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The parity of p(n)

The parity of the partition numbers is one of the big open
questions in partition theory. If we define the arithmetic density of
a property T of an integer-indexed sequence {f (n)}∞n=n0

to be

δ(T ) = lim
n→∞

#{k < n|T holds for f (k)},

then the Parkin-Shanks Conjecture or, colloquially, the Fifty-Fifty
Conjecture is that

Conjecture

The densities δ(p(n) ≡ 0 (mod 2)) and δ(p(n) ≡ 1 (mod 2)) both
exist and equal 1/2.



The parity of p(n)

We are very far from settling this conjecture. The best bounds for
the cardinalities of the even and odd partition numbers are from
work of Belläıche and Nicolas:

Theorem

#{n < x |p(n) is even } > c
√

x ln ln x and

#{n < x |p(n) is odd } > c
√
x

(ln x)7/8 .

So we do not even know if the densities, should they exist, are
nonzero.



The parity of p(n)

If we simply look at the residues of the partition numbers mod 2,
there seems to be very little pattern. For instance, here is the
running excess of the number of odd partition numbers less than n
over the number of even partition numbers, plotted up to 10000:
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The parity of p(n)

This is in contrast to the residue of p(n) modulo primes other than
2 or 3, which behaves nicely at least some of the time in the sense
that we have some extremely regular patterns, in the form of the
Ramanujan congruences and their relatives:

p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11)



The parity of p(n)

But for 2 and 3, we now know that there is no such arithmetic
progression, thanks to work of Cristian-Silviu Radu:

Theorem

(Radu) There exists no nonzero integer pair (A,B) such that
p(An + B) ≡ 0 (mod 2) or (mod 3) for all n ≥ 0.

So the intuition is that the parity of p(n) is “essentially random,”
in that the limiting probability of an even or odd value is one-half,
and any algorithm to predict this parity is unlikely to be an order of
magnitude easier than simply calculating p(n).



The parity of p(n)

Given all of this, it seems like it would be interesting to

1 find any pattern at all in the parity of p(n), and

2 find statements involving p(n) whose truth or falsity is
equivalent to the parity conjecture or even a weaker bound.



Multipartitions

The same kind of behavior seems to hold for multipartitions, or
t-colored partitions. A t-tuple of partitions summing overall to n is
a t-multipartition of n, the number of which we will denote by
pt(n). Denote fi =

∏∞
k=1(1− qki ). Then the generating function

of t-multipartitions is 1/f1
t .



Multipartitions

Denote by δt the density of the odd coefficients of the
t-multipartitions. Similar computational evidence suggests

Conjecture

δt exists and equals 1
2 , for any odd positive integer t. Equivalently,

if t = 2kt0 with t0 ≥ 1 odd, then δt exists and equals 2−k−1.

Furthermore, like the partition function, there appear to be no
arithmetic progressions in the multipartitions, for t odd, that are
identically 0 mod 2.



Ramanujan-Kolberg identities

A few years ago Fabrizio Zanello and I proved a set of identities
relating the parity of arithmetic progressions in partitions and
multipartitions (from here out all congruences are mod 2 unless
otherwise stated):

Theorem

The congruence

q
∞∑
n=0

pt(an + b)qn ≡ 1

f1
at +

1

fa
t

holds for the following triples (a, b, t): (5,4,1), (7,5,1), (11,6,1),
(13,6,1), (17,5,1), (19,4,1), (23,1,1), (3,2,3), (5,2,3), (7,1,3),
(5,0,5), and (3,0,9).



Ramanujan-Kolberg identities

And a three-term identity:

Theorem

The congruence

q2
∞∑
n=0

pt(a2n + b)qn ≡ 1

f1
a2t

+
1

fa
at +

q

f1
t

holds for the triples (a, b, t) = (3, 8, 3) and (5, 24, 1).



Ramanujan-Kolberg identities

Cristian-Silviu Radu named such identities, relating arithmetic
progressions in the partition function and eta-quotients,
Ramanujan-Kolberg identities after Ramanujan’s “most beautiful
identity”

∞∑
n=0

p(5n + 4)qn = 5
f5

5

f1
6

and Kolberg’s further study of these. He produced an algorithm for
verifying them, which was automated by Nicolas Smoot; Zanello
and I proved some of our identities with classical q-series
dissections and some using Radu’s machinery.



Consequences

For the remainder of the talk all arguments will assume that the
densities δt exist. Then these theorems imply the following
relationships among the δt :

Corollary

If δt > 0, then δ1 > 0 for t ∈ {5, 7, 11, 13, 17, 19, 23, 25} and
δt > 0 implies δr > 0 for (t, r) any of the pairs (27,9), (9,3),
(27,3), (25,5), (15,3), (21,3).

