Parity of the coefficients of certain eta-quotients, III: The case of pure eta-powers

Seminar in Partition Theory, q-Series, and Related Topics (Rescheduled from AMS Southeastern Sectional) William J. Keith, Michigan Technological University (Joint w/ Fabrizio Zanello)

October 27, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Today we study a very specific set of eta-products, pure eta-powers of the form $\prod_{k=1}^{\infty} (1-q^k)^t = \sum_{n=0}^{\infty} c_t(n)q^n$. Our results are twofold:

- Given t, find an infinite set of non-nested arithmetic progressions An + B on which $c_t(An + B)$ is even.
- Given p prime, find an infinite class of t for which arithmetic progressions exist modulo p^2 .

In the first you're only dealing with one product, so the second result might be called more substantial.

I'll now take a few slides to explain why we're interested in this question.

The parity of the partition numbers is one of the big open questions in partition theory. If we define the *arithmetic density* of a property T of an integer-indexed sequence $\{f(n)\}_{n=n_0}^{\infty}$ to be

$$\delta(T) = \lim_{n \to \infty} \# \frac{1}{n} \{k < n | T \text{ holds for } f(k)\},\$$

then the *Parkin-Shanks Conjecture* or, colloquially, the *Fifty-Fifty Conjecture* is that

Conjecture

The densities $\delta(p(n) \equiv 0 \pmod{2})$ and $\delta(p(n) \equiv 1 \pmod{2})$ both exist and equal 1/2.

We are very far from settling this conjecture. The best bounds for the cardinalities of the even and odd partition numbers are from work of Bellaïche and Nicolas:

Theorem

$$\#\{n < x | p(n) \text{ is even } \} > c\sqrt{x} \ln \ln x \text{ and} \\ \#\{n < x | p(n) \text{ is odd } \} > c \frac{\sqrt{x}}{(\ln x)^{7/8}}.$$

So we do not even know if the densities, should they exist, are nonzero.

Thanks to work of Cristian-Silviu Radu, completing work by Subbarao, Ono and others, we know:

Theorem

(Radu) There exists no nonzero integer pair (A, B) such that $p(An + B) \equiv 0 \pmod{2}$ for all $n \ge 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The parity of p(n)

And yet closely related functions often do feature such progressions. For example, denote

$$f_i = \prod_{k=1}^\infty (1-q^{ki}).$$

The generating function of partitions is $\frac{1}{f_1}$, those of the *m*-regular partitions are $\frac{f_m}{f_1}$, and those of the *t*-multipartitions are f_1^{-t} .

Importantly, we can relate the parity of p(n) and these other functions. In this series of papers, Zanello, his student Judge, and I have been producing families of congruences, as well as relations and implications among these families.

The parity of p(n)

One such identity is this:

$$q\sum_{n=0}^{\infty}p(5n+4)q^n\equiv rac{1}{f_1{}^5}+rac{1}{f_5}.$$

Call δ_t the density, assuming it exists, of $\frac{1}{f_t^t} = \sum_{n=0}^{\infty} p_t(n)q^n$.

Corollary

If $\delta_1 = 1$, then δ_5 exists and is equal to 4/5, with density zero for the odd coefficients of the series $\sum_{n=0}^{\infty} p_5(5n)q^{5n}$ and density 1 among all other coefficients.

Corollary

If the odd density of $p_5(n)$ is not distributed in this convoluted way, then $\delta_1 < 1$, and thus the even coefficients of p(n) have positive density.

In work on the regular partitions $\frac{f_m}{f_1} = \sum_{n=0}^{\infty} b_m(n)q^n$, Zanello and I found a number of congruences satisfied by the *m*-regular partitions. Frequently these were one-offs, isolated instances; however, we could sometimes find infinite families. An example would be for the 21-regular partitions, for which we found

Theorem

If $p \equiv 19, 37, 47, 65, 85, 109, 113, 115, 137, 139, 143, or 167$ (mod 168) is prime, then $b_{21}(4(p^2n + kp - 5 \cdot 24^{-1}))$ is even for all $1 \le k < p$, where 24^{-1} is taken modulo p^2 .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This family is a consequence of the dissection

$$\sum_{n=0}^{\infty} b_{21}(4n)q^n \equiv f_1^2 f_3 + q\left(\frac{f_3^3}{f_1}\right) f_{21}.$$

Putting aside the second term at the moment (f_3^3/f_1) is odd only at a quadratic sequence, but this is not obvious from simple arguments), the first is an *eta-product*, in which all the powers of f_i are positive.

It is already known that these are all lacunary modulo 2 (i.e., have odd density 0) by work of Cotron, Michaelsen, Stamm, and Zhu (hereinafter CMSZ):

Context: previous work

Theorem (CMSZ, Theorem 1.1)

Suppose
$$u, w \ge 0$$
. Let $F(q) = \frac{\prod_{i=1}^{u} f_{\gamma_i}^{\alpha_i}}{\prod_{i=1}^{w} f_{\gamma_i}^{\gamma_i}}$, and assume that

$$\sum_{i=1}^{u} \frac{r_i}{\alpha_i} \geq \sum_{i=1}^{w} s_i \gamma_i.$$

Then the coefficients of F are lacunary modulo 2.

