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Background and context

The Ferrers diagram of the partition A\ = (5,3,2,2,1,1), with its
hooklengths marked: the number of boxes directly right of and
directly below the box, plus 1 for the box itself.
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This partition lacks hooks of length 3, 6, 8, 9, or anything larger
than 10. A partition which lacks hooks of length t is t-core.
Lacking hooks of length ti, t, ..., a partition is a simultaneous

(ty, ta,...)-core.



Background and context

Let £ .= [1;21(1 = ¢) = (" 4")oe:
Theorem (Olsson)

The generating function for the number c;(n) of t-core partitions

ofnisy > qce(n) = %t

\

Theorem (Aukerman, Kane, and Sze)
If gcd(s, t) = d, the generating function for the number of
, - n_ fd
(s, t)-cores is Cs+(q) = >_plg ¢(s,5)(M)q" = £ Cs/a,e7a(a%)”.

A\

Theorem (Anderson)

If s and t are coprime, the number of (s, t)-cores is = (°T%).

A\




Background and context

Relatively little is known about the polynomial factor Cs +(q) for
general coprime s and t. We know its degree:

Theorem (Olsson and Stanton)

The largest (s, t)-core is of size (s> — 1)(t> — 1)/24.

For more indexes, the problem becomes rather wild; most results
are known for (t1,. .., tx) in arithmetic progression. Xiong (2016)
gave the largest size of a (s,s+1,...,s + p)-core, and Cho, Huh,
and Sohn gave an enumeration of (s,s + t,...,s + pt)-cores, to
which we will return.



s (mod t)-cores

When the overall problem is wild, boundary cases can be of
interest. Our project today is to look at (s,s + t,...,s -+ pt)-cores
in the large-p limit. If s < t, this is partitions in which no hook can
be of length s (mod t), so we might call these s (mod t)-cores,
even if s > t. The t-cores are then 0 (mod t)-cores.



s (mod t)-cores

Taking this boundary case allows us to establish more detailed
results of combinatorial interest. We have the following general
statement on their generating functions:

Theorem

If gcd(s, t) = d, the generating function for the number cy(¢)(n) of
s (mod t)-cores of n is

fd
C(r)(q) = ZCS (0(ng" = ﬁcs/d(t/d)(qd)d'

This looks very similar to the result for the (s, t)-cores, and is
established similarly; only the polynomials are different.



Proofs for generating functions: the abacus

In order to establish this and future theorems, we need the abacus
of a partition.

Mark the outer boundary of a partition with white “spacers” on
the horizontal unit segments and black “beads” on the vertical
segments. Allow for an indefinite extension of black beads prior to
the diagram and white spacers afterward.
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Proofs for generating functions: the abacus
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Now straighten out the profile. Since the partition starts with its
first spacer and ends with its last bead, we have all information
about the partition in its bead sequence.



Proofs for generating functions: the abacus

Finally, when we are interested in properties mod d, it is useful to
fold the abacus back on itself, taking places d at a time to create

the d-runners:

.. 6—0O—0- 0 ...

Manipulating the runners is the source of many proofs about cores.



Proofs for generating functions: the abacus

.. @0 06— 0...

Moving a bead one place left on a runner changes two elements of
the profile: a horizontal step followed by a vertical d places later to
a vertical followed by a horizontal d places later. This removes a
d-hook, exactly d squares in the diagram.
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Proofs for generating functions: the abacus

|

If all beads are pushed as far left as possible, we have the diagram
of the d-core of the partition. Every partition can thus be described
in terms of its d-core, and the ordered d-tuple of quotient
partitions represented by the diagrams described by each runner.



Proofs for generating functions: the abacus

Since the d distinct runners can be manipulated independently,
and each is itself a partition with parts magnified by d, we have
that the generating function of partitions equals the count of cores
times d-tuples of d-magnified partitions, or,

1 S n 1 - n fdd
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Proofs for generating functions: the abacus

The same logic can be applied to proving that

Theorem

If gcd(s, t) = d, the generating function for the number of s
(mod t)-cores is

Cony(q) = ZCS n(n)q" s/d(t/d)( ).

