Definition

For
$$(a, b; q)_{\infty} := (a; q)_{\infty} (b; q)_{\infty}$$
, define
 $G(q) := (q, -q^3; q^4)_{\infty}^{-1} = \prod_{n=0}^{\infty} \frac{1}{1 + (-1)^{n+1} q^{2n+1}}.$

Definition

For
$$(a, b; q)_{\infty} := (a; q)_{\infty} (b; q)_{\infty}$$
, define

$${\it G}(q):=\left(q,-q^3;q^4
ight)_{\infty}^{-1}=\prod_{n=0}^{\infty}rac{1}{1+\left(-1
ight)^{n+1}q^{2n+1}}$$

Fact

• Expanding the product as a sum,

$$G(q) = 1 + q + q^2 + q^5 + 2q^6 + q^7 + 2q^{10} + 2q^{11} + q^{12} + q^{14} + \dots$$

Definition

For
$$(a, b; q)_{\infty} := (a; q)_{\infty} (b; q)_{\infty}$$
, define

$${{{\mathcal G}}(q)}:=\left(q,-q^{3};q^{4}
ight) _{\infty }^{-1}=\prod_{n=0}^{\infty }rac{1}{1+\left(-1
ight) ^{n+1}q^{2n+1}}$$

Fact

• Expanding the product as a sum,

$$G(q) = 1 + q + q^{2} + q^{5} + 2q^{6} + q^{7} + 2q^{10} + 2q^{11} + q^{12} + q^{14} + \dots$$

Definition

For
$$(a, b; q)_{\infty} := (a; q)_{\infty} (b; q)_{\infty}$$
, define

$${{\mathcal G}}(q):=\left(q,-q^3;q^4
ight)_\infty^{-1}=\prod_{n=0}^\inftyrac{1}{1+\left(-1
ight)^{n+1}q^{2n+1}}$$

Fact

• Expanding the product as a sum,

$$G(q) = 1 + q + q^2 + q^5 + 2q^6 + q^7 + 2q^{10} + 2q^{11} + q^{12} + q^{14} + \dots$$

• For $\mathcal{OD} = \{\lambda : odd \ distinct \ parts\},\$

$${G(q)^{-1}} = \left(q, -q^3; q^4
ight)_\infty = \sum_{\lambda \in \mathcal{OD}} {\left(-1
ight)^{\#\{\lambda_i \equiv 1 mod 4\}} q^{|\lambda|}}.$$

Question

Does G(q) directly count anything?

Question

Does G(q) directly count anything?

Conjecture (Coll, Mayers, Mayers (2018))

Yes, G(q) counts a parity bias arising from certain Lie algebras.

A Lie algebra is a vector space g along with a bilinear bracket $[\cdot, \cdot]$ satisfying [X, Y] = -[Y, X] and the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.

A Lie algebra is a vector space \mathfrak{g} along with a bilinear bracket $[\cdot, \cdot]$ satisfying [X, Y] = -[Y, X] and the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.

Examples

•
$$\mathfrak{gl}(n) := \mathsf{Mat}(n)$$
 with $[X, Y] = XY - YX$.

A Lie algebra is a vector space g along with a bilinear bracket $[\cdot, \cdot]$ satisfying [X, Y] = -[Y, X] and the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.

Examples

- $\mathfrak{gl}(n) := Mat(n)$ with [X, Y] = XY YX.
- Vector subspaces of $\mathfrak{gl}(n)$ closed under $[\cdot, \cdot]$.

A Lie algebra is a vector space g along with a bilinear bracket $[\cdot, \cdot]$ satisfying [X, Y] = -[Y, X] and the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.

Examples

- $\mathfrak{gl}(n) := \operatorname{Mat}(n)$ with [X, Y] = XY YX.
- Vector subspaces of $\mathfrak{gl}(n)$ closed under $[\cdot, \cdot]$.
- For example, $\mathfrak{sl}(n) := \{X \in \mathfrak{gl}(n) : tr(X) = 0\}$

	(*	*3	*3	0	0	0	0	0 \	
<i>X</i> =	*4	*	*3	0	0	0	0	0	
	*4	*4	*	0	0	0	0	0	
	*4	*4	*4	*	*3	*3	0	0	
	0	0	0	0	*	*3	0	0	
	0	0	0	0	*3	*	0	0	
	0	0	0	0	*3	*3	*	*2	
	0 /	0	0	0	0	0	0	* /	

