Rogers Ramanujan Gordon Identities when k = 3

Yalçın Can Kılıç

April 2024

Yalçın Can Kılıç

Rogers Ramanujan Gordon Identities when k = 3

April 2024 1

э

A B A A B A

< 4[™] ▶

1 / 46

Outline

- Introduction
- 2 A new series for RRG k = 3
- Intuitive Ideas and Examples
- Main Theorem
- Sketch of the Proof
- Oiscussion

Let *n* be a natural number. Then, an **integer partition** of *n* is a sequence $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that λ_i is a positive integer for all *i*, $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. Moreover, $\lambda_1 \ge \lambda_2 \ge \dots + \lambda_k \ge 1$. We call each λ_i a **part**. Let p(n) be the number partitions of *n*. If λ is a partition of *n*, we denote it by $|\lambda| = n$ and *n* is called the **size** of λ .

Example

Let *n* be a natural number. Then, an **integer partition** of *n* is a sequence $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that λ_i is a positive integer for all *i*, $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. Moreover, $\lambda_1 \ge \lambda_2 \ge \dots + \lambda_k \ge 1$. We call each λ_i a **part**. Let p(n) be the number partitions of *n*. If λ is a partition of *n*, we denote it by $|\lambda| = n$ and *n* is called the **size** of λ .

Example

Let *n* be a natural number. Then, an **integer partition** of *n* is a sequence $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that λ_i is a positive integer for all *i*, $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. Moreover, $\lambda_1 \ge \lambda_2 \ge \dots + \lambda_k \ge 1$. We call each λ_i a **part**. Let p(n) be the number partitions of *n*. If λ is a partition of *n*, we denote it by $|\lambda| = n$ and *n* is called the **size** of λ .

Example

Let *n* be a natural number. Then, an **integer partition** of *n* is a sequence $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that λ_i is a positive integer for all *i*, $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. Moreover, $\lambda_1 \ge \lambda_2 \ge \dots + \lambda_k \ge 1$. We call each λ_i a **part**. Let p(n) be the number partitions of *n*. If λ is a partition of *n*, we denote it by $|\lambda| = n$ and *n* is called the **size** of λ .

Example

Let *n* be a natural number. Then, an **integer partition** of *n* is a sequence $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that λ_i is a positive integer for all *i*, $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. Moreover, $\lambda_1 \ge \lambda_2 \ge \dots + \lambda_k \ge 1$. We call each λ_i a **part**. Let p(n) be the number partitions of *n*. If λ is a partition of *n*, we denote it by $|\lambda| = n$ and *n* is called the **size** of λ .

Example

Let *n* be a natural number. Then, an **integer partition** of *n* is a sequence $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that λ_i is a positive integer for all *i*, $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. Moreover, $\lambda_1 \ge \lambda_2 \ge \dots + \lambda_k \ge 1$. We call each λ_i a **part**. Let p(n) be the number partitions of *n*. If λ is a partition of *n*, we denote it by $|\lambda| = n$ and *n* is called the **size** of λ .

Example

Let n = 4. Then, all partitions of 4 can be listed as follows: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. Thus, p(4) = 5.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Usually, we want to consider a certain subset of integer partitions specified by some conditions. Let's look at some examples:

Example

Let n = 5. All partitions of 5 where each part is odd can be listed as: 5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Example

Similarly, all partitions of 5 where parts are distinct can be listed as: 5 , 4 + 1 and 3 + 2.

Definition

Any identity of the form

p(n|CONDITION 1) = p(n|CONDITION 2)

Usually, we want to consider a certain subset of integer partitions specified by some conditions. Let's look at some examples:

Example

Let n = 5. All partitions of 5 where each part is odd can be listed as: 5 , 3 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Example

Similarly, all partitions of 5 where parts are distinct can be listed as: 5 , 4 + 1 and 3 + 2.

