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Introduction

In September of last year, George Andrews in this Seminar
discussed and generalized Schmidt’s theorem, which originally
appeared as a problem in the American Mathematical Monthly:

Theorem

Let p(n) be the number of partitions λ1 + λ2 + . . . of the integer
n, and let f (n) denote the number of partitions π1 + π2 + . . . into
distinct parts πi > πi+1 such that n = π1 + π3 + π5 + . . . . Then
f (n) = p(n) for all n ≥ 1.



Introduction

It turns out that this theorem is a specific case of a quite general
theorem on partitions in which some parts are counted and some
not, which it is our goal to prove today.

Our method of proving the main theorem is bijective - a colored
generalization of a partition map first invented by Dieter
Stockhofe, from m-distinct to m-regular partitions.



The main theorem

The full theorem permits an enormous degree of freedom:

Theorem

Fix m ≥ 2. Let S = {s1, . . . , si} ⊆ {1, . . . ,m − 1} with 1 ∈ S, and
~ρ = (ρ1, . . . , ρm−1). Denote by Pm,S(n; ~ρ) the number of partitions
λ = (λ1, . . . , ) into parts repeating less than m times in which

n =
∑

c≡sj (mod m)

λc , and

ρk =
∑

c≡k (mod m)

λk − λk+1.

Then Pm,S(n; ~ρ) is also the number of partitions of n where parts k
mod i have sk+1 − sk colors (set si+1 = m), and, labeling colors of
parts k mod i by sk through sk+1 − 1, the color j appears ρj times.



Corollaries

To thin the forest of parameters out a bit, here are some corollaries
that perhaps more obviously exhibit the fact that this generalizes
Schmidt.

Set m = 2 and S = {1}. Let p(n, `) be the number of partitions of
n with exactly ` parts. Then the theorem becomes

Corollary

Let f (n, `) denote the number of partitions π1 + π2 + . . . into
distinct parts πi > πi+1 such that n = π1 + π3 + π5 + . . . and
` = π1 − π2 + π3 − π4 + . . . . Then f (n, `) = p(n, `) for all n ≥ 1.

Summing over all ` we get the original Schmidt theorem.



Corollaries

Another summed version:

Corollary

Fix m > 2 and 1 ≤ i < m. Let Rm,i (n) be the set of partitions
λ1 + λ2 + . . . , λ1 ≥ λ2 ≥ · · · > 0, in which parts can only appear
fewer than m times, and in which n =

∑∞
s=0

∑i
j=1 λsm+i . Then

∞∑
n=0

Rm,i (n)qn =
1

(q; q)∞(qi ; qi )∞
m−i−1 .

Here we have set S = {1, 2, . . . , i} ⊆ {1, 2, . . . ,m− 1}. We end up
getting one color of everything not a multiple of i , and m − i
colors of multiples of i .



Corollaries

The first nontrivial case not covered by the previous corollaries is
the following.

Corollary

The number of partitions in which parts repeat less than 4 times
and

n = λ1 + λ3 + λ5 + . . .

is equal to the number of partitions in which even parts appear in
one color and odd parts appear in two colors.

One observes that the latter set is well-known to have the same
generating function as the much-studied overpartitions.



Background

There are three classes of partitions known to be equinumerous:

1 those with parts not divisible by m, the m-regular partitions;

2 those into parts appearing less than m times, the m-distinct
partitions;

3 those into parts differing by less than m (and with first part
less than m), the m-flat partitions.

The first two are the subject of many classical maps by Sylvester,
Glaisher, Franklin, etc., each with various useful combinatorial
properties. The last two are obviously conjugates of each other.

The first and third have a much less widely known direct map φ
produced by Dieter Stockhofe in his 1982 Ph.D. thesis, which will
be crucial to our argument today.



The map φ

We define two vector operations on partitions:

nλ = (nλ1, nλ2, . . . )

λ+ µ = (λ1 + µ1, λ2 + µ2, . . . ).

Here we consider a partition to include an infinite sequence of
trailing zeroes (also convenient for simplifying the definition of
m-flat partitions).



The map φ

The following fact is easy to prove:

Lemma

Let ~v = (v1, . . . , vk) be a sequence of nonzero residues modulo m.
Then there is a unique partition λ(~v) which is m-regular, m-flat,
and for which λ(~v)i ≡ vi (mod m).

Example

If m = 5 and ~v = (1, 1, 2, 1, 4, 3), then λ(~v) = (11, 11, 7, 6, 4, 3).



The map φ

From this, we see that any m-regular partition λ can be written as

λ(~v) + mµ,

where ~v is the residue vector of λ itself, and µ is a partition with
number of parts not more than the number of parts of λ.