Proof: Use the d-abacus. The cores are d-cores; there are d
quotient partitions, magnified by d. In order to avoid hooks of
length s (mod t), it is necessary and sufficient that each quotient
partition avoid hooks of length s/d (mod (t/d)). O



s (mod t)-cores: Cy1)(q)

We can use the abacus to identify the polynomials C+)(q) for
coprime s and t in small cases. For s = 2, t odd, we have:

m+

C2(2m+1 Z C2(2m+1) Z (")

Because there are so few degrees of freedom for 2-cores, this is the
generating function for simultaneous (2,2m + 3)-cores. The bigger
s is, the more conditions are necessary for equivalence.



s (mod t)-cores: Cy1)(q)

For Co(2m+1)(q), look at the 2-abacus. We have a 0 runner and a
1 runner. A spacer followed by a bead is a hook of length 2, so
once we have a spacer, we can have no more beads.

-0 S—OS6—6—6—"06

The partition starts with a spacer, so the 0 runner is the empty
partition. The 1 runner can have beads up to some height, but
cannot have a bead at position 2m + 3, or height m + 1; the first
spacer is at height k, from 0 to m 4 1. The available partitions are
thus the “staircase” partitions {&, (1), (2,1),(3,2,1),... } of sizes
(";1), n > 0. The generating function is thus

m+2
Coomin)(@) =1+ a+ @+ %+ +q("),



s (mod t)-cores: Cy1)(q)

Here are the functions for s = 3:

m+1 m+1
Caams1)(9) = _gB3m+8)(m+1) | Z qj2+j Z q€j+€2+€.
J=0 l=—j |
m+1 m—+2
GEmi2)(q) = —q(3m+4)(m+2) + Z Q‘j2+j Z qﬁj+e2-
J=0 l=—j




s (mod t)-cores: Cy1)(q)

The proof is similar. We look at the 3-abacus. The j and ¢ in the
theorem are indexing the positions of the highest beads on the 1
and 2 runners. We avoid hooks of length 3 by filling with spacers
as soon as we have one, and hooks of length 3m + 4 by avoiding a
spacer followed by a bead on the next runner m places higher.

0 S—O—6—6—6—6—-1
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The proof is now simply a matter of counting the contributed parts
when the heights on the runners are in given position. The
subtracted term simplifies the sums (and, if not subtracted, we
would have the simultaneous (3,3m + 4)-cores).



s (mod t)-cores: Cy1)(q)

And so between these two ingredients we can write down lots of

specific generating functions:

Giy(q) =1+q+ @ +q°

C4(10)(q)=f7%( 5(q%)) (qu)(lﬂ? +q°+ ¢'%)?

n=0
f?
Cras)(q) = fl(lﬂLq + g% + ¢
C3(4)( )=14qg+2¢°+2¢* +¢° +2¢° + ¢® +2¢° + 2¢"°

Co(0)(9 > 1+¢°+¢°)°
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Congruences

Congruences for a sequence {g(n)}, of the form g(An+ B) =0
(mod d), are a popular form of result in partition theory. They
tend to arise as symmetries of eta-quotients, i.e. from the
properties of weakly holomorphic modular forms applied to
functions of the form Hj’il f,-t", t; € Z. The t-cores, for instance,

have many.

Since the functions we're considering are d-cores times
polynomials, the entries in their sequence of coefficients are linear
combinations of eta-quotient coefficients, so it's perhaps
interesting that we still find such congruences.



Congruences

2 n+1
If gcd(s, t) = 2, we have a special case, since % =320 q( )

multiplied times a polynomial, one gets a finite sequence of nonzero
values at increasing intervals, so the coefficients are mostly zero.