Let $\lambda = (3, 3, 2)$ and $\mu = (4, 3, 1)$. We construct an 8×8 matrix X:

	(*	*3	*3	0	0	0	0	0 \	
X =	*4	*	*3	0	0	0	0	0	
	*4	*4	*	0	0	0	0	0	
	*4	*4	*4	*	*3	*3	0	0	
	0	0	0	0	*	*3	0	0	
	0	0	0	0	*3	*	0	0	
	0	0	0	0	*3	*3	*	*2	
	0 /	0	0	0	0	0	0	* /	

Definition (Dergachev, Kirillov)

Subsets of $\mathfrak{gl}(n)$ formed this way from $\lambda, \mu \vdash n$ are called *seaweed algebras*.

Will Craig (University of Virginia)

Seaweed Algebras and Partitions

A *meander* is an undirected graph G on n vertices whose connected components are all either paths or cycles.

A *meander* is an undirected graph G on n vertices whose connected components are all either paths or cycles.

Example

A *meander* is an undirected graph G on n vertices whose connected components are all either paths or cycles.

Example

The meander above has one cycle and two paths.

Theorem (Dergachev, Kirillov (2000))

Let $\mathfrak g$ be the seaweed algebra arising from $\lambda,\mu.$

Theorem (Dergachev, Kirillov (2000))

Let \mathfrak{g} be the seaweed algebra arising from λ, μ .

 $\bullet~\mathfrak{g}$ has a naturally associated meander $\mathcal{M}.$
Theorem (Dergachev, Kirillov (2000))

Let \mathfrak{g} be the seaweed algebra arising from λ, μ .

- $\bullet \ \mathfrak{g}$ has a naturally associated meander $\mathcal{M}.$
- The index of \mathfrak{g} depends only on the component structure of \mathcal{M} .

Theorem (Dergachev, Kirillov (2000))

Let \mathfrak{g} be the seaweed algebra arising from λ, μ .

- \mathfrak{g} has a naturally associated meander \mathcal{M} .
- The index of ${\mathfrak g}$ depends only on the component structure of ${\mathcal M}.$
- If \mathcal{M} has C cycles and P paths,

$$ind(\mathfrak{g}) = 2C + P - 1.$$

We construct the meander associated to $\lambda = (3, 3, 2)$ and $\mu = (4, 3, 1)$:

We construct the meander associated to $\lambda = (3, 3, 2)$ and $\mu = (4, 3, 1)$:

Partitions and Meanders

Example

Partitions and Meanders

Example

Partitions and Meanders

Example

We construct the meander associated to $\lambda = (3, 3, 2)$ and $\mu = (4, 3, 1)$:

We construct the meander associated to $\lambda = (3, 3, 2)$ and $\mu = (4, 3, 1)$:

Will Craig (University of Virginia)

Seaweed Algebras and Partitions

January 27th, 2022

We construct the meander associated to $\lambda = (3, 3, 2)$ and $\mu = (4, 3, 1)$:

We construct the meander associated to $\lambda = (3, 3, 2)$ and $\mu = (4, 3, 1)$:

We construct the meander associated to $\lambda = (3, 3, 2)$ and $\mu = (4, 3, 1)$:

The associated seaweed algebra has index 2(0) + 2 - 1 = 1.

Will Craig (University of Virginia)

Seaweed Algebras and Partitions

Question

• What properties does $\operatorname{ind}_{\mu}(\lambda)$ have as a partition statistic?

Question

- What properties does $\operatorname{ind}_{\mu}(\lambda)$ have as a partition statistic?
- Natural maps f for which $\operatorname{ind}_{f(\lambda)}(\lambda)$ is interesting?

Question

- What properties does $\operatorname{ind}_{\mu}(\lambda)$ have as a partition statistic?
- Natural maps f for which $\operatorname{ind}_{f(\lambda)}(\lambda)$ is interesting?

Fact (Coll, Mayers, Mayers)

 $ind_{(1,1,\ldots,1)}(\lambda)$ is connected to 2-color partitions.