Indeed the set of m-regular partitions is just exactly the union of
all such sums over all residue vectors ~v and µ of valid length.



The map φ

A good way to see this is the m-modular diagram, which is
perhaps a little less commonly known than the Ferrers diagram of
a partition, so let us define it here.

If λi = km + j , 0 ≤ j < m, then write in the i-th row k copies of
m, followed by j if nonzero.

Example

If λ = (18, 16, 8, 7, 6, 3), then the 5-modular diagram of λ is

5 5 5 3
5 5 5 1
5 3
5 2
5 1
3



The map φ

Stockhofe’s map is best understood as moving units of m around
in the diagram. We can see where the “excess” units are located
for m-regular partitions; what we want is a way to uniquely add
these parts to λ(~v) in such a way that the resulting partition
remains flat.

Because it’s more useful for us today, and because I think it’s a
little easier to present, I will do this in the reverse direction. We’ll
also need to add consideration of color later.



The map φ

Let λ be an m-flat partition. Initialize µ = (), the empty partition.

Working from the smallest to the largest part, remove from λ any
parts divisible by m for which, after removal, the partition is still
m-flat. Append these parts to µ. These will be parts such that

λi = km = λi−1, i.e. all but the first of a repeated part
divisible by m;

λ1 = km, i.e. the largest part is divisible by m; OR

parts λi = kim, i > 1, such that λi−1 = kim + j1,
λi+1 = (ki − 1)m + j2, with 0 < j1 < j2 < m.

The latter, in other words, are multiples of m between two
nonmultiples of m that differ by less than m.

Call the remaining partition λ−.



The map φ

The remaining parts divisible by m in λ− are all distinct, not the
largest (or smallest) parts, and any remaining part λi = kim lies
between λi−1 = kim + j1 and λi+1 = (ki − 1)m + j2 with
0 < j2 ≤ j1 < m. Hence it is possible to leave an m-flat partition
by removing λi and also subtract m from every larger part.



The map φ

Working from the largest to the smallest remaining part, for each
remaining part λi = kim, remove λi and subtract m from all parts
λj , j < i . Append λi + (i − 1)m to µ as a part.

After all of these parts are removed, the remaining partition is
m-flat and m-regular, and hence is automatically λ(~v) for the
residue vector of the original partition. Now construct

φ(λ) = λ(~v) + mµ′.



Example

Let m = 5, λ = (22, 19, 15, 15, 13, 10, 6, 5, 2). This is 5-flat but not
5-regular. Write its 5-modular diagram:

5 5 5 5 2
5 5 5 4
5 5 5
5 5 5
5 5 3
5 5
5 1
5
2



Example

We have µ = (3, 1) so far, and λ− = (22, 19, 15, 13, 10, 6, 2), with
5-modular diagram:

5 5 5 5 2
5 5 5 4
5 5 5
5 5 3
5 5
5 1
2

We now first remove the red units, and then the blue.



Example

We end up with λ(~v) = (12, 9, 8, 6, 2), and µ = (5, 5, 3, 1).
Conjugate to get 5µ′ = 5 · (4, 3, 3, 2, 2) and add:

5 5 5 5 5 5 2
5 5 5 5 4
5 5 5 5 3
5 5 5 1
5 5 2

We get φ(λ) = (32, 29, 23, 16, 12).



Proof of the main theorem

Theorem

Fix m ≥ 2. Let S = {s1, . . . , si} ⊆ {1, . . . ,m − 1} with 1 ∈ S, and
~ρ = (ρ1, . . . , ρm−1). Denote by Pm,S(n; ~ρ) the number of partitions
λ = (λ1, . . . , ) into parts repeating less than m times in which

n =
∑

c≡sj (mod m)

λc , and

ρk =
∑

c≡k (mod m)

λk − λk+1.

Then Pm,S(n; ~ρ) is also the number of partitions of n where parts k
mod i have sk+1 − sk colors (set si+1 = m), and, labeling colors of
parts k mod i by sk through sk+1 − 1, the color j appears ρj times.



Proof of the main theorem

Fix m and the set S of places to be counted. View the partition in
conjugate.

Now m-distinctness becomes m-flatness. Each part will intersect
some counted and some uncounted parts, altering the weight it
contributes.

A given weight can appear in multiple ways if multiple uncounted
parts can appear as the final nodes in its row; this gives rise to the
color naming we instituted, assigning to each part the color of the
residue of its natural size mod m.



