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Basic Definitions

The usual first theorem learned by a student in partition theory is

Theorem

The number of partitions of n into odd parts equals the number of
partitions of n which parts are distinct.

Remark: In fact this was roughly the first theorem in partition
theory, proved by Leonhard Euler in his work De Partitio
Numerorum, which first systematically explored the concept.



Basic Definitions

This theorem was generalized by Sylvester and Glaisher, who
proved that

Theorem

The number of partitions of n into parts not divisible by m equals
the number of partitions of n which no part size appears m or more
times.

We call the first type of partition m-regular and the second type
m-distinct. Their generating function is

PR(q) = PD(q) =
∞∏
k=1

1− qmk

1− qk
.



Basic Definitions

Theorem

The number of m-regular partitions of n equals the number of
m-distinct partitions of n.

Glaisher’s proof was bijective:

Proof.

If in an m-distinct partition part jmk appears aj ,k times, m - j ,
aj ,k < m, then write aj ,km

k appearances of j . Reverse by reading
the m-ary expansion of the number of appearances of j .

Let us call the map from distinct to regular partitions φm and its
reverse φm

−1.



Simultaneous Conditions

Interesting maps + Interesting objects = Interesting fixed points

The fixed points of φm and φm
−1 are precisely the partitions that

satisfy both conditions for a given m.

Once we have brought up this notion, curiosity suggests a natural
generalization: what can we do with the partitions simultaneously
s-regular and t-distinct?



Regular and Distinct

The generating function for partitions which are s-regular and
t-distinct is easy to write down: it is

P(s,t)(q) =
∞∑
n=0

p(s,t)(n)qn =
∞∏
i=1

(1− qsk)(1− qtk)

(1− qk)(1− qstk)
.

Think of this as taking partitions into any size of part, removing
from the allowable set those that are divisible by s, and then from
this generating function limiting the number of appearances of
each of the remaining parts. If we do so for all parts we over-limit
by those divisible by s which we removed earlier.



Regular and Distinct (Tangent on Congruences)

Just a quick aside: P(s,t)(q) is an η-quotient, which is a
well-understood class of functions. By work of Stephanie Treneer,
it’s known that all such functions are weakly holomorphic modular
forms, and so we can hope that they will exhibit many
congruences. For instance,

p(2,2)(125n + 99) ≡ 0 (mod 5) (Rødseth)

p(3,3)(4n + 2) ≡ 0 (mod 2)

p(2,5)(4n + 3) ≡ 0 (mod 2) and
∞∑
n=0

p(2,5)(4n + 1)qn ≡
∞∏
i=1

(1− q5k) (mod 2).

All of these can be proved with techniques that are now fairly
standard in the field.



Regular and Distinct

P(s,t)(q) =
∞∑
n=0

p(s,t)(n)qn =
∞∏
i=1

(1− qsk)(1− qtk)

(1− qk)(1− qstk)
.

Notice that P(s,t) is symmetric in s and t. This means

Theorem

The number of partitions of n which are s-regular and t-distinct
equals the number of partitions of n which are t-regular and
s-distinct.



Regular and Distinct

If s and t are coprime, the map which realizes this combinatorially
is φs

−1φt – from an s-regular, t-distinct partition, rewrite parts of
size jtk as parts j appearing tk times with any multiplicities
needed, notice that parts of size j are still not divisible by s, and
rewrite as jsk , which does not introduce divisibilities by t.

Example

Start with (50) as a 6-regular, 5-distinct partition:

(50) −→
φ5

(2, . . . , 2) −→
φ6
−1

(12, 12, 12, 12, 2)



Regular and Regular

Is this a bijection? The intermediate set consists of partitions
simultaneously s-regular and t-regular. Therefore they are suitable
inputs for φt

−1, so the sets are in bijection, and likewise in the
other half of the map.

If we have s and t coprime, then Ps,t(q) is indeed also the
generating function for such partitions. Think of it as removing
parts divisible by s, removing parts divisible by t, and then
replacing those you overcounted.

Notice that for two conditions, distinctness is different from
regularity: s-distinct t-distinct partitions are just min(s, t)-distinct.