A curious fact here is that we never seem to get δ3 > 0 implying
δ1 > 0. The families of identities and arithmetic progressions
involving the two seem to be strangely separate.



Consequences

The argument for each of the corollary clauses is similar, so let’s go
through the first case, δ5 > 0 implies δ1 > 0. We take one of the
cases of the main theorem, namely (5,4,1):

q
∞∑
n=0

p(5n + 4)qn ≡ 1

f1
5

+
1

f5
.

Now suppose δ5 > 0 and δ1 = 0. Then for sufficiently large x ,
#{n ≤ x |p5(n) is odd } = δ5(x) + o(x), while the number of odd
coefficients up to x of 1/(q5; q5)∞ =

∑∞
n=0 p(n)q5n is

#{n ≤ x/5|p(n) is odd } is o(x). Then summing we find that the
number of odd coefficients up to x of

∑∞
n=0 p(5n + 4)qn is

δ5(x) + o(x). But then δ1 ≥ δ5/5 > 0, a contradiction.



Consequences

But you can get much stranger consequences than that.

Corollary

If δ1 = 1, then δ5 = 4/5, with density zero for the odd coefficients
of the series

∑∞
n=0 p5(5n)q5n and density 1 among all other

coefficients.

Observe the (5, 4, 1) identity again:

q
∞∑
n=0

p(5n + 4)qn ≡ 1

f1
5

+
1

f5
.

If δ1 = 1, then the left-hand side has density 1. On the right-hand
side, the coefficients of q5n in the second term are odd with
density 1, and so the same coefficients in the first term have to be
odd with density zero; meanwhile, outside of this progression, the
terms must be odd with density 1.



Consequences

Ergo, on the assumption that all the densities involved exist:

Corollary

If the odd density of p5(n) is not distributed in this convoluted
way, then δ1 < 1, and thus the even coefficients of p(n) have
positive density.



First branch: Judge and Chen

Fabrizio’s doctoral student Samuel Judge extended the set of
known identities in his doctoral thesis. Among those he found were:

q2
∞∑
n=0

p(29n + 23)qn ≡ 1

f1
29

+
q

f1
5

+
1

f29

q2
∞∑
n=0

p(35n + 19)qn ≡ 1

f1
35

+
q

f1
11

+
1

f35
+

1

f7
5

+
1

f5
7

q3
∞∑
n=0

p(49n + 47)qn ≡ 1

f1
49

+
q

f1
25

+
q2

f1
+

1

f7
7
.



First branch: Judge and Chen

This was enough for him to state a broad conjecture:

Conjecture

For odd integers a and t, with 3|t if 3|a, let b ≡ t
3 · 8

−1 if 3|t and

b ≡ 24−1 (mod a) if not, and k = d t(a2−1)
24a e. Then, in Z2[[q]],

qk
∞∑
n=0

pt(an + b)qn ≡
∑
d |a

bk/dc∑
j=0

εta,d ,jq
dj

fd
at/d−24j

with εta,d ,j ∈ {0, 1}, and εta,1,0 = 1 (i.e., the “largest” term appears)
and εta,d ,j = 0 for at/d − 24j < 0 (i.e., no negative powers appear).



First branch: Judge and Chen

Just last year, Shi-Chao Chen was able to prove this for a any
power of an odd prime at least 5, or for 3 itself. Chen describes the
main idea of their proof to be application of the Atkin-Lehner
level-reducing lemma, making use of the fact that Mt(`−1)(SL2(Z))
is spanned by the Eisenstein series (which are 1 mod 2) and the
modular discriminant

∆(τ) = qf1
24.



First branch: Judge and Chen

With this many primes in hand, Zanello was able to give a proof of
the entire families of implications for density:

Theorem

1 If there exists an integer A ≡ ±1 (mod 6) such that δA > 0,
and δi exists for all i ≤ A with i ≡ ±1 (mod 6), then δ1 > 0.

2 If there exists an integer A ≡ 3 (mod 6) such that δA > 0,
and δi exists for all i ≤ A with i ≡ 3 (mod 6), then δ3 > 0.



Second branch: m-regular partitions, m odd

About two years ago Zanello and I began looking at the m-regular
partitions, which have generating function

∞∑
n=0

bm(n)qn =
fm
f1
.