Now, for general power series it is absolutely not the case that lacunarity mod 2 implies the existence of even arithmetic progressions. However, a motivating master conjecture of this series of papers is that for eta-quotients, it does. One thing it was difficult for us to do in previous papers was find these infinite families. We could occasionally find them for specific b_m . What we could not do was find results for a class of m.

In today's work, we study an even more specific subset of eta-products, pure eta-powers of the form $f_1^t = \sum_{n=0}^{\infty} c_t(n)q^n$. Our goals are twofold:

- Given t, find an infinite set of non-nested arithmetic progressions An + B on which $c_t(An + B)$ is even.
- Given p prime, find an infinite class of t for which arithmetic progressions exist modulo p^2 .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Including these for completeness and useful ingredients:

Theorem

For m coprime to 6, we have $c_1(mn + B) \equiv 0$ whenever $2 \cdot 3^{-1}B + 36^{-1}$ is not a quadratic residue modulo m.

Theorem

For m coprime to 6, we have $c_3(mn + B) \equiv 0$ whenever $2B + 4^{-1}$ is not a quadratic residue modulo m.

These are because

$$f_1\equiv\sum_{n\in\mathbb{Z}}q^{rac{n}{2}(3n-1)}$$
 and $f_1^3\equiv\sum_{n=0}^{\infty}q^{\binom{n+1}{2}}.$

 \sim

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

So, for instance, for m coprime to 6 we may write

$$\frac{k}{2}(3k-1) \equiv 2^{-1} \cdot 3(k-6^{-1})^2 - 24^{-1} \pmod{m},$$

and so if

$$B \equiv 2^{-1} \cdot 3(k - 6^{-1})^2 - 24^{-1} \pmod{m}$$

 $2 \cdot 3^{-1}B + 36^{-1} \equiv (k - 6^{-1})^2 \pmod{m}.$

Hence in the progression mn + B, if $2 \cdot 3^{-1}B + 36^{-1}$ is not a quadratic residue mod m, the arithmetic progression will be even in $c_1(mn + B)$. \Box

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorems

Definition

We say that f_1^t is p^2 -even at a prime p with base $r \in \{0, \ldots, p^2 - 1\}$ if it is the case that $c_t(p^2n + kp + r) \equiv 0$ for all $k \in \{1, \ldots, p - 1\}$.

We make the following conjectures:

Conjecture

For any given $t \ge 1$ odd, f_1^t is p^2 -even for a positive proportion of primes p for some base r depending on t and p.

Conjecture

For any given prime p, there exist infinitely many t such that f_1^t is p^2 -even for some base r depending on t and p.

The first conjecture is true for t a sum of two quadratic terms magnified by powers of 2:

Theorem

Let $t = a + b \cdot 2^e$, $a, b \in \{1, 3\}$, e > 0. Then f_1^t is p^2 -even at p for some base r, when -2^e is a quadratic nonresidue modulo p if a = b, and when $-3 \cdot 2^e$ is a quadratic nonresidue modulo p if $a \neq b$. In particular, f_1^t is p^2 -even for a set of relative density at least 1/2 in the primes, if this density exists.

We can establish that the second conjecture is true for all primes other than 2 or those congruent to 1 mod 24:

Theorems

Theorem

We have that f_1^t is p^2 -even in the following cases for p prime, r taken mod p^2 :

- $t = 2^d + 3$: $p \equiv 23 \pmod{24}$, $r \equiv -(2^{d-3}3^{-1} + 2^{-3})$.
- If d is even above we may take p ≡ 5 (mod 6). If d is odd then we may instead take p ≡ 13 (mod 24).
- $t = 2^d + 1$: $p \equiv 7 \pmod{8}$, $r \equiv -3(2^{d-3} + 2^{-3})$.
- If d is even above we may take $p \equiv 3 \pmod{4}$, $p \ge 7$.
- $t = 3 \cdot 2^d + 1$: $p \equiv 23 \pmod{24}$, $r \equiv -(2^{d-3} + 2^{-3} \cdot 3^{-1})$.
- If d is even above we may take p ≡ 5 (mod 6). If d is odd then we may take p ≡ 13 (mod 24).

• If $t = 3 \cdot 2^d + 3$: $p \equiv 7 \pmod{8}$, $r \equiv -(2^{d-3} + 2^{-3})$.

• If d is even above we may take $p \equiv 3 \pmod{4}$.

The clauses cover all odd primes other than those that are congruent to 1 mod 24. Thus, we have the following corollary.

Corollary

Given a fixed prime $p \ge 5$, $p \not\equiv 1 \pmod{24}$, there exist infinitely many $t = a + b \cdot 2^e$, $a, b \in \{1, 3\}$, e > 0, for which f_1^t is p^2 -even at p for some base r.