Definition

Any identity of the form

p(n|CONDITION 1) = p(n|CONDITION 2)

Usually, we want to consider a certain subset of integer partitions specified by some conditions. Let's look at some examples:

Example

Let n = 5. All partitions of 5 where each part is odd can be listed as: 5 , 3 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Example

Similarly, all partitions of 5 where parts are distinct can be listed as: 5 , $4+1 \mbox{ and } 3+2.$

Definition

Any identity of the form

p(n|CONDITION 1) = p(n|CONDITION 2)

Usually, we want to consider a certain subset of integer partitions specified by some conditions. Let's look at some examples:

Example

Let n = 5. All partitions of 5 where each part is odd can be listed as: 5 , 3 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Example

Similarly, all partitions of 5 where parts are distinct can be listed as: 5 , $4+1 \mbox{ and } 3+2.$

Definition

Any identity of the form

```
p(n|\text{CONDITION 1}) = p(n|\text{CONDITION 2})
```

Euler's Identity

First partition identity is due to Euler:

Theorem (Euler's Identity)

Let n be a nonnegative integer. Then,

p(n|all parts are odd) = p(n|all parts are distinct)

Euler's Identity

First partition identity is due to Euler:

Theorem (Euler's Identity)

Let n be a nonnegative integer. Then,

p(n|all parts are odd) = p(n|all parts are distinct)

Definition

A combinatorial class \mathcal{A} is a countable set on a which a *size function*, $|.|: \mathcal{A} \to \mathbb{N}$, is defined, satisfying the following conditions:

- The size of an element is a nonnegative integer
- The number of elements of any given size is finite.

Definition

Let $\mathcal A$ be a combinatorial class, the **generating function** for $\mathcal A$ is

$$A(q):=\sum_{lpha\in\mathcal{A}}q^{|lpha|}$$

For this talk, we see *A*(*q*) as a formal object, i.e there is no convergence issues.

Central Idea: To prove a partition identity, show that their generating functions for both sides are the same.

Definition

A combinatorial class \mathcal{A} is a countable set on a which a *size function*, $|.|: \mathcal{A} \to \mathbb{N}$, is defined, satisfying the following conditions:

- The size of an element is a nonnegative integer
 - The number of elements of any given size is finite.

Definition

Let $\mathcal A$ be a combinatorial class, the **generating function** for $\mathcal A$ is

$$A(q):=\sum_{lpha\in\mathcal{A}}q^{|lpha|}$$

For this talk, we see *A*(*q*) as a formal object, i.e there is no convergence issues.

Central Idea: To prove a partition identity, show that their generating functions for both sides are the same.

Definition

A combinatorial class \mathcal{A} is a countable set on a which a *size function*, $|.|: \mathcal{A} \to \mathbb{N}$, is defined, satisfying the following conditions:

- The size of an element is a nonnegative integer
- 2 The number of elements of any given size is finite.

Definition

Let $\mathcal A$ be a combinatorial class, the **generating function** for $\mathcal A$ is

$$A(q):=\sum_{lpha\in\mathcal{A}}q^{|lpha|}$$

For this talk, we see *A*(*q*) as a formal object, i.e there is no convergence issues.

Central Idea: To prove a partition identity, show that their generating functions for both sides are the same.

Yalçın Can Kılıç

April 2024 6 / 46

Definition

A combinatorial class \mathcal{A} is a countable set on a which a *size function*, $|.|: \mathcal{A} \to \mathbb{N}$, is defined, satisfying the following conditions:

- The size of an element is a nonnegative integer
- 2 The number of elements of any given size is finite.

Definition

Let ${\mathcal A}$ be a combinatorial class, the generating function for ${\mathcal A}$ is

$$A(q):=\sum_{lpha\in\mathcal{A}}q^{|lpha|}$$

For this talk, we see A(q) as a formal object, i.e there is no convergence issues.

Central Idea: To prove a partition identity, show that their generating functions for both sides are the same.

Definition

A combinatorial class \mathcal{A} is a countable set on a which a *size function*, $|.|: \mathcal{A} \to \mathbb{N}$, is defined, satisfying the following conditions:

- The size of an element is a nonnegative integer
- In the number of elements of any given size is finite.

Definition

Let ${\mathcal A}$ be a combinatorial class, the generating function for ${\mathcal A}$ is

$$A(q):=\sum_{lpha\in\mathcal{A}}q^{|lpha|}$$

For this talk, we see A(q) as a formal object, i.e there is no convergence issues.

Central Idea: To prove a partition identity, show that their generating functions for both sides are the same.

Yalçın Can Kılıç

April 2024 6 / 46

Definition

A combinatorial class \mathcal{A} is a countable set on a which a *size function*, $|.|: \mathcal{A} \to \mathbb{N}$, is defined, satisfying the following conditions:

- The size of an element is a nonnegative integer
- 2 The number of elements of any given size is finite.

