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The goal

Today we study a very specific set of eta-products, pure eta-powers
of the form

∏∞
k=1(1− qk)t =

∑∞
n=0 ct(n)qn. Our results are

twofold:

1 Given t, find an infinite set of non-nested arithmetic
progressions An + B on which ct(An + B) is even.

2 Given p prime, find an infinite class of t for which arithmetic
progressions exist modulo p2.

In the first you’re only dealing with one product, so the second
result might be called more substantial.

I’ll now take a few slides to explain why we’re interested in this
question.



The parity of p(n)

The parity of the partition numbers is one of the big open
questions in partition theory. If we define the arithmetic density of
a property T of an integer-indexed sequence {f (n)}∞n=n0 to be

δ(T ) = lim
n→∞

#
1

n
{k < n|T holds for f (k)},

then the Parkin-Shanks Conjecture or, colloquially, the Fifty-Fifty
Conjecture is that

Conjecture

The densities δ(p(n) ≡ 0 (mod 2)) and δ(p(n) ≡ 1 (mod 2)) both
exist and equal 1/2.



The parity of p(n)

We are very far from settling this conjecture. The best bounds for
the cardinalities of the even and odd partition numbers are from
work of Belläıche and Nicolas:

Theorem

#{n < x |p(n) is even } > c
√

x ln ln x and

#{n < x |p(n) is odd } > c
√
x

(ln x)7/8
.

So we do not even know if the densities, should they exist, are
nonzero.



The parity of p(n)

Thanks to work of Cristian-Silviu Radu, completing work by
Subbarao, Ono and others, we know:

Theorem

(Radu) There exists no nonzero integer pair (A,B) such that
p(An + B) ≡ 0 (mod 2) for all n ≥ 0.



The parity of p(n)

And yet closely related functions often do feature such
progressions. For example, denote

fi =
∞∏
k=1

(1− qki ).

The generating function of partitions is 1
f1

, those of the m-regular

partitions are fm
f1

, and those of the t-multipartitions are f −t1 .

Importantly, we can relate the parity of p(n) and these other
functions. In this series of papers, Zanello, his student Judge, and I
have been producing families of congruences, as well as relations
and implications among these families.



The parity of p(n)

One such identity is this:

q
∞∑
n=0

p(5n + 4)qn ≡ 1

f1
5

+
1

f5
.

Call δt the density, assuming it exists, of 1
f t1

=
∑∞

n=0 pt(n)qn.

Corollary

If δ1 = 1, then δ5 exists and is equal to 4/5, with density zero for
the odd coefficients of the series

∑∞
n=0 p5(5n)q5n and density 1

among all other coefficients.

Corollary

If the odd density of p5(n) is not distributed in this convoluted
way, then δ1 < 1, and thus the even coefficients of p(n) have
positive density.



Context: previous work

In work on the regular partitions fm
f1

=
∑∞

n=0 bm(n)qn, Zanello and
I found a number of congruences satisfied by the m-regular
partitions. Frequently these were one-offs, isolated instances;
however, we could sometimes find infinite families. An example
would be for the 21-regular partitions, for which we found

Theorem

If p ≡ 19, 37, 47, 65, 85, 109, 113, 115, 137, 139, 143, or 167
(mod 168) is prime, then b21(4(p2n + kp− 5 · 24−1)) is even for all
1 ≤ k < p, where 24−1 is taken modulo p2.



Context: previous work

This family is a consequence of the dissection

∞∑
n=0

b21(4n)qn ≡ f 2
1 f3 + q

(
f 3
3

f1

)
f21.

Putting aside the second term at the moment (f 3
3 /f1 is odd only at

a quadratic sequence, but this is not obvious from simple
arguments), the first is an eta-product, in which all the powers of
fi are positive.

It is already known that these are all lacunary modulo 2 (i.e., have
odd density 0) by work of Cotron, Michaelsen, Stamm, and Zhu
(hereinafter CMSZ):



Context: previous work

Theorem (CMSZ, Theorem 1.1)

Suppose u,w ≥ 0. Let F (q) =
∏u

i=1 f
ri
αi∏w

i=1 f
si
γi

, and assume that

u∑
i=1

ri
αi
≥

w∑
i=1

siγi .

Then the coefficients of F are lacunary modulo 2.