Non co-prime

If s and t are not coprime, then Ps,t(q) is not the generating
function for partitions simultaneously s-regular and t-regular;
instead, that function is

∞∏
i=1

(1− qsk)(1− qtk)

(1− qk)(1− qlcm(s,t)k)
.



Non co-prime

Now the map φt preserves s-regularity, but φs
−1 need not preserve

t-regularity. For example, consider (50) as a 6-regular, 10-distinct
partition:

Example

(50) −→
(mod 10)

(5, 5, 5, 5, 5, 5, 5, 5, 5, 5) −→
(mod 6)

(30, 5, 5, 5, 5)



Non co-prime

During a visit to Michigan Tech by Bridget Tenner, of DePaul at
the time, she conjectured that iteration of the map (1) was
well-defined and (2) would realize the symmetry.

Example

(50) −→
φ10

(5, . . . , 5) −→
φ6
−1

(30, 5, 5, 5, 5)

−→
φ10

(5, 5, 5, 5, 3, . . . , 3) −→
φ6
−1

(18, 5, 5, 5, 5, 3, 3, 3, 3)



Non co-prime

This conjecture is interesting and, as I’ll show later, still worthy of
study, but as stated does not hold.

Consider (108, 18, 18, 18, 18) as a 10-regular, 6-distinct partition.
Applying φ6 yields (3, . . . , 3), the part appearing 60 times. Then
φ10
−1 yields (30, 30, 30, 30, 30, 30). This is neither 6-regular nor

6-distinct, so we are not done, but it is not in the domain of φ6.



Realizing the symmetry

So the question is still before us: what is a map that realizes the
symmetry?

This will be the subject of the next part of the talk. Before I go
on, let’s pause and ask for any questions!



Realizing the symmetry

We’ll begin with a simple case and work our way up.

We begin with an s-regular, t-distinct partitions. Let t be
arbitrary, but say that s = p is a prime, presumably one that
divides t. Write t = prk, with p - k .

Suppose that part j appears a + Ck times, 0 ≤ a < k . It is
necessarily true that C < pr .



Realizing the symmetry: s prime

Collect the parts j appearing a times. Since a < k, these form a
partition into parts not divisible by p, appearing less than k times,
and p - k, so we have a p-regular, k-distinct partition with k and p
coprime.

Thus we can apply φp
−1φk and obtain a partition which is

k-regular (hence t-regular) and p-distinct.

Write C = c0p
0 + c1p

1 + · · ·+ cr−1p
r−1, each 0 ≤ ci < p. Now

for each term add to the target partition ci appearances of pikj .
Since j is p-regular, these parts are divisible by k but not prk = t,
so the result is t-regular, and ci < p, so the result is p-distinct.



Realizing the symmetry: s prime

To show that the map is reversible, consider parts divisible and not
divisible by k separately; the first form a k-regular, p-distinct
partition. For those that are divisible by k, divide them by k and
by whatever power pi appears in their factorization; replace them
with the resulting divisor appearing pik times.

The result is p-regular and t-distinct. Notice that parts j can
appear in multiple ways, but different sources yield appearances in
different powers of p.



Realizing the symmetry: s prime

Before we generalize s, let’s look at a quick example. Let
λ = (9, 9, 9, 9, 9, 9, 9, 5, 5) be a 2-regular, 12-distinct partition. We
have t = 22 · 3, so k = 3.

The part 5 appears twice, or 2 + (0) · 3 times. We treat (5, 5) as a
2-regular, 3-distinct partition, and apply φ2

−1φ3. The first map φ3
does nothing, and φ2

−1 produces a distinct part of size 10.

The part 9 appears 7 = 1 + (0 · 20 + 1 · 21) · 3 times. The one
appearance of 9 is treated as the partition (9), and we have
φ2
−1φ3(9) = φ2

−1(1, 1, 1, 1, 1, 1, 1, 1, 1) = (8, 1), and the
(1 · 21) · 3 appearances of 9 becomes 1 appearance of 9 · 21 · 3 = 54.

The final partition is (54, 10, 8, 1), a 12-regular, 2-distinct partition.