Definition

Let ${\mathcal A}$ be a combinatorial class, the generating function for ${\mathcal A}$ is

$$A(q) := \sum_{lpha \in \mathcal{A}} q^{|lpha|}$$

For this talk, we see A(q) as a formal object, i.e there is no convergence issues.

Central Idea: To prove a partition identity, show that their generating functions for both sides are the same.

Yalçın Can Kılıç

q-Pochammer Symbol

Before proving Euler's Identity, let's define q-Pochammer symbol: Let $n \ge 0$. Then,

$$(a; q)_n := (1-a)(1-aq)\cdots(1-aq^{n-1}).$$

Also, $(a; q)_0 := 1$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

q-Pochammer Symbol

Before proving Euler's Identity, let's define q-Pochammer symbol: Let $n \ge 0$. Then,

$$(a; q)_n := (1-a)(1-aq)\cdots(1-aq^{n-1}).$$

Also, $(a; q)_0 := 1$.

A B A A B A

Let's look at some generating function examples. Let ${\cal P}$ be the combinatorial class which contains all integer partitions.

Example

The generating function for partitions in which each part is at most *m*:

$$\sum_{\lambda \in \mathcal{P}, \text{ parts in } \{1, 2, \cdots, m\}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = \frac{1}{1 - q} \frac{1}{1 - q^2} \cdots \frac{1}{1 - q^m}$$

$$\sum_{\lambda\in\mathcal{P}}q^{|\lambda|}=1+q+2q^2+\cdots=\prod_{n=1}^\inftyrac{1}{1-q^n}$$

Let's look at some generating function examples. Let ${\cal P}$ be the combinatorial class which contains all integer partitions.

Example

• The generating function for partitions in which each part is at most *m*:

$$\sum_{\lambda \in \mathcal{P}, ext{ parts in } \{1,2,\cdots,m\}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = rac{1}{1-q} rac{1}{1-q^2} \cdots rac{1}{1-q^m}$$

$$\sum_{\lambda\in\mathcal{P}}q^{|\lambda|}=1+q+2q^2+\cdots=\prod_{n=1}^\inftyrac{1}{1-q^n}.$$

Let's look at some generating function examples. Let ${\cal P}$ be the combinatorial class which contains all integer partitions.

Example

• The generating function for partitions in which each part is at most *m*:

$$\sum_{\boldsymbol{\lambda}\in\mathcal{P}, \text{ parts in } \{1,2,\cdots,m\}} q^{|\boldsymbol{\lambda}|} = 1 + q + 2q^2 + \cdots = \frac{1}{1-q} \frac{1}{1-q^2} \cdots \frac{1}{1-q^m}$$

$$\sum_{\lambda\in\mathcal{P}}q^{|\lambda|}=1+q+2q^2+\cdots=\prod_{n=1}^\inftyrac{1}{1-q^n}.$$

Let's look at some generating function examples. Let ${\cal P}$ be the combinatorial class which contains all integer partitions.

Example

• The generating function for partitions in which each part is at most *m*:

$$\sum_{\lambda \in \mathcal{P}, \text{ parts in } \{1, 2, \cdots, m\}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = \frac{1}{1 - q} \frac{1}{1 - q^2} \cdots \frac{1}{1 - q^m}$$

$$\sum_{\lambda\in\mathcal{P}}q^{|\lambda|}=1+q+2q^2+\cdots=\prod_{n=1}^\inftyrac{1}{1-q^n}.$$

Let's look at some generating function examples. Let ${\cal P}$ be the combinatorial class which contains all integer partitions.

Example

• The generating function for partitions in which each part is at most *m*:

$$\sum_{\lambda \in \mathcal{P}, ext{ parts in } \{1,2,\cdots,m\}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = rac{1}{1-q} rac{1}{1-q^2} \cdots rac{1}{1-q^m}$$

$$\sum_{\lambda \in \mathcal{P}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = \prod_{n=1}^\infty rac{1}{1-q^n}$$

Let's look at some generating function examples. Let ${\cal P}$ be the combinatorial class which contains all integer partitions.