Our first goal was to add to the body of literature on congruences
and self-similarities of the forms

∞∑
n=0

bm(An + B)qn ≡ 0

∞∑
n=0

bm(An + B)qn ≡
∞∑
n=0

bm(Cn + D)qjn.



Second branch: m-regular partitions, m odd

We were able to produce quite a few. Here is a table of
congruences from the paper, with some context from the literature:

m bm(An + B) known to be even Source
3 New in this paper
5 b5(2n), when n is not twice a pentagonal number Calkin et al. [7]

7 Family modulo 2p2 if ( −14
p

) = −1, p prime Baruah and Das [2]

9 b9(2jn + c(j)) for various j Xia and Yao [36]
More new in this paper

11 b11(22n + 2, 8, 12, 14, 16) (finite family) Zhao, Jin, and Yao [38]
13 b13(2n), when n 6= k(k + 1), n 6= 13k(k + 1) + 3 Calkin et al. [7]
15 We conjecture none

17 b17(2 · 172α+2p2βn + c(p, α, β)) if ( −51
p

) = −1 Zhao, Jin, and Yao [38]

19 b19(38n + 2, 8, 10, 20, 24, 28, 30, 32, 34) (finite family) Radu and Sellers [31]
More new in this paper

21 New in this paper

23 Family modulo 2p2 if ( −46
p

) = −1, p prime Baruah and Das [2]

25 b25(100n + 64, 84) (finite family) Dai [10]
More new in this paper

27 We conjecture none



Second branch: m-regular partitions, m odd

m bm(An + B) known to be even Source
3 New in this paper
5 b5(2n), when n is not twice a pentagonal number Calkin et al. [7]

7 Family modulo 2p2 if ( −14
p

) = −1, p prime Baruah and Das [2]

9 b9(2jn + c(j)) for various j Xia and Yao [36]
More new in this paper

11 b11(22n + 2, 8, 12, 14, 16) (finite family) Zhao, Jin, and Yao [38]
13 b13(2n), when n 6= k(k + 1), n 6= 13k(k + 1) + 3 Calkin et al. [7]
15 We conjecture none

17 b17(2 · 172α+2p2βn + c(p, α, β)) if ( −51
p

) = −1 Zhao, Jin, and Yao [38]

19 b19(38n + 2, 8, 10, 20, 24, 28, 30, 32, 34) (finite family) Radu and Sellers [31]
More new in this paper

21 New in this paper

23 Family modulo 2p2 if ( −46
p

) = −1, p prime Baruah and Das [2]

25 b25(100n + 64, 84) (finite family) Dai [10]
More new in this paper

27 We conjecture none

A couple of observations stand out. The moduli 15 and 27 are
interesting since for some reason there seem to be no congruences,
unlike most other moduli. Notice the lack of many congruences in
the literature for m = 11, and our inability to add any at the time.



Second branch: m-regular partitions, m odd

We were focusing on m odd because in our initial search for
candidates, the even-regular partitions appeared to have either:

1 None - no congruences whatsoever; or

2 Many, being in fact lacunary mod 2.

For instance, b2(n) is odd if and only if n is a pentagonal number;
meanwhile, the 6-regular partitions appear to lack even arithmetic
progressions entirely.



Second branch: m-regular partitions, m odd

This is in line with what seems to be a very broad but so far
empirically supported expansion of Parkin-Shanks:

Conjecture

Let F (q) =
∑

n≥0 c(n)qn be an eta-quotient, and denote by δF the
odd density of its coefficients c(n). We have:
i) For any F , δF exists and satisfies δF ≤ 1/2.
ii) If δF = 1/2, then c(Am + B) has odd density 1/2 for all
arithmetic progressions Am + B.
iii) If δF < 1/2, then the coefficients of F are identically zero (mod
2) on some arithmetic progression.
iv) If the coefficients of F are not identically zero (mod 2) on any
arithmetic progression, then they have odd density 1/2 on every
arithmetic progression; in particular, δF = 1/2.
(Note: i), ii), and iii) together imply iv), and that iv) implies iii).)



Second branch: m-regular partitions, m odd

Some sample theorems from that paper:

Theorem

It holds that
∑∞

n=0 b19(10n + 8)qn ≡ q
∑∞

n=0 b19(2n)q5n. By
iteration,

b19

(
2 · 52d(50n + 10k + 8) + 9((52d − 1)/24)

)
≡ 0,

for all d , k ≥ 1 with k 6≡ 1 (mod 5).
If p ≡ 13, 17, 19, or 23 (mod 24) is prime, then

b21(4(p2n + kp − 11 · 24−1) + 1) ≡ 0

for all 1 ≤ k < p, where 24−1 is taken modulo p2.



