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Partitions

Definition

A partition of n ∈ Z≥0 is a non-increasing sequence summing to n,

λ = (λ1, . . . , λk) .

The partition function is p(n) := #{λ ⊢ n}.

Example

We have p(4) = 5 since

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.
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A Theme From Euler

Fact (Euler)

We have ∑
λ

q|λ| =
∑
n≥0

p(n)qn =
∞∏
n=1

1

1− qn
.

For ℓ (λ) := # parts of λ,

∑
λ

(−1)ℓ(λ)q|λ| =
∞∏
n=1

1

1 + qn
.

Will Craig (University of Virginia) Seaweed Algebras and Partitions January 27th, 2022 3 / 30



A Theme From Euler

Fact (Euler)

We have ∑
λ

q|λ| =
∑
n≥0

p(n)qn =
∞∏
n=1

1

1− qn
.

For ℓ (λ) := # parts of λ,

∑
λ

(−1)ℓ(λ)q|λ| =
∞∏
n=1

1

1 + qn
.

Will Craig (University of Virginia) Seaweed Algebras and Partitions January 27th, 2022 3 / 30



A Theme From Euler

Fact (Euler)

Let D = {λ : distinct parts}.
We have ∑

λ∈D
q|λ| =

∞∏
n=1

(1 + qn) .

We have ∑
λ∈D

(−1)ℓ(λ)q|λ| =
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n=1

(1− qn) .
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A Theme From Euler

Definition

The q-Pochhammer symbol is (a; q)∞ :=
∏∞

n=0 (1− aqn).

Example

Euler’s identities are
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A Theme From Euler

Example

We have the q-series expansions

(−q; q)−1
∞ =

∑
λ

(−1)ℓ(λ) q|λ| = 1−q−q3+q4−q5+q6−q7+2q8−2q9 + . . .

and

(q; q)∞ =
∑
λ∈D

(−1)ℓ(λ) q|λ| = 1−q−q2+q5+q7−q12−q15 + . . .

Remark

The signs of these coefficients are eventually periodic.
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An Example of Coll–Mayers–Mayers

Definition

For (a, b; q)∞ := (a; q)∞ (b; q)∞, define

G (q) :=
(
q,−q3; q4

)−1

∞ =
∞∏
n=0

1

1 + (−1)n+1 q2n+1
.

Fact

Expanding the product as a sum,

G (q) =

For OD = {λ : odd distinct parts},

G (q)−1 =
(
q,−q3; q4

)
∞ =

∑
λ∈OD

(−1)#{λi≡1 mod 4}q|λ|.
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A Natural Question

Question

Does G (q) directly count anything?

Conjecture (Coll, Mayers, Mayers (2018))

Yes, G (q) counts a parity bias arising from certain Lie algebras.
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Lie Algebras

Definition

A Lie algebra is a vector space g along with a bilinear bracket [·, ·]
satisfying [X ,Y ] = −[Y ,X ] and the Jacobi identity

[X , [Y ,Z ]] + [Z , [X ,Y ]] + [Y , [Z ,X ]] = 0.

Examples

gl(n) := Mat(n) with [X ,Y ] = XY − YX .

Vector subspaces of gl(n) closed under [·, ·].
For example, sl(n) := {X ∈ gl(n) : tr(X ) = 0}
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Lie Algebras From Partitions

Example (Partitions of 8)

Let λ = (3, 3, 2) and µ = (4, 3, 1). We construct an 8× 8 matrix X :

X =



∗

∗3 ∗3 0 0 0 0 0
∗4

∗

∗3 0 0 0 0 0
∗4 ∗4

∗

0 0 0 0 0
∗4 ∗4 ∗4

∗

∗3 ∗3 0 0
0 0 0 0

∗

∗3 0 0
0 0 0 0 ∗3

∗

0 0
0 0 0 0 ∗3 ∗3

∗

∗2
0 0 0 0 0 0 0

∗



Definition (Dergachev, Kirillov)

Subsets of gl(n) formed this way from λ, µ ⊢ n are called seaweed algebras.
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Index of a Seaweed

Definition

A meander is an undirected graph G on n vertices whose connected
components are all either paths or cycles.