Example

• The generating function for partitions in which each part is at most *m*:

$$\sum_{\lambda \in \mathcal{P}, ext{ parts in } \{1,2,\cdots,m\}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = rac{1}{1-q} rac{1}{1-q^2} \cdots rac{1}{1-q^m}$$

$$\sum_{\boldsymbol{\lambda}\in\mathcal{P}}\boldsymbol{q}^{|\boldsymbol{\lambda}|}=1+q+2q^2+\cdots=\prod_{n=1}^\infty\frac{1}{1-q^n}$$

Let's look at some generating function examples. Let ${\cal P}$ be the combinatorial class which contains all integer partitions.

Example

• The generating function for partitions in which each part is at most *m*:

$$\sum_{\lambda \in \mathcal{P}, \text{ parts in } \{1,2,\cdots,m\}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = \frac{1}{1-q} \frac{1}{1-q^2} \cdots \frac{1}{1-q^m}$$

$$\sum_{\lambda \in \mathcal{P}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = \prod_{n=1}^\infty rac{1}{1-q^n}$$

Let's look at some generating function examples. Let ${\cal P}$ be the combinatorial class which contains all integer partitions.

Example

• The generating function for partitions in which each part is at most *m*:

$$\sum_{\lambda \in \mathcal{P}, ext{ parts in } \{1,2,\cdots,m\}} q^{|\lambda|} = 1 + q + 2q^2 + \cdots = rac{1}{1-q} rac{1}{1-q^2} \cdots rac{1}{1-q^m}$$

$$\sum_{\lambda\in\mathcal{P}}q^{|\lambda|}=1+q+2q^2+\cdots=\prod_{n=1}^\inftyrac{1}{1-q^n},$$

Examples(Continued)

Example

The generating function for partitions each part is equivalent to $a \mod k$:

$$\sum_{\lambda \in \mathcal{P}, \text{ parts } \equiv a \mod k} q^{|\lambda|} = \prod_{n \equiv a \mod k} \frac{1}{1 - q^n}$$

Examples(Continued)

Example

The generating function for partitions each part is equivalent to $a \mod k$:

$$\sum_{\lambda \in \mathcal{P}, \text{ parts } \equiv a \mod k} q^{|\lambda|} = \prod_{n \equiv a \mod k} \frac{1}{1 - q^n}$$

Examples(Continued)

Example

The generating function for partitions each part is equivalent to $a \mod k$:

$$\sum_{\lambda \in \mathcal{P}, ext{ parts } \equiv ext{ a mod } k} q^{|\lambda|} = \prod_{n \equiv ext{ a mod } k} rac{1}{1-q^n}$$

Yalçın Can Kılıç

April 2024 9 / 46

Proof of Euler's Identity

Let's show that generating function of odd partitions and distinct partitions are the same:

$$\sum_{\text{all odd partitions }\lambda} q^{|\lambda|} = \prod_{n\geq 1}^{\infty} \frac{1}{1-q^{2n-1}}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{(1-q^{2n-1})(1-q^{2n})}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{1-q^n} = \prod_{n\geq 1} (1+q^n)$$
$$= \sum_{\text{all distinct partitions }\lambda} q^{|\lambda|}$$
(1)

We are done!

• = • •

10 / 46

Proof of Euler's Identity

Let's show that generating function of odd partitions and distinct partitions are the same:

$$\sum_{\text{all odd partitions }\lambda} q^{|\lambda|} = \prod_{n\geq 1}^{\infty} \frac{1}{1-q^{2n-1}}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{(1-q^{2n-1})(1-q^{2n})}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{1-q^n} = \prod_{n\geq 1} (1+q^n)$$
$$= \sum_{\text{all distinct partitions }\lambda} q^{|\lambda|}$$

We are done!

Proof of Euler's Identity

Let's show that generating function of odd partitions and distinct partitions are the same:

$$\sum_{\text{all odd partitions }\lambda} q^{|\lambda|} = \prod_{n\geq 1}^{\infty} \frac{1}{1-q^{2n-1}}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{(1-q^{2n-1})(1-q^{2n})}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{1-q^n} = \prod_{n\geq 1} (1+q^n)$$
$$= \sum_{\text{all distinct partitions }\lambda} q^{|\lambda|}$$

We are done!

< ∃ ►

10 / 46
Let's show that generating function of odd partitions and distinct partitions are the same:

$$\sum_{\text{all odd partitions }\lambda} q^{|\lambda|} = \prod_{n\geq 1}^{\infty} \frac{1}{1-q^{2n-1}}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{(1-q^{2n-1})(1-q^{2n})}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{1-q^n} = \prod_{n\geq 1} (1+q^n)$$
$$= \sum_{\text{all distinct partitions }\lambda} q^{|\lambda|}$$

We are done!