Realizing the symmetry: s prime

To reverse from (54, 10, 8, 1), we now consider a 12-regular,
2-distinct partition, so t is prime. We calculate k = 3.

The distinct parts not divisible by 3 are (10, 8, 1), and if we apply
φ3
−1φ2 we get

φ3
−1φ2(10, 8, 1) = φ3

−1(5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1) = (9, 5, 5).

The part 54, divisible by 3, is 21 · 3 · 32, and hence we write
another 21 · 3 appearances of 9. This regains our original partition.



Realizing the symmetry: s = pj

Suppose now that s is a prime power, s = pj . We break into cases:

1 Collect parts not divisible by p and apply the previous map.
We obtain a t-regular, p-distinct partition.

2 Collect parts divisible by p but not p2. Divide by p and apply
the previous map. Multiply all resulting frequencies by p. The
result is t-regular and p2-distinct with frequency divisible by p.

3 Collect parts divisible by p2 but not p3, divide by p2, apply the
previous map, and multiply the resulting frequencies by p2.

4 Etc.



Realizing the symmetry: s = pj

Parts may appear repeatedly in various steps but the sum of their
number of appearances is less than pj , and by writing the p-ary
expansion of the number of appearances, we can break up the
partition into the images of the various steps, and reverse the map
as before.



Realizing the symmetry: general s

Finally, what if s = p1
e1p2

e2 . . . pb
eb?

Any given part is divisible by possibly some but not all of the pi .
We run through a similar recursion process, now with each prime.

Suppose a part is not divisible by p1
e1 . The collection of such parts

forms a p1
e1-regular, t-distinct partition, and we apply the previous

map to obtain a t-regular, p1
e1-distinct partition.



Realizing the symmetry: general s

Next suppose a part is divisible by p1
e1 but not p2

e2 . Divide out
the p1

e1 and treat the collection of such parts as a p2
e2-regular,

t-distinct partition.

Apply the previous map to obtain a t-regular, p2
e2-distinct

partition, and multiply the frequency of appearance by p1
e1 . We

now have a t-regular partition with frequencies of appearance
divisible by p1

e1 but at most p1
e1(p2

e2 − 1).

Gathered with the parts from the previous step, we obtain a
t-regular partition in which frequencies can be anything below
p1

e1p2
e2 .



Realizing the symmetry: general s

Repeat with the remaining primes and we eventually obtain a
t-regular, s-distinct partition, and the desired map is constructed.

�



Questions for thought

What partitions are the fixed point of this symmetry?

For s prime, the parts appearing less than k times (not counting
multiples of k) would be an s-regular, k-distinct partition, which is
fixed only if also k-regular and s-distinct. The parts appearing Ck
times would be multiplied by k so they are never fixed if they exist.

Thus for s-regular, t-distinct partitions with s prime, being fixed
under our map actually requires k-distinctness when t = s jk.

What is the fixedness condition for more complicated s? What is
the generating function for these partitions, and does it have any
nice properties?



Questions for thought

The generating function p2,2(q) is very special: it counts partitions
into distinct odd parts, which are in bijection with self-conjugate
partitions and thus share the parity of the partition function p(n).

The functions Pm,m(q) can share other congruences with P(q): for
instance, p5,5(5n + 4) ≡ 0 (mod 5), as is easily seen since the
coefficients of p5,5(n) can be written as a recurrence in p(n − 5j).



Questions for thought

However, the partitions of 5n + 4 that are 5-regular and 5-distinct
are a nice subset of all partitions of 5n + 4, and the reverse
recurrence can also be written: ergo, if one could find a simple
combinatorial proof of p5,5(5n + 4) ≡ 0 (mod 5) it would
immediately imply the same property for p(n).

(Note: Dyson’s rank and crank are not equidistributed on this class
mod 5. Is another statistic?)



Questions for thought

Under what conditions does
(
φs
−1φt

)`
successfully realize the

symmetry? Does it suffice to have s < t? No: a counterexample is
(5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1) as a 6-regular, 10-distinct partition.

When it does work, is it the map we just constructed? What ` is
required, and can one easily tell from the partition?
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