Example

1 2 3 4 5 6

The meander above has one cycle and two paths.
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Index of a Seaweed

Theorem (Dergachev, Kirillov (2000))

Let g be the seaweed algebra arising from λ, µ.

g has a naturally associated meander M.

The index of g depends only on the component structure of M.

If M has C cycles and P paths,

ind (g) = 2C + P − 1.
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Partitions and Meanders

Example

We construct the meander associated to λ = (3, 3, 2) and µ = (4, 3, 1):

v1 v2 v3 v4 v5 v6 v7 v8

3

3

3 3

3

3 2

4 4 4

4 4

4

3

3

3

The associated seaweed algebra has index 2(0) + 2− 1 = 1.
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Index as a Partition Statistic

Question

What properties does indµ (λ) have as a partition statistic?

Natural maps f for which indf (λ) (λ) is interesting?

Fact (Coll, Mayers, Mayers)

ind(1,1,...,1) (λ) is connected to 2-color partitions.
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The Main Conjecture

Conjecture (Coll–Mayers–Mayers Conjecture)

Let O = {λ : odd parts} and ind (λ) := ind(n) (λ). If o(n) (resp. e(n)) is
the number of λ ∈ O of size n having odd (resp. even) index,

Then

G (q) =
(
q,−q3; q4

)−1

∞ =
∑
n≥0

|o(n)− e(n)| qn.
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G (q) =
(
q,−q3; q4

)−1

∞ =
∑
n≥0

|o(n)− e(n)| qn.
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Conjecture is True Up to Sign

Theorem (Seo, Yee (2019))

We have

G (q) =
∑
n≥0

(−1)⌈
n
2
⌉ (o(n)− e(n)) qn.

Remark

Later, (−1)⌈
n
2
⌉ leads to eventually periodic signs for o(n)− e(n).
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Conjecture is True Up to Sign

Vertices of M not hit by a top edge arise from odd parts of λ.

Thus
for op (λ) := # odd parts,

P =
op (λ) + op (µ)

2
.

Since indµ (λ) = 2C + P − 1 ≡ P − 1 (mod 2),

o(n)− e(n) =

{
N0(n)− N2(n) if n ≡ 0 (mod 2),

N3(n)− N1(n) if n ≡ 1 (mod 2),

where Nk(n) := #{λ ∈ O : op (λ) ≡ k mod 4}.
Using generating functions for Nk(n),

G (q) =
∑
n≥0

(−1)⌈
n
2
⌉ (o(n)− e(n)) .

Will Craig (University of Virginia) Seaweed Algebras and Partitions January 27th, 2022 17 / 30



Conjecture is True Up to Sign

Vertices of M not hit by a top edge arise from odd parts of λ. Thus
for op (λ) := # odd parts,

P =
op (λ) + op (µ)

2
.

Since indµ (λ) = 2C + P − 1 ≡ P − 1 (mod 2),

o(n)− e(n) =

{
N0(n)− N2(n) if n ≡ 0 (mod 2),

N3(n)− N1(n) if n ≡ 1 (mod 2),

where Nk(n) := #{λ ∈ O : op (λ) ≡ k mod 4}.
Using generating functions for Nk(n),

G (q) =
∑
n≥0

(−1)⌈
n
2
⌉ (o(n)− e(n)) .

Will Craig (University of Virginia) Seaweed Algebras and Partitions January 27th, 2022 17 / 30



Conjecture is True Up to Sign

Vertices of M not hit by a top edge arise from odd parts of λ. Thus
for op (λ) := # odd parts,

P =
op (λ) + op (µ)

2
.