Conjecture (Coll–Mayers–Mayers Conjecture)

Let $\mathcal{O} = \{\lambda : odd \text{ parts}\}\ and ind(\lambda) := ind_{(n)}(\lambda)$. If o(n) (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index,

Conjecture (Coll–Mayers–Mayers Conjecture)

Let $\mathcal{O} = \{\lambda : odd \text{ parts}\}\ and ind(\lambda) := ind_{(n)}(\lambda)$. If o(n) (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index, Then

$$G(q) = \left(q, -q^3; q^4\right)_{\infty}^{-1} = \sum_{n \ge 0} |o(n) - e(n)| q^n.$$

Theorem (Seo, Yee (2019))

We have

$$G(q) = \sum_{n\geq 0} (-1)^{\lceil \frac{n}{2} \rceil} (o(n) - e(n)) q^n.$$

Theorem (Seo, Yee (2019))

We have

$$G(q) = \sum_{n\geq 0} \left(-1\right)^{\left\lceil \frac{n}{2} \right\rceil} \left(o(n) - e(n)\right) q^n.$$

Remark Later, $(-1)^{\lceil \frac{n}{2} \rceil}$ leads to eventually periodic signs for o(n) - e(n).

• Vertices of \mathcal{M} not hit by a top edge arise from odd parts of λ .

Vertices of *M* not hit by a top edge arise from odd parts of λ. Thus for op (λ) := # odd parts,

$$P = \frac{\operatorname{op}(\lambda) + \operatorname{op}(\mu)}{2}.$$

Vertices of *M* not hit by a top edge arise from odd parts of *λ*. Thus for op (*λ*) := # odd parts,

$$P = \frac{\operatorname{op}(\lambda) + \operatorname{op}(\mu)}{2}$$

• Since $\operatorname{ind}_{\mu}(\lambda) = 2C + P - 1 \equiv P - 1 \pmod{2}$,

Vertices of *M* not hit by a top edge arise from odd parts of *λ*. Thus for op (*λ*) := # odd parts,

$$P=\frac{\operatorname{op}\left(\lambda\right)+\operatorname{op}\left(\mu\right)}{2}.$$

• Since $\operatorname{ind}_{\mu}(\lambda) = 2C + P - 1 \equiv P - 1 \pmod{2}$,

$$o(n) - e(n) = egin{cases} N_0(n) - N_2(n) & ext{if } n \equiv 0 \pmod{2}, \ N_3(n) - N_1(n) & ext{if } n \equiv 1 \pmod{2}, \end{cases}$$

where $N_k(n) := \#\{\lambda \in \mathcal{O} : \operatorname{op}(\lambda) \equiv k \mod 4\}.$

Vertices of *M* not hit by a top edge arise from odd parts of *λ*. Thus for op (*λ*) := # odd parts,

$$P=\frac{\operatorname{op}\left(\lambda\right)+\operatorname{op}\left(\mu\right)}{2}.$$

• Since $\operatorname{ind}_{\mu}(\lambda) = 2C + P - 1 \equiv P - 1 \pmod{2}$,

$$o(n) - e(n) = egin{cases} N_0(n) - N_2(n) & ext{if } n \equiv 0 \pmod{2}, \ N_3(n) - N_1(n) & ext{if } n \equiv 1 \pmod{2}, \end{cases}$$

where $N_k(n) := \#\{\lambda \in \mathcal{O} : \operatorname{op}(\lambda) \equiv k \mod 4\}.$

• Using generating functions for $N_k(n)$,

$$G(q) = \sum_{n \ge 0} (-1)^{\lceil \frac{n}{2} \rceil} (o(n) - e(n)). \quad \Box$$

A Theorem of Chern

Will Craig (University of Virginia)

For $G(q) =: \sum_{n>0} a(n)q^n$, we have $a(n) \ge 0$ for all $n > 2.4 \times 10^{14}$.

For $G(q) =: \sum_{n \ge 0} a(n)q^n$, we have $a(n) \ge 0$ for all $n > 2.4 \times 10^{14}$. Furthermore, as $n \to \infty$

$$a(n) \sim \frac{\pi^{1/4} \Gamma(1/4)}{2^{9/4} 3^{3/8} n^{3/8}} I_{-3/4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right) + (-1)^n \frac{\pi^{3/4} \Gamma(3/4)}{2^{11/4} 3^{5/8} n^{5/8}} I_{-5/4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right).$$

For $G(q) =: \sum_{n \ge 0} a(n)q^n$, we have $a(n) \ge 0$ for all $n > 2.4 \times 10^{14}$. Furthermore, as $n \to \infty$

$$a(n) \sim \frac{\pi^{1/4} \Gamma\left(1/4\right)}{2^{9/4} 3^{3/8} n^{3/8}} I_{-3/4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right) + (-1)^n \frac{\pi^{3/4} \Gamma\left(3/4\right)}{2^{11/4} 3^{5/8} n^{5/8}} I_{-5/4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right).$$