Now, for general power series it is absolutely not the case that
lacunarity mod 2 implies the existence of even arithmetic
progressions. However, a motivating master conjecture of this
series of papers is that for eta-quotients, it does.



Context: previous work

One thing it was difficult for us to do in previous papers was find
these infinite families. We could occasionally find them for specific
bm. What we could not do was find results for a class of m.

In today’s work, we study an even more specific subset of
eta-products, pure eta-powers of the form f t

1 =
∑∞

n=0 ct(n)qn. Our
goals are twofold:

1 Given t, find an infinite set of non-nested arithmetic
progressions An + B on which ct(An + B) is even.

2 Given p prime, find an infinite class of t for which arithmetic
progressions exist modulo p2.



Theorems

Including these for completeness and useful ingredients:

Theorem

For m coprime to 6, we have c1(mn + B) ≡ 0 whenever
2 · 3−1B + 36−1 is not a quadratic residue modulo m.

Theorem

For m coprime to 6, we have c3(mn + B) ≡ 0 whenever 2B + 4−1

is not a quadratic residue modulo m.

These are because

f1 ≡
∑
n∈Z

q
n
2
(3n−1) and f 3

1 ≡
∞∑
n=0

q(n+1
2 ).



theorems

So, for instance, for m coprime to 6 we may write

k

2
(3k − 1) ≡ 2−1 · 3(k − 6−1)2 − 24−1 (mod m),

and so if

B ≡ 2−1 · 3(k − 6−1)2 − 24−1 (mod m)

2 · 3−1B + 36−1 ≡ (k − 6−1)2 (mod m).

Hence in the progression mn + B, if 2 · 3−1B + 36−1 is not a
quadratic residue mod m, the arithmetic progression will be even in
c1(mn + B). �



Theorems

Definition

We say that f t
1 is p2-even at a prime p with base

r ∈ {0, . . . , p2 − 1} if it is the case that ct(p2n + kp + r) ≡ 0 for
all k ∈ {1, . . . , p − 1}.

We make the following conjectures:

Conjecture

For any given t ≥ 1 odd, f t
1 is p2-even for a positive proportion of

primes p for some base r depending on t and p.

Conjecture

For any given prime p, there exist infinitely many t such that f t
1 is

p2-even for some base r depending on t and p.



Theorems

The first conjecture is true for t a sum of two quadratic terms
magnified by powers of 2:

Theorem

Let t = a + b · 2e , a, b ∈ {1, 3}, e > 0. Then f t
1 is p2-even at p for

some base r , when −2e is a quadratic nonresidue modulo p if
a = b, and when −3 · 2e is a quadratic nonresidue modulo p if
a 6= b. In particular, f t

1 is p2-even for a set of relative density at
least 1/2 in the primes, if this density exists.

We can establish that the second conjecture is true for all primes
other than 2 or those congruent to 1 mod 24:



Theorems

Theorem

We have that f t
1 is p2-even in the following cases for p prime, r

taken mod p2:

t = 2d + 3: p ≡ 23 (mod 24), r ≡ −(2d−33−1 + 2−3).

If d is even above we may take p ≡ 5 (mod 6). If d is odd
then we may instead take p ≡ 13 (mod 24).

t = 2d + 1: p ≡ 7 (mod 8), r ≡ −3(2d−3 + 2−3).

If d is even above we may take p ≡ 3 (mod 4), p ≥ 7.

t = 3 · 2d + 1: p ≡ 23 (mod 24), r ≡ −(2d−3 + 2−3 · 3−1).

If d is even above we may take p ≡ 5 (mod 6). If d is odd
then we may take p ≡ 13 (mod 24).

If t = 3 · 2d + 3: p ≡ 7 (mod 8), r ≡ −(2d−3 + 2−3).

If d is even above we may take p ≡ 3 (mod 4).



Theorems

The clauses cover all odd primes other than those that are
congruent to 1 mod 24. Thus, we have the following corollary.

Corollary

Given a fixed prime p ≥ 5, p 6≡ 1 (mod 24), there exist infinitely
many t = a + b · 2e , a, b ∈ {1, 3}, e > 0, for which f t

1 is p2-even at
p for some base r .