Proof of the main theorem

The number of colors available for a part of size j (mod i) is
exactly 1 more than the number of uncounted boxes that may arise
after j (mod i) are filled, which is in turn sj+1 − sj , with the
exception of parts that are multiples of m, which will be removed
by φ.



Proof of the main theorem

When we apply φ, we now must take account of color. The only
parts being moved are the parts that are multiple of m,
contributing parts we would call (mk)m. These are the color we
want to go away.

We institute the convention that adding multiples of parts with
color 5 leaves the new part with the color of the other summand.



Proof of the main theorem

The vector counting the differences by place residue mod m
becomes exactly the count of parts of each color appearing, and
this is fixed by φ with our color convention except for color m. The
map takes an m-flat λ to an m-regular φ(λ), so there are no parts
of color m remaining.

The total reduced weight does not change as multiples of m are
removed from any one part and added to others, m at a time.
Thus the properties of the map immediately imply the equal
cardinality of the two sets. �



Example of the main theorem

For example, let m = 5, S = {1, 2, 3}, and

λ = (11, 11, 11, 10, 10, 8, 8, 7, 7, 7, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1).



Example of the main theorem

In conjugate, we have λ′ = (26, 25, 22, 19, 15, 13, 11, 7, 5, 5, 3),
with a complex coloration. Denoting counted and uncounted parts,
we have this diagram:

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � �
� � � � �
� � �
� � �
� � �



Example of the main theorem

If we count the weights contributed by each part of λ′, we have

|λ′| = 16 + 15 + 14 + 12 + 9 + 9 + 7 + 5 + 3 + 3 + 3 = 96.

There is one color each of part sizes 1 or 2 mod 3, and three colors
of multiples of 3.

Counting the reduced weight of the partition given by the specified
parts and calculating the differences among part sizes in places
mod 5 in the original λ, we find that λ is counted in

P5,{1,2,3}(96, (2, 2, 2, 1)).



Example of the main theorem

We apply φ and obtain

φ(λ) = (41, 27, 24, 23, 21, 12, 3).

We will next reduce the weight by the counted parts, 3 for every 5.
With our color convention, we color parts 1 or 2 mod 3 with
subscript 1 and 2 respectively, and multiples of 3 with subscript 3
or 4 according as the original part was 3 or 4 mod 5. We obtain

(251, 172, 154, 153, 131, 82, 33).



Example of the main theorem

Final partition:

(251, 172, 154, 153, 131, 82, 33).

Recall that λ was originally in

P5,{1,2,3}(96, (2, 2, 2, 1)).

We see here that this matches the color count with two each of
colors 1, 2, and 3, and one part of color 4.



Remarks and variations

Remark 1: The bijection preserves not only the total counts but
the ordered residue-vector, which is even more precise than the
theorem as stated; however, that would have been an even more
elaborate statement.

Remark 2: The refinement of the original Schmidt by counts can
actually be obtained by analyzing Mork’s proof, which positions
hooks on the main diagonal of a partition.



Remarks and variations

Remark 3: In their Partition Analysis paper on Schmidt’s
Theorem, Andrews and Paule also proved that, if one considers the
set of arbitrary partitions with no restrictions on parts and only
adds parts in odd places, one obtains two-colored partitions.

This is even easier to prove from colored-conjugate viewpoint:
simply observe that in the conjugate, arbitrary partitions are
possible and each part size can appear in two different colors. The
places of parts to be counted can be arbitrarily generalized and the
resulting part sizes listed, additional colors in a part size occurring
for each uncounted place.



q-series proofs

Now we’d like to do something a little unusual, which is to prove
some specific cases of the main theorem with q-series techniques.

There is interest here since the sum-product identities that arise
seem potentially useful or worth considering in their own right.

There’s also the challenge – the q-series side of this proof seems
considerably harder!



q-series proofs

We’ll need some tools:

The q-hypergeometric series is defined by

rφs

[
a1, a2, . . . , ar
b1, . . . , bs

; q, z

]
=
∞∑
n=0

(a1; q)n . . . (ar ; q)n
(b1; q)n . . . (bs ; q)n

(
(−1)nq(n2)

)1+r−s
zn.



q-series proofs

The q-Chu-Vandermonde summation is

2φ1

[
q−n, b

c
; q, cqn/b

]
=

(c/b; q)n
(c ; q)n

or equivalently

2φ1

(
q−n b

c
; q; q

)
=

bn(c/b; q)n
(c ; q)n

and the q-binomial theorem is

∞∑
n=0

znq(n+1
2 )
[

N

n

]
q

= (−zq; q)N .