Remark

In principle, "Chern + Good Computer ⇒ Coll–Mayers–Mayers"

18 / 30

For $G(q) =: \sum_{n \ge 0} a(n)q^n$, we have $a(n) \ge 0$ for all $n > 2.4 \times 10^{14}$. Furthermore, as $n \to \infty$

$$a(n) \sim \frac{\pi^{1/4} \Gamma(1/4)}{2^{9/4} 3^{3/8} n^{3/8}} I_{-3/4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right) + (-1)^n \frac{\pi^{3/4} \Gamma(3/4)}{2^{11/4} 3^{5/8} n^{5/8}} I_{-5/4}\left(\frac{\pi}{2} \sqrt{\frac{n}{3}}\right).$$

Remark

• In principle, "Chern + Good Computer \implies Coll–Mayers–Mayers" • 2.4×10^5 took ≈ 9 hours.

Theorem (C. (2021))

Using a different method, we get

a(n) = Chern's Formula + Error,

Theorem (C. (2021))

Using a different method, we get

$$a(n) = Chern's Formula + Error,$$

with error term small enough to show $a(n) \ge 0$ for n > 4800.

19/30

• By Cauchy's theorem,

$$a(n) = rac{1}{2\pi i} \int_C rac{G(q)}{q^{n+1}} dq$$

for circles C centered at q = 0 inside the unit disk.

• By Cauchy's theorem,

$$a(n) = \frac{1}{2\pi i} \int_C \frac{G(q)}{q^{n+1}} dq$$

for circles C centered at q = 0 inside the unit disk.

• Since G(q) is not modular, we use "Wright's variant" of the circle method to estimate a(n).

Proof by Circle Method

• This variation of Wright's method decomposes *a*(*n*) into three integrals

$$a(n) = \frac{1}{2\pi i} \left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} dq + \int_{\tilde{C}} \frac{G(q) - \tilde{G}(q)}{q^{n+1}} dq + \int_{C \setminus \tilde{C}} \frac{G(q)}{q^{n+1}} dq \right),$$

21/30

Proof by Circle Method

• This variation of Wright's method decomposes *a*(*n*) into three integrals

$$\mathsf{a}(n) = \frac{1}{2\pi i} \left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} dq + \int_{\tilde{C}} \frac{G(q) - \tilde{G}(q)}{q^{n+1}} dq + \int_{C \setminus \tilde{C}} \frac{G(q)}{q^{n+1}} dq \right),$$

where

• The major arc \tilde{C} is where G(q) is largest,

Proof by Circle Method

• This variation of Wright's method decomposes *a*(*n*) into three integrals

$$\mathsf{a}(n) = \frac{1}{2\pi i} \left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} dq + \int_{\tilde{C}} \frac{G(q) - \tilde{G}(q)}{q^{n+1}} dq + \int_{C \setminus \tilde{C}} \frac{G(q)}{q^{n+1}} dq \right),$$

where

- The major arc \tilde{C} is where G(q) is largest,
- The *minor arc* is the complement of \tilde{C} ,

21/30
Proof by Circle Method

• This variation of Wright's method decomposes *a*(*n*) into three integrals

$$\mathsf{a}(n) = \frac{1}{2\pi i} \left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} dq + \int_{\tilde{C}} \frac{G(q) - \tilde{G}(q)}{q^{n+1}} dq + \int_{C \setminus \tilde{C}} \frac{G(q)}{q^{n+1}} dq \right),$$

where

- The major arc \tilde{C} is where G(q) is largest,
- The minor arc is the complement of \tilde{C} ,

•
$$ilde{G}(q)\sim G(q)$$
 on $ilde{C}$ as $|q|
ightarrow 1^-.$

Proof by Circle Method

 This variation of Wright's method decomposes a(n) into three integrals

$$\mathsf{a}(n) = \frac{1}{2\pi i} \left(\int_{\tilde{C}} \frac{\tilde{G}(q)}{q^{n+1}} dq + \int_{\tilde{C}} \frac{G(q) - \tilde{G}(q)}{q^{n+1}} dq + \int_{C \setminus \tilde{C}} \frac{G(q)}{q^{n+1}} dq \right),$$

where

- The major arc \tilde{C} is where G(q) is largest,
- The minor arc is the complement of \tilde{C} ,
- $ilde{G}(q)\sim G(q)$ on $ilde{C}$ as $|q|
 ightarrow 1^-.$
- Proof uses effective estimates for G(q). (Tedious!)