Second branch: m-regular partitions, m odd

Our proof techniques were either algebraic manipulations, using
known dissections of eta-quotients, standard modular verifications
of similarities, or Radu’s machine.

Theorem such as the one for b21, giving even arithmetic
progressions for infinite set of primes, arise from the algebraic
proofs. For instance, we could establish by dissection that

∞∑
n=0

b21(4n + 1)qn ≡
(

f 3
3

f1

)
f3

which means that the sequence b21(4n + 1) mod 2 represents
integers writeable as m(3m − 2) + (n/2)(3n − 1), and analysis of
quadratic residues yields avoided progressions.

William Keith
3



Second branch: m-regular partitions, m odd

We also conjectured the following noncongruences:

Conjecture

Let m ∈ {6, 10, 14, 15, 18, 20, 22, 26, 27, 28}. We have:

1 For no integers A > 0 and B ≥ 0, bm(An + B) ≡ 0 for all n.

2 The series fm/f1 has odd density 1/2.

The odd moduli 15 and 27 are certainly the most interesting here.
With the other m-regular partitions, when m is odd, have so many
even progressions, why don’t these?



Grafting the branches: m-regular partitions, m even

Conjecture

Let m ∈ {6, 10, 14, 15, 18, 20, 22, 26, 27, 28}. We have:

1 For no integers A > 0 and B ≥ 0, bm(An + B) ≡ 0 for all n.

2 The series fm/f1 has odd density 1/2.

The missing small evens here are, on the other hand, lacunary:
b2(n) is only odd if n is a pentagonal number, b4(n) if n is
triangular, and so on. The others have something more complex
going on, which is the next and final phase of the talk.



Grafting the branches: m-regular partitions, m even

First let’s dispose of the cases guaranteed to be lacunary.

It follows from a theorem of Gordon and Ono that fm
f1

will be

lacunary mod 2 if m = m02j with 2j > m0. This covers any power
of 2; 12, 24, 48, etc.; 40, 80, 160, etc. These should have lots of
even progressions.

This means there is a restricted range of values for m that are
potentially interesting for us.



Grafting the branches: m-regular partitions, m even

When we examined the actual placement of odd values in the
even-regular partitions, we found something very interesting:
within some progressions, they frequently appear to be congruent
to odd-power multipartitions!

If our conjecture about t-multipartitions is true, then, none of
these progressions will have any subprogressions identically 0 mod
2, and ought to have relative density 1/2.



Grafting the branches: m-regular partitions, m even

Formally, among many others:

Theorem

For all n ≥ 0, the following coefficients are of equal parity:
In q f10

f1
and 1

f 3
5

: q25n+5 and q25n+15

In q f20
f1

and 1
f5

: q25n+5 and q25n+10.

In q5 f22
f1

and 1
f11

9 : q121n+11, q121n+55, q121n+66, q121n+77, q121n+99.

In q5 f44
f1

and 1
f11

7 : q121n+11, q121n+22, q121n+33, q121n+77, q121n+110

In q5 f88
f1

and 1
f11

3 : q121n+22, q121n+33, q121n+44, q121n+66, q121n+99.



Grafting the branches: m-regular partitions, m even

It turns out that the proof of these comes from our first paper!
Each of those Ramanujan-Kolberg identities can be modified
slightly to give congruences such as these.

Let’s sketch the proof for the multiples of 11: the 22-, 44-, and
88-regular partitions. (Notice that this is our full interesting range:
24 > 11, so further instances are lacunary.)



Grafting the branches: m-regular partitions, m even

We begin with the (11, 6, 1) identity from our original
Ramanujan-Kolberg theorem:

q
∞∑
n=0

p(11n + 6)qn ≡ 1

f1
11

+
1

f11
.



Grafting the branches: m-regular partitions, m even

Recall that the operator |U(m) acts on a power series by extracting
the terms qmi and substituting qmi → qi . It has the property that( ∞∑

n=0

a(n)qn

)( ∞∑
k=0

b(k)qmk

)
|U(m)

=

( ∞∑
n=0

a(n)qn

)
|U(m)

( ∞∑
k=0

b(k)qk

)
.



Grafting the branches: m-regular partitions, m even

So our identity can be reworded

q5 1

f1
|U(11) ≡ 1

f1
11

+
1

f11
.

Now multiplying through by powers of f1, we get

q5 f22

f1
|U(11) ≡ 1

f1
9

+
f2

f11

q5 f44

f1
|U(11) ≡ 1

f1
7

+
f4

f11

q5 f88

f1
|U(11) ≡ 1

f1
3

+
f8

f11
.