An example of this is

Corollary

For p = 5, $t = 4^d + 3$, $d \ge 1$, we have $r \equiv t \pmod{25}$. For p = 3, $t = 3 \cdot 4^d + 3$, $d \ge 1$, we have $r \equiv t/3 \pmod{9}$ (and the latter will always be 2 mod 3).

For instance, $c_{15}(9n+2)$ and $c_{15}(9n+8)$ are always even.

The proofs are simply a matter of representability of integers by quadratic forms.

For the first theorem, fix $t = a + b \cdot 2^e$, $a, b \in \{1, 3\}$. These are exactly those odd t for which we may write

$$f_1^t \equiv f_1 \text{ or } 3 \cdot f_1^{2^e} \text{ or } 3.$$

Thus t can only be odd if it is representable as the sum of two quadratics, one either the pentagonal or the triangular numbers, and the other (independently) the 2^e -magnified pentagonal or triangular numbers.

Proof sketches

Suppose a = b = 1. Then we have two pentagonal progressions, one magnified, and the terms N appearing with nonzero coefficient in their product must satisfy, for some $k_1, k_2 \in \mathbb{Z}$,

$$2^{-1} \cdot 3(k_1 - 6^{-1})^2 - 24^{-1} + (2^e) \left(2^{-1} \cdot 3(k_2 - 6^{-1})^2 - 24^{-1}\right) \\ \equiv N \pmod{p^2}.$$

After we complete some squares and simplify some notation, we find that there must be some nonzero x and y such that

$$\left(\frac{x}{y}\right)^2 \equiv -2^e \pmod{p}.$$

Hence if -2^e is not a quadratic residue modulo p, then the chosen arithmetic progression cannot have nonzero coefficients mod 2 in f_1^t . The r is $-24^{-1} - 2^e 24^{-1}$. \Box

For the second theorem, fix p, a, and b and let e vary in $a + b \cdot 2^e$.

- If $p \equiv 3,5 \pmod{8}$, then 2 is a quadratic nonresidue modulo p, and so among -2^e and $-3 \cdot 2^e$, half the values will be quadratic nonresidues modulo p and the hypotheses of the previous theorem will be satisfied.
- If p ≡ 7 (mod 8) then −1 is a quadratic nonresidue mod p and 2 is a quadratic residue mod p, so −2^e is always a quadratic nonresidue modulo p.
- If p ≡ 1 (mod 8), then -1 and 2 are quadratic residues mod p, but if p ≡ 17 (mod 24) then 3 is a quadratic nonresidue and so -3 · 2^e is always a quadratic nonresidue modulo p.

The case that does not satisfy any of the above is $p \equiv 1 \pmod{24}$, as stated. \Box

Things rapidly get a lot harder after these base cases. The first case of a t with three separated 1s in its binary expansion is 21:

Theorem

We have that $c_{21}(49n + k) \equiv 0 \pmod{2}$ for $k \in \{14, 28, 35\}$.

But to prove this we needed to use (standard) modular form machinery.

Here is an exponential nonexistence theorem:

Theorem

There exists no progression An + B for which $c_{2^d-1}(An + B) \equiv 0$ for all d.

This follows from the fact that

$$\sum_{n=0}^{\infty} c_{2^d-1}(n)q^n = f_1^{2^d-1} = \frac{f_1^{2^d}}{f_1} \equiv \frac{f_{2^d}}{f_1},$$

which matches the partition function for its first 2^d coefficients.

- Finish the case of $p \equiv 1 \pmod{24}$. Is it even true? Certainly it is for some, e.g. f_1^5 seems to be 73²-even with base 1110.
- Numerical computation certainly suggests many additional progressions exist beyond these arguments. A notable example is f_1^{13} , which also seems to be p^2 -even for primes 1 mod 6 in addition to the 5 mod 6 proved above.
- A theorem of Chen gives arithmetic progressions for any c_{3k} , but the moduli have many prime factors. Ours apply to fewer *t* but are mod p^2 . Can we be even more parsimonious and find classes of arithmetic progressions pn + B for primes p?

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Master Conjecture

Conjecture

Let $F(q) = \sum_{n>0} c(n)q^n$ be an eta-quotient, and denote by δ_F the odd density of its coefficients c(n). We have: i) For any F, δ_F exists and satisfies $\delta_F \leq 1/2$. ii) If $\delta_F = 1/2$, then c(Am + B) has odd density 1/2 for all arithmetic progressions Am + B. iii) If $\delta_F < 1/2$, then the coefficients of F are identically zero (mod 2) on some arithmetic progression. iv) If the coefficients of F are not identically zero (mod 2) on any arithmetic progression, then they have odd density 1/2 on every arithmetic progression; in particular, $\delta_F = 1/2$. (Note: i), ii), and iii) together imply iv), and that iv) implies iii).)