Theorem (C. (2021))

• We have as $z = x + iy \rightarrow 0$ on the major arc $0 < |y| < 30x < \pi$ that

$$egin{aligned} G(q) \sim ilde{G}(q) \coloneqq rac{2^{1/4}e^{\gamma/4}}{\sqrt{2\pi} \Gamma\left(1/4
ight)} \cdot rac{\exp\left(rac{\pi^2}{48z}
ight)}{z^{1/4}} \end{aligned}$$

Theorem (C. (2021))

• We have as $z = x + iy \rightarrow 0$ on the major arc $0 < |y| < 30x < \pi$ that

$$egin{aligned} G(q) \sim ilde{G}(q) &:= rac{2^{1/4}e^{\gamma/4}}{\sqrt{2\pi}\Gamma\left(1/4
ight)} \cdot rac{\exp\left(rac{\pi^2}{48z}
ight)}{z^{1/4}} \end{aligned}$$

• For z on the major arc with $0 < x < \frac{\pi}{480}$,

$$\left|G(q) - \tilde{G}(q)\right| < \frac{23}{10}x^{1/4}\exp\left(\frac{\pi^2}{48x} + \frac{\sqrt{901}}{2}x + \frac{217}{5}x^2\right).$$

Theorem (C. (2021))

• We have as $z = x + iy \rightarrow 0$ on the major arc $0 < |y| < 30x < \pi$ that

$$G(q)\sim ilde{G}(q):=rac{2^{1/4}e^{\gamma/4}}{\sqrt{2\pi}\Gamma\left(1/4
ight)}\cdotrac{\exp\left(rac{\pi^2}{48z}
ight)}{z^{1/4}}.$$

• For z on the major arc with $0 < x < \frac{\pi}{480}$,

$$\left|G(q) - \tilde{G}(q)\right| < \frac{23}{10}x^{1/4}\exp\left(\frac{\pi^2}{48x} + \frac{\sqrt{901}}{2}x + \frac{217}{5}x^2\right).$$

Remark

• $\tilde{G}(q)$ connects to the modified Bessel function $I_{-3/4}(z)$.

Will Craig (University of Virginia)

Seaweed Algebras and Partitions

Theorem (C. (2021))

• We have as $z = x + iy \rightarrow 0$ on the major arc $0 < |y| < 30x < \pi$ that

$$G(q)\sim ilde{G}(q):=rac{2^{1/4}e^{\gamma/4}}{\sqrt{2\pi}\Gamma\left(1/4
ight)}\cdotrac{\exp\left(rac{\pi^2}{48z}
ight)}{z^{1/4}}.$$

• For z on the major arc with $0 < x < \frac{\pi}{480}$,

$$\left|G(q) - \tilde{G}(q)\right| < \frac{23}{10}x^{1/4}\exp\left(\frac{\pi^2}{48x} + \frac{\sqrt{901}}{2}x + \frac{217}{5}x^2\right).$$

Remark

- $\tilde{G}(q)$ connects to the modified Bessel function $I_{-3/4}(z)$.
- $0 < x < \frac{\pi}{480}$ gives rise to n > 4800.

Will Craig (University of Virginia)

Seaweed Algebras and Partitions

• By Euler-Maclaurin summation,

$$\sum_{n=a}^{b} f(n) \sim \int_{a}^{b} f(x) dx + \frac{f(b) + f(a)}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(f^{(2k-1)}(b) - f^{(2k-1)}(a) \right).$$

• By Euler-Maclaurin summation,

$$\sum_{n=a}^{b} f(n) \sim \int_{a}^{b} f(x) dx + \frac{f(b) + f(a)}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(f^{(2k-1)}(b) - f^{(2k-1)}(a) \right).$$

• If
$$f(z) \sim \sum_{n=0}^{\infty} c_n z^n$$
 as $z o 0$, we have for $0 < a \le 1$ that

$$\sum_{n\geq 0}f\left((n+a)z\right)\sim \frac{1}{z}\int_0^\infty f(x)dx-\sum_{n=0}^\infty \frac{c_nB_{n+1}(a)}{(n+1)!}z^n.$$