Grafting the branches: m-regular partitions, m even

q5 f22

f1
|U(11) ≡ 1

f1
9

+
f2

f11

q5 f44

f1
|U(11) ≡ 1

f1
7

+
f4

f11

q5 f88

f1
|U(11) ≡ 1

f1
3

+
f8

f11
.

Now we simply observe that f2, f4, and f8 are odd at respectively 2,
4, and 8 times the pentagonal numbers, which are

{(n/2)(3n − 1)} ≡ {3 · 2−1x2 − 24−1} (mod 11)

or, indeed, modulo any whole number coprime to 6.



Grafting the branches: m-regular partitions, m even

Now observe that {3 · 2−1x2 − 24−1} avoids half the residue
classes mod 11, determined by quadratic nonresidues, and
multiplying by 1/f11 does not change this avoidance.

Hence in those progressions, the left-hand sides and the first term
of the right-hand sides are congruent.



A quick tangent back: b11

Briefly if I have time at this point: can we use this viewpoint to fix
our previous lack and find some new congruences for b11?

If we multiply through by a single f1, we get:

q5 f11

f1
|U(11) ≡ 1

f1
10

+
f1

f11
.

The first term on the left is just a doubling of the 5-multipartition
function. It’s never odd for q2n+1. Okay, so what does f1/f11

avoid? Mod 22, we observe that f1 avoids
{3, 6, 8, 9, 10, 14, 17, 19, 20, 21}.



A quick tangent back: b11

Hence q5 f11
f1
|U(11) avoids 22n + (3, 9, 17, 19, 21), and therefore

Theorem

It holds that b11(242n + B) ≡ 0 (mod 2) for n ≥ 0 and
B ∈ {28, 94, 182, 204, 226}.



Grafting the branches: m-regular partitions, m even

For all the smallest moduli m0 where we have these identities -
{5, 7, 11, 13, 17, 19, 23} - some facts about the m0 · 2k -regular
partitions are thus equivalent to facts about multipartitions and, by
the earlier work, imply facts about the density of odd p(n).

While Chen’s proof of Judges’ conjecture shows us that identities
exist for higher moduli, once the moduli start getting above 24,
more complex behaviors arise.



Grafting the branches: m-regular partitions, m even

For instance, the three-term identity for m = 25 is

q2
∞∑
n=0

p(25n + 24)qn ≡ 1

f1
25

+
1

f5
5

+
q

f1
.

A corresponding behavior for even-regular partitions is

Theorem

For all n ≥ 0, the following coefficients are of equal parity:
In q f400

f1
and 1

f 9
25

: q1125n+75, q1125n+225, q1125n+450, q1125n+975.



Grafting the branches: m-regular partitions, m even

When we multiply through the original identity, we find the
following to analyze:

q26 f400

f1
|U(25) +

1

f1
9
≡ f16

f5
5

+ qf1
15.

And indeed, f16

f5
5 avoids progressions 3 or 4 mod 5, and coefficients

in qf1
15 are even outside of integers representable as

1 + 4
(n+1

2

)
+
(m+1

2

)
, which misses 3, 9, 18, and 39 mod 45; this

proves the theorem.



Grafting the branches: m-regular partitions, m even

These get more challenging as m0 gets larger. For instance,
establishing our results for b200 requires analyzing

q26 f200

f1
|U(25) ≡ 1

f1
17

+ qf1
7 +

f8

f5
5
.

For this we need to know the location of odd coefficients in qf1
7,

which was quite recently established by Cherubini and Mercuri.

Without exact information, however, we can still establish some
“almost always” congruences.



Grafting the branches: m-regular partitions, m even

For an extreme case, take m = 65537 · 216. For some c , we have:

qc f65537
65536

f1
|U(65537) ≡ 1

f1
+ (lacunary series) + ε

f65536

f65537
.

The series in the middle are eta-products, and are lacunary mod 2
by a theorem of several students of Ono.

Thus, depending on ε, there is an arithmetic progression mod
65537 in b65537·216(n) which, almost all the time or almost half the
time, matches the parity of the partition function!



Open questions

1 Find a recipe for the ε in the Judge-Chen congruences. Every
expression thereby expanded gives congruences for
multipartition functions and regular partitions.

2 Sub-question of the above: find moduli where “many” of the
ε are 0. These will give tidy identities.

3 Extend Chen’s proof to non-prime-powers.

4 Explain why δ1 and δ3 are in separate families, or give a
cross-implication between them.