q-series proofs

We’ll begin with the m = 3, S = {1, 2} case: partitions into parts
repeating no more than twice with parts counted only in places not
divisible by 3, are in bijection with ordinary partitions into exactly
m parts when in the original partition

m = λ1 − λ3 + λ4 − λ6 + λ7 − λ9 + . . . .



q-series proofs

Strategy:

1 Set up a recurrence.

2 Solve to obtain a sum expression.

3 Show that this sum is also the desired product.



q-series proofs

Let
PN = PN(x1, x2, x3, . . . , xN ; t)

be the generating function for partitions with exactly N parts but
zeros allowed, of the form

λ1 + λ2 + · · ·+ λN (λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λN ≥ 0)

where no part (including 0) appears more than twice, the exponent
of xi is λi , and the exponent of t is

λ1 − λ3 + λ4 − λ6 + λ7 − λ9 + . . . .



q-series proofs

Denote
Xi = x1x2 . . . xi t

χ3(i),

where χ3(i) = 0 if 3|i and 1 otherwise.

A little combinatorial thought gives that the PN satisfy the
recurrence

PN =
XN−2PN−2

1− XN
+

XN−1PN−1
1− XN

, (1)

with P0 = 1, P1 = 1
1−X1

, and P2 = 1
(1−X1)(1−X2)

. This recursion
and the initial conditions completely define PN .



q-series proofs

If we gather terms and write

PN =
πN∏N

i=1(1− Xi )
,

then the πN are defined by the initial conditions and recursion
π0 = π1 = π2 = 1 and for N > 2,

πN = (1− XN−1)XN−2πN−2 + XN−1πN−1. (2)



q-series proofs

We now make the substitution

xi =

{
q if 3 - i

1 if 3|i .

This makes
Xi = qd

2i
3
etχ3(i).

In doing so, we see that the function PN(q, q, 1, q, q, 1, . . . ; t) has
the coefficient of qntm counting the number of partitions into
exactly N nonnegative parts, in which any part size including 0
must appear less than 3 times, with n = λ1 + λ2 + λ4 + λ5 + . . . ,
and in which m = λ1 − λ3 + λ4 − λ7 + . . . .



q-series proofs

The summation of the recurrence gives:

Lemma

For n ≥ 0 and r ∈ {0, 1, 2}, with the above substitutions for the Xi ,

π3n+r (q, q, 1, . . . ; t)

=
n∑

j=0

(−1)jqn2−n+r(n+j)+(j+n+1
2 )(−q; q)n−j

[
n

j

]
q2

t j+n.

Proof.

Show that the formulas satisfy the recursion for each residue of N
mod 3. In each case, compare coefficients of tk on both sides.



q-series proofs

Note that we only need N multiples of 3, since this will count
partitions of N, N − 1, and N − 2, so we sum these.

We find that we need to show:

∑
n≥j≥0

(−1)jqn2−n+(j+n+1
2 )(−q; q)n−j

[
n
j

]
q2

t j+n

(tq; q)2n(q2; q2)n
=

1

(tq; q)∞
.



q-series proofs

After some substitutions to shift index, multiplying through by
(tq; q)∞, and expanding some of the products, we find that we
want to show the following triple indexed sum:

∑
m,n,j≥0

(−1)j+mq(n+j)2−(n+j)+(2j+n+1
2 )+(m+1

2 )+m(2n+2j)tm+n+2j

(q2; q2)j(q; q)n(q; q)m
= 1.

The coefficient of t0 is 1, so what we finally want to show is that
the coefficient of tc for c positive is 0.



q-series proofs

We we find that the coefficient of tN is

(−1)Nq(N+1
2 )
∑
n,j≥0

(−1)n+jqNn−n+j2−j

(q2; q2)j(q; q)n(q; q)N−n−2j

= (−1)Nq(N+1
2 )
∑
n≥0

(−1)nqNn−n

(q; q)n(q; q)N−n

× lim
τ→0

2φ1

(
q−N+n, q−N+n+1; q2, q2(N−n)τ−1

q/τ

)

= (−1)Nq(N+1
2 )
∑
n≥0

(−1)nqNn−n+(N−n
2 )

(q; q)n(q; q)N−n

=
(−1)NqN2

(q; q)N

∑
n≥0

(−1)nq(n2)
[

N

n

]
q

=
(−1)NqN2

(q; q)N
(1; q)N = 0.�



Further questions

1 Can we use this map and/or the concept of uncounted parts
to prove other identities concerning colored partitions?

2 How else can the concepts be varied?

3 Mork’s original proof of Schmidt placed hooks. Hook-type
identities are of much interest; can we create a hook-based
combinatorial proof of these theorems?

4 Can the q-series proofs be generalized to the full theorem?
What identity results?