For ged(s, t) = 3, the 3-core factor is much denser, so the
following congruences are considerably more nontrivial:

Theorem

We have that
Co(9)(16n +9) =0 (mod 2),

and for k € {38,88,118,168, 198, 248, 278, 328}, that

C6(9)(400n + k) =0 (mod 3).




Congruences: proof of cg)(16n+9) =0 (mod 2)

The following is a known identity:

%3 n(3n—2)
?1 =2 Z q .

nezZ

Now observe quadratic residues. We have that n(3n — 2) may take
residues 0, 1, 5, or 8 modulo 16, and the polynomial multiplier is

(1+q3+q9)3521+q3+q6+q15+q18+q21+q27‘
Among the possible residues modulo 16 for
{0,1,5,8} +{0,2,3,5,6,11,15},

the sum 9 modulo 16 does not appear. ]



Congruences: proof of ¢5()(400n 4 k) =0 (mod 3)

We begin with a known dissection for %:

_ 4, He 4 4, s5has
S =32 =5 4 g =3 £+ gff + P22

Likewise, we observe that
1+¢*+¢°)> =31+¢°+q¢*.
Since f144/fi6 is a function of q16, nonzero terms in

f'
5144 9 27
—(1+qg +

e (1+q +9°)
will appear with residue 5, 14, or 0 modulo 16; the residues k listed
in the theorem as avoided are all 6 or 8 modulo 16. Likewise for

afy (1 +q° +¢°7).



Congruences: proof of ¢5()(400n 4 k) =0 (mod 3)

The k are all even so we end up only needing to worry about f;.

We now use Euler’'s pentagonal number theorem to write

f24 =3 f3fy =3 (Z(_l)mq(3m)(3m—1)> <Z(_1)nq(n)(3n—1)> )

meZ ne7Z

We observe the residues modulo 400 of 9m? — 3m and 3n? — n, see
that the claimed residues are missed by their sums, and the
theorem is proved. O



Fayers' conjecture

So far we have been working with s (mod t)-cores enumerated
with respect to their size, and focusing on cases where s is not
coprime to t. The polynomial factors arise from the coprime cases,
and in these cases the number of s (mod t)-cores is finite.

The following theorem of Cho, Huh, and Sohn enumerates
simultaneous (s,s + t,s + 2t,...,s + pt)-core partitions:

Theorem (Cho, Huh, and Sohn)

If d =1, then the number of (s,s + t,s + 2t,...,s + pt)-core
partitions is

sit(stt)'kZLS/zJ ZZ 0 k+t(k+t ( )(SHZkég; i) 1)‘




Fayers' conjecture

In the large-p limit, simultaneous (s,s + t,s + 2t,...,s + pt)-core
partitions become s (mod t)-cores. In the large-p limit, their
formula becomes

ls/2]
1 [s+t 1 (k+t\[/s+t—-1
gt(s)_s+t< t >+k§::1k+t< k ><2k+t—1>
[s/2]

k:ot t—1 2k +t—1

=> ey (n).
n=0




Fayers' conjecture

A conjecture of Matt Fayers suggests that this formula grows as an
exponential in s times a polynomial dependent on t:

Conjecture (Fayers)

Suppose t > 1. Then there is a monic polynomial f;(s) of degree
t — 1 with non-negative integer coefficients such that for any s > 1
coprime to t, the number of (s,s + t,s + 2t,...)-cores is

257tf(s)
t!

The constant term of fi(s) is (2t — 1)(t — 1)




Fayers' conjecture

We are able to prove this conjecture and identify the polynomials:

Conjecture 1 holds. The polynomials required are given by

fi(s) =Y L(t;m)(s+1)" " (1)

where the L(t, m) are the unsigned Lah numbers defined for

t>m>1 by
th (t—1
L(t = —
(t,m) m!(m—1>

with X0 = 1 for x >0 and, form > 1,
x™:=x(x+1)(x+2)...(x+m—1). (The x™ are the rising
factorials.)