< ∃ > <

Let's show that generating function of odd partitions and distinct partitions are the same:

$$\sum_{\text{all odd partitions }\lambda} q^{|\lambda|} = \prod_{n\geq 1}^{\infty} \frac{1}{1-q^{2n-1}}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{(1-q^{2n-1})(1-q^{2n})}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{1-q^n} = \prod_{n\geq 1} (1+q^n)$$
$$= \sum_{\text{all distinct partitions }\lambda} q^{|\lambda|}$$

We are done!

April 2024

Let's show that generating function of odd partitions and distinct partitions are the same:

$$\sum_{\text{all odd partitions }\lambda} q^{|\lambda|} = \prod_{n\geq 1}^{\infty} \frac{1}{1-q^{2n-1}}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{(1-q^{2n-1})(1-q^{2n})}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{1-q^n} = \prod_{n\geq 1} (1+q^n)$$
$$= \sum_{\text{all distinct partitions }\lambda} q^{|\lambda|}$$

We are done!

3 1 4

Let's show that generating function of odd partitions and distinct partitions are the same:

$$\sum_{\text{all odd partitions }\lambda} q^{|\lambda|} = \prod_{n\geq 1}^{\infty} \frac{1}{1-q^{2n-1}}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{(1-q^{2n-1})(1-q^{2n})}$$
$$= \prod_{n\geq 1} \frac{1-q^{2n}}{1-q^n} = \prod_{n\geq 1} (1+q^n)$$
$$= \sum_{\text{all distinct partitions }\lambda} q^{|\lambda|}$$

We are done!

Let's recall Euler's Identity:

Theorem (Euler's Identity)

Let n be a nonnegative integer. Then,

p(n|all parts are odd) = p(n|all parts are distinct)

On the left hand side, we have a modulus condition, on the right hand side we have a difference condition.

This is a very general family of partitions as we will see in the following slide.

Let's recall Euler's Identity:

Theorem (Euler's Identity)

Let n be a nonnegative integer. Then,

p(n|all parts are odd) = p(n|all parts are distinct)

On the left hand side, we have a modulus condition, on the right hand side we have a difference condition. This is a very general family of partitions as we will see in the following slide.

Let's recall Euler's Identity:

Theorem (Euler's Identity)

Let n be a nonnegative integer. Then,

p(n|all parts are odd) = p(n|all parts are distinct)

On the left hand side, we have a modulus condition, on the right hand side we have a difference condition.

This is a very general family of partitions as we will see in the following slide.

Let's recall Euler's Identity:

Theorem (Euler's Identity)

Let n be a nonnegative integer. Then,

p(n|all parts are odd) = p(n|all parts are distinct)

On the left hand side, we have a modulus condition, on the right hand side we have a difference condition.

This is a very general family of partitions as we will see in the following slide.

Difference Conditions-Modulus Conditions

Let's look at some famous theorems of the form:

p(n|difference conditions) = p(n|modulus conditions)

Theorem (Rogers-Ramanujan 1)

Let n be any natural number. Let A(n) be the number of partitions of n into parts such that the consecutive differences between the parts are at least 2. Let B(n) be the number of partitions of n into parts where each part is $\equiv \pm 1 \mod 5$. Then, A(n) = B(n) for all n.

Theorem (Rogers-Ramanujan 2)

Let n be any natural number. Let A(n) be the number of partitions of n into parts such that the consecutive differences between the parts are at least 2 and 1 does not appear as a part. Let B(n) be the number of partitions of n into parts where each part is $\equiv \pm 2 \mod 5$. Then, A(n) = B(n) for all n.

Yalçın Can Kılıç

Difference Conditions-Modulus Conditions

Let's look at some famous theorems of the form:

p(n|difference conditions) = p(n|modulus conditions)

Theorem (Rogers-Ramanujan 1)

Let n be any natural number. Let A(n) be the number of partitions of n into parts such that the consecutive differences between the parts are at least 2. Let B(n) be the number of partitions of n into parts where each part is $\equiv \pm 1 \mod 5$. Then, A(n) = B(n) for all n.

Theorem (Rogers-Ramanujan 2)

Let n be any natural number. Let A(n) be the number