• Suppose $f(z) \sim \sum_{n=n_0}^{\infty} c_n z^n$ as $z \to 0$. Then $\sum_{n \ge 0} f((n+a)z)$ is

• Suppose $f(z) \sim \sum_{n=n_0}^{\infty} c_n z^n$ as $z \to 0$. Then $\sum_{n \ge 0} f((n+a)z)$ is

$$\sum_{n=n_0}^{-2} c_n \zeta(-n,a) z^n$$

• Suppose $f(z) \sim \sum_{n=n_0}^{\infty} c_n z^n$ as $z \to 0$. Then $\sum_{n \ge 0} f((n+a)z)$ is

$$\sum_{n=n_0}^{-2} c_n \zeta(-n,a) z^n - \frac{c_{-1}}{z} \left(\log \left(Az \right) + \psi(a) + \gamma \right)$$

• Suppose
$$f(z) \sim \sum_{n=n_0}^{\infty} c_n z^n$$
 as $z \to 0$. Then $\sum_{n\geq 0} f((n+a)z)$ is

$$\sum_{n=n_0}^{-2} c_n \zeta(-n,a) z^n - \frac{c_{-1}}{z} \left(\log \left(Az \right) + \psi(a) + \gamma \right) + \frac{l_{f,A}^*}{z} - \sum_{n=0}^{\infty} c_n \frac{B_{n+1}(a)}{n+1} z^n$$

Asymptotics for $\overline{G(q)}$

• Suppose
$$f(z) \sim \sum_{n=n_0}^{\infty} c_n z^n$$
 as $z \to 0$. Then $\sum_{n \ge 0} f((n+a)z)$ is

$$\sum_{n=n_0}^{-2} c_n \zeta(-n,a) z^n - \frac{c_{-1}}{z} \left(\log \left(Az \right) + \psi(a) + \gamma \right) + \frac{l_{f,A}^*}{z} - \sum_{n=0}^{\infty} c_n \frac{B_{n+1}(a)}{n+1} z^n$$

where A > 0 and

$$I_{f,A}^* := \int_0^\infty \left(f(u) - \sum_{n=n_0}^{-2} c_n u^n - \frac{c_{-1}e^{-Au}}{u} \right) du.$$

• Suppose
$$f(z) \sim \sum_{n=n_0}^{\infty} c_n z^n$$
 as $z \to 0$. Then $\sum_{n \ge 0} f((n+a)z)$ is

$$\sum_{n=n_0}^{-2} c_n \zeta(-n,a) z^n - \frac{c_{-1}}{z} \left(\log \left(Az \right) + \psi(a) + \gamma \right) + \frac{l_{f,A}^*}{z} - \sum_{n=0}^{\infty} c_n \frac{B_{n+1}(a)}{n+1} z^n$$

where A > 0 and

$$I_{f,A}^* := \int_0^\infty \left(f(u) - \sum_{n=n_0}^{-2} c_n u^n - \frac{c_{-1}e^{-Au}}{u} \right) du.$$

• Using classical Euler–Maclaurin, find explicit error terms $O(|z|^N)$.

• For
$$q = e^{-z}$$
,

I

$$\begin{split} \log \left(G(q) \right) &= \log \left(q; q^4 \right)_{\infty}^{-1} + \log \left(-q^3; q^4 \right)_{\infty}^{-1} \\ &= 4z \sum_{m \ge 1} \frac{e^{-mz}}{4mz \left(1 - e^{-4mz} \right)} + 4z \sum_{m \ge 1} \frac{(-1)^m e^{-3mz}}{4mz \left(1 - e^{-4mz} \right)}. \end{split}$$

• For
$$q = e^{-z}$$
,

$$\log (G(q)) = \log (q; q^4)_{\infty}^{-1} + \log (-q^3; q^4)_{\infty}^{-1}$$

= $4z \sum_{m \ge 1} \frac{e^{-mz}}{4mz (1 - e^{-4mz})} + 4z \sum_{m \ge 1} \frac{(-1)^m e^{-3mz}}{4mz (1 - e^{-4mz})}.$

• Euler–Maclaurin shows $G(q)\sim ilde{G}(q)$ and bounds $\left| \, G(q) - ilde{G}(q)
ight|$ via

$$\left|\log\left({\it G}(q)
ight)-\log\left(ilde{{\it G}}(q)
ight)
ight|\leq rac{1}{2}|z|+rac{7}{5}|z|^2.$$
 \Box