An example of this is

Corollary

For p = 5, t = 4d + 3, d ≥ 1, we have r ≡ t (mod 25). For p = 3,
t = 3 · 4d + 3, d ≥ 1, we have r ≡ t/3 (mod 9) (and the latter will
always be 2 mod 3).

For instance, c15(9n + 2) and c15(9n + 8) are always even.



Proof sketches

The proofs are simply a matter of representability of integers by
quadratic forms.

For the first theorem, fix t = a + b · 2e , a, b ∈ {1, 3}. These are
exactly those odd t for which we may write

f t
1 ≡ f1 or 3 · f 2e

1 or 3.

Thus t can only be odd if it is representable as the sum of two
quadratics, one either the pentagonal or the triangular numbers,
and the other (independently) the 2e-magnified pentagonal or
triangular numbers.



Proof sketches

Suppose a = b = 1. Then we have two pentagonal progressions,
one magnified, and the terms N appearing with nonzero coefficient
in their product must satisfy, for some k1, k2 ∈ Z,

2−1 · 3(k1 − 6−1)2 − 24−1 + (2e)
(
2−1 · 3(k2 − 6−1)2 − 24−1

)
≡ N (mod p2).

After we complete some squares and simplify some notation, we
find that there must be some nonzero x and y such that(

x

y

)2

≡ −2e (mod p).

Hence if −2e is not a quadratic residue modulo p, then the chosen
arithmetic progression cannot have nonzero coefficients mod 2 in
f t
1 . The r is −24−1 − 2e24−1. �



Proof sketches

For the second theorem, fix p, a, and b and let e vary in a + b · 2e .

If p ≡ 3, 5 (mod 8), then 2 is a quadratic nonresidue modulo
p, and so among −2e and −3 · 2e , half the values will be
quadratic nonresidues modulo p and the hypotheses of the
previous theorem will be satisfied.

If p ≡ 7 (mod 8) then −1 is a quadratic nonresidue mod p
and 2 is a quadratic residue mod p, so −2e is always a
quadratic nonresidue modulo p.

If p ≡ 1 (mod 8), then −1 and 2 are quadratic residues mod
p, but if p ≡ 17 (mod 24) then 3 is a quadratic nonresidue
and so −3 · 2e is always a quadratic nonresidue modulo p.

The case that does not satisfy any of the above is p ≡ 1
(mod 24), as stated. �



Further Theorems

Things rapidly get a lot harder after these base cases. The first
case of a t with three separated 1s in its binary expansion is 21:

Theorem

We have that c21(49n + k) ≡ 0 (mod 2) for k ∈ {14, 28, 35}.

But to prove this we needed to use (standard) modular form
machinery.



Further Theorems

Here is an exponential nonexistence theorem:

Theorem

There exists no progression An + B for which c2d−1(An + B) ≡ 0
for all d.

This follows from the fact that

∞∑
n=0

c2d−1(n)qn = f 2d−1
1 =

f 2d
1

f1
≡ f2d

f1
,

which matches the partition function for its first 2d coefficients.



Open questions

Finish the case of p ≡ 1 (mod 24). Is it even true? Certainly
it is for some, e.g. f 5

1 seems to be 732-even with base 1110.

Numerical computation certainly suggests many additional
progressions exist beyond these arguments. A notable example
is f 13

1 , which also seems to be p2-even for primes 1 mod 6 in
addition to the 5 mod 6 proved above.

A theorem of Chen gives arithmetic progressions for any c3k ,
but the moduli have many prime factors. Ours apply to fewer
t but are mod p2. Can we be even more parsimonious and
find classes of arithmetic progressions pn + B for primes p?



Thank you!



Master Conjecture

Conjecture

Let F (q) =
∑

n≥0 c(n)qn be an eta-quotient, and denote by δF the
odd density of its coefficients c(n). We have:
i) For any F , δF exists and satisfies δF ≤ 1/2.
ii) If δF = 1/2, then c(Am + B) has odd density 1/2 for all
arithmetic progressions Am + B.
iii) If δF < 1/2, then the coefficients of F are identically zero (mod
2) on some arithmetic progression.
iv) If the coefficients of F are not identically zero (mod 2) on any
arithmetic progression, then they have odd density 1/2 on every
arithmetic progression; in particular, δF = 1/2.
(Note: i), ii), and iii) together imply iv), and that iv) implies iii).)