Fayers' conjecture

Define

! i L(t,m)(s +1)™ .

m=1

We would like this to be equal to Cho, Huh, and Sohn's gi(s).

gi(s) = =

One may by hand or by use of Maple's sumtools and sumrecursion
commands verify that g;(s) satisfies the second-order recurrence

2tgi(s) = (s + 3(t — 1))gr-1(s) — (t — 2)ge-2(s)

with initial conditions

ls/2] [s/2]
s k+1/s+1
5= (5)  e0-X T

k=0



Fayers' conjecture

The full g/ (s) is a bit much for Maple to chew, but the
polynomials f(s) = f(s) = 3_F _; L(t, m)(s + 1)1 can also be
analyzed. They satisfy the second-order recurrence

fe(s) = (s + 3(t — 1))fe—1(s) — 2(t — 1)(t — 2)fr—2(s)
with initial conditions
A(s) =L, 1)(s+1)0°=1-1=1

and

fo(s) = L(2,1)(s+1)°+L(2,2)(s+1)! =2-141-(s+1) = s+3.



Fayers' conjecture

Rewrite this recurrence with g;(s) to get
. t— 1)1 25t |
i(s) = (s + 3t~ ) B g (o)

(t—2) 25t
257(1:72) : Tgt—Z(s)‘

—2(t—=1)(t—-2)

Cross-multiplying and cancelling factors from the factorials, we find
that this is equivalent to

2tg; (s) = (s +3(t — 1))gr_1(s) — (t — 2)&t_o(s),

as desired.



Fayers' conjecture

We still need to show that initial conditions match.
s—1
We have that gy (s) = 2T(1) = 2571 We calculate

guls) = Lsﬁj <2Sk> - Lsfj (25k_—11> * (Sz_kl)

k=0 k=0



Fayers' conjecture

For t = 2, we have that

Ls/2]

. _ k+1/s+1
R S IR S (A
k=0



Fayers' conjecture

Recall the Binomial Theorem which states that, for all n > 0,

n

L+x)"=Y" <Z>xk.

k=0

Hence

2 2k +1 '
k>0

We differentiate this expression with respect to x to obtain

N~

(s+ DA +x)°+(s+ 1)1 -x)°)=> (2k+1) <25k++11>x2k.
k>0



Fayers' conjecture

Now sum the previous two lines to obtain

(L35 = (10 (s+ DL +x)°+ (s + (1= x)°
2 2
=3 [ (Hl) +(2k+1)<5+11>] X2k,
k>0
Set x = 1 in this expression to obtain

25t 4 (s +1)2¢ s+1
=) (2k+2 :
7 k;( + )<2k + 1>

Divide through by 4 to obtain

k+t1/s+1 .
&(s) :Z2<2k+1) — 2+,
k>0

as desired.



Fayers' conjecture

The polynomial f;(s) is clearly monic and degree t — 1. His last
claim is that the constant term is (2* — 1)(t — 1)!. We have

:(t—1)!i<;>

m=1

= (t —1)1(2F — 1).



Further questions

@ We can certainly play the residue game with other Cy(;) and
the associated cores. Can we get infinite families of
congruences? Any Ramanujan-like congruence for the
partition function, p(An+ B) =0 (mod d) with d|A, will be
inherited by any Cja ka(q), and likewise from A-cores, so
“new"” congruences seem the more interesting.

@ Consider C3(3m+1)(q) and C3(3m42)(q). As m — oo, both of
these functions approach the 3-cores, f33/f (in different
ways). Combinatorially, the sets of 3 (mod (3m + i))-cores
are distinct, some contain each other, and they eventually
exhaust the set of 3-cores in a hierarchy. Is there any
algebraically or structurally interesting feature of this division?

© Fayers had one more clause in his conjecture we were unable
to prove: that f;(s) is divisible by s + t + (—1). At the
moment, that is still open.