Since indµ (λ) = 2C + P − 1 ≡ P − 1 (mod 2),

o(n)− e(n) =

{
N0(n)− N2(n) if n ≡ 0 (mod 2),

N3(n)− N1(n) if n ≡ 1 (mod 2),

where Nk(n) := #{λ ∈ O : op (λ) ≡ k mod 4}.
Using generating functions for Nk(n),

G (q) =
∑
n≥0

(−1)⌈
n
2
⌉ (o(n)− e(n)) .

Will Craig (University of Virginia) Seaweed Algebras and Partitions January 27th, 2022 17 / 30



Conjecture is True Up to Sign

Vertices of M not hit by a top edge arise from odd parts of λ. Thus
for op (λ) := # odd parts,

P =
op (λ) + op (µ)

2
.

Since indµ (λ) = 2C + P − 1 ≡ P − 1 (mod 2),

o(n)− e(n) =

{
N0(n)− N2(n) if n ≡ 0 (mod 2),

N3(n)− N1(n) if n ≡ 1 (mod 2),

where Nk(n) := #{λ ∈ O : op (λ) ≡ k mod 4}.

Using generating functions for Nk(n),

G (q) =
∑
n≥0

(−1)⌈
n
2
⌉ (o(n)− e(n)) .

Will Craig (University of Virginia) Seaweed Algebras and Partitions January 27th, 2022 17 / 30



Conjecture is True Up to Sign

Vertices of M not hit by a top edge arise from odd parts of λ. Thus
for op (λ) := # odd parts,

P =
op (λ) + op (µ)

2
.

Since indµ (λ) = 2C + P − 1 ≡ P − 1 (mod 2),

o(n)− e(n) =

{
N0(n)− N2(n) if n ≡ 0 (mod 2),

N3(n)− N1(n) if n ≡ 1 (mod 2),

where Nk(n) := #{λ ∈ O : op (λ) ≡ k mod 4}.
Using generating functions for Nk(n),

G (q) =
∑
n≥0

(−1)⌈
n
2
⌉ (o(n)− e(n)) .

Will Craig (University of Virginia) Seaweed Algebras and Partitions January 27th, 2022 17 / 30



A Theorem of Chern

Theorem (Chern (2019))

For G (q) =:
∑

n≥0 a(n)q
n, we have a(n) ≥ 0 for all n > 2.4× 1014.

Furthermore, as n → ∞

a(n) ∼ π1/4Γ (1/4)

29/433/8n3/8
I−3/4

(
π

2

√
n

3

)
+ (−1)n

π3/4Γ (3/4)

211/435/8n5/8
I−5/4

(
π

2

√
n

3

)
.

Remark

In principle, “Chern + Good Computer =⇒ Coll–Mayers–Mayers”

2.4× 105 took ≈ 9 hours.
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Main Theorem

Theorem (C. (2021))

Using a different method, we get

a(n) = Chern’s Formula+ Error,

with error term small enough to show a(n) ≥ 0 for n > 4800.
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Proof by Circle Method

By Cauchy’s theorem,

a(n) =
1

2πi

∫
C

G (q)

qn+1
dq

for circles C centered at q = 0 inside the unit disk.

Since G (q) is not modular, we use “Wright’s variant” of the circle
method to estimate a(n).
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Proof by Circle Method

This variation of Wright’s method decomposes a(n) into three
integrals

a(n) =
1

2πi

(∫
C̃

G̃ (q)

qn+1
dq +

∫
C̃

G (q)− G̃ (q)

qn+1
dq +

∫
C\C̃

G (q)

qn+1
dq

)
,

where

The major arc C̃ is where G (q) is largest,

The minor arc is the complement of C̃ ,

G̃ (q) ∼ G (q) on C̃ as |q| → 1−.

Proof uses effective estimates for G (q). (Tedious!)
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Asymptotics for G (q)

Theorem (C. (2021))

We have as z = x + iy → 0 on the major arc 0 < |y | < 30x < π that

G (q) ∼ G̃ (q) :=
21/4eγ/4√
2πΓ (1/4)

·
exp

(
π2

48z

)
z1/4

.