Sketch of Minor Arc Bound

Theorem (C. (2021)) If z = x + iy satisfies $0 < x < \frac{\pi}{480}$ and $30x \le |y| < \pi$, then $|G(q)| < \exp\left(\frac{1}{5x}\right).$

Theorem (C. (2021))

If z = x + iy satisfies $0 < x < \frac{\pi}{480}$ and $30x \le |y| < \pi$, then

$$|G(q)| < \exp\left(\frac{1}{5x}\right)$$

• The result would follow from

$$\operatorname{Re}\left(\log\left(G(q)\right)\right) = \sum_{m \ge 1} \frac{\cos(my) e^{-mx}}{m(1 + (-1)^m e^{-2mx})} < \frac{1}{5x}$$

Theorem (C. (2021))

If z = x + iy satisfies $0 < x < \frac{\pi}{480}$ and $30x \le |y| < \pi$, then

$$|G(q)| < \exp\left(\frac{1}{5x}\right)$$

• The result would follow from

$$\operatorname{Re}\left(\log\left(G(q)\right)\right) = \sum_{m \ge 1} \frac{\cos\left(my\right)e^{-mx}}{m\left(1 + (-1)^{m}e^{-2mx}\right)} < \frac{1}{5x}$$

 This is proven by repeatedly "splitting off" early terms of the infinite sum along with bounds on the denominator arising from the Law of Cosines.

• The main term of a(n) is essentially an *I*-Bessel function (see Chern), with an error term $E_{main}(n)$.

• The main term of a(n) is essentially an *I*-Bessel function (see Chern), with an error term $E_{main}(n)$.

• The two other integrals making up a(n) are error terms bounded by $E_{maj}(n)$ and $E_{min}(n)$ respectively.

• $a(n) \ge 0$ follows from

$$\frac{\pi^{1/4}\Gamma(1/4)}{2^{9/4}3^{3/8}n^{3/8}}I_{-3/4}\left(\frac{\pi}{2}\sqrt{\frac{n}{3}}\right) > E_{\text{main}}(n) + E_{\text{maj}}(n) + E_{\text{min}}(n).$$

•
$$a(n) \ge 0$$
 follows from

$$\frac{\pi^{1/4}\Gamma(1/4)}{2^{9/4}3^{3/8}n^{3/8}}I_{-3/4}\left(\frac{\pi}{2}\sqrt{\frac{n}{3}}\right) > E_{\text{main}}(n) + E_{\text{maj}}(n) + E_{\text{min}}(n).$$

• Follows for n > 4800 by tedious estimations.

Main Results

Conjecture (Coll-Mayers-Mayers)

Let $\mathcal{O} = \{\lambda : odd \text{ parts}\}\ and ind(\lambda) := ind_{(n)}(\lambda)$. If o(n) (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index, then

$$G(q) := \left(q, -q^3; q^4\right)_{\infty}^{-1} = \sum_{n \ge 0} |o(n) - e(n)| q^n.$$

Main Results

Conjecture (Coll-Mayers-Mayers)

Let $\mathcal{O} = \{\lambda : odd \text{ parts}\}\ and ind(\lambda) := ind_{(n)}(\lambda)$. If o(n) (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index, then

$$\mathcal{G}(q):=\left(q,-q^3;q^4
ight)_\infty^{-1}=\sum_{n\geq 0}\left|o(n)-e(n)
ight|q^n.$$

Theorem (Seo, Yee)

We have

$$G(q) = \sum_{n\geq 0} (-1)^{\lceil \frac{n}{2} \rceil} (o(n) - e(n)) q^n.$$

Main Results

Conjecture (Coll-Mayers-Mayers)

Let $\mathcal{O} = \{\lambda : odd \text{ parts}\}\ and ind(\lambda) := ind_{(n)}(\lambda)$. If o(n) (resp. e(n)) is the number of $\lambda \in \mathcal{O}$ of size n having odd (resp. even) index, then

$$G(q) := (q, -q^3; q^4)_{\infty}^{-1} = \sum_{n \ge 0} |o(n) - e(n)| q^n.$$

Theorem (Seo, Yee)

We have

$$G(q) = \sum_{n\geq 0} (-1)^{\lceil \frac{n}{2} \rceil} (o(n) - e(n)) q^n.$$

Theorem (C.)

The coefficients of G(q) are non-negative.

Will Craig (University of Virginia)

Seaweed Algebras and Partitions

January 27th, 2022

Thank You!