For z on the major arc with 0 < x < π
480 ,∣∣∣G (q)− G̃ (q)

∣∣∣ < 23

10
x1/4 exp

(
π2

48x
+

√
901

2
x +

217

5
x2

)
.

Remark

G̃ (q) connects to the modified Bessel function I−3/4(z).

0 < x < π
480 gives rise to n > 4800.
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Asymptotics for G (q)

By Euler–Maclaurin summation,

b∑
n=a

f (n) ∼
∫ b

a

f (x)dx +
f (b) + f (a)

2
+

∞∑
k=1

B2k

(2k)!

(
f (2k−1) (b)− f (2k−1) (a)

)
.

If f (z) ∼
∑∞

n=0 cnz
n as z → 0, we have for 0 < a ≤ 1 that

∑
n≥0

f ((n + a)z) ∼ 1

z

∫ ∞

0
f (x)dx −

∞∑
n=0

cnBn+1(a)

(n + 1)!
zn.
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Asymptotics for G (q)

Suppose f (z) ∼
∑∞

n=n0
cnz

n as z → 0. Then
∑
n≥0

f ((n + a)z) is

−2∑
n=n0

cnζ(−n, a)zn − c−1

z
(log (Az) + ψ(a) + γ) +

I ∗f ,A
z

−
∞∑
n=0

cn
Bn+1(a)

n + 1
zn

where A > 0 and

I ∗f ,A :=

∫ ∞

0

(
f (u)−

−2∑
n=n0

cnu
n − c−1e

−Au

u

)
du.

Using classical Euler–Maclaurin, find explicit error terms O
(
|z |N

)
.
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Asymptotics for G (q)

For q = e−z ,

log (G (q)) = log
(
q; q4

)−1

∞ + log
(
−q3; q4

)−1

∞

= 4z
∑
m≥1

e−mz

4mz (1− e−4mz)
+ 4z

∑
m≥1

(−1)me−3mz

4mz (1− e−4mz)
.

Euler–Maclaurin shows G (q) ∼ G̃ (q) and bounds
∣∣∣G (q)− G̃ (q)

∣∣∣ via
∣∣∣log (G (q))− log

(
G̃ (q)

)∣∣∣ ≤ 1

2
|z |+ 7

5
|z |2.
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Sketch of Minor Arc Bound

Theorem (C. (2021))

If z = x + iy satisfies 0 < x < π
480 and 30x ≤ |y | < π, then

|G (q)| < exp

(
1

5x

)
.

The result would follow from

Re (log (G (q))) =
∑
m≥1

cos (my) e−mx

m (1 + (−1)m e−2mx)
<

1

5x
.

This is proven by repeatedly “splitting off” early terms of the infinite
sum along with bounds on the denominator arising from the Law of
Cosines.
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Wrapping up the Circle Method

The main term of a(n) is essentially an I -Bessel function (see Chern),
with an error term Emain(n).

The two other integrals making up a(n) are error terms bounded by
Emaj(n) and Emin(n) respectively.
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Wrapping up the Circle Method

a(n) ≥ 0 follows from

π1/4Γ (1/4)

29/433/8n3/8
I−3/4

(
π

2

√
n

3

)
> Emain(n) + Emaj(n) + Emin(n).

Follows for n > 4800 by tedious estimations.
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Main Results

Conjecture (Coll–Mayers–Mayers)

Let O = {λ : odd parts} and ind (λ) := ind(n) (λ). If o(n) (resp. e(n)) is
the number of λ ∈ O of size n having odd (resp. even) index, then

G (q) :=
(
q,−q3; q4

)−1

∞ =
∑
n≥0

|o(n)− e(n)| qn.

Theorem (Seo, Yee)

We have

G (q) =
∑
n≥0

(−1)⌈
n
2
⌉ (o(n)− e(n)) qn.

Theorem (C.)

The coefficients of G (q) are non-negative.
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End of Talk

Thank You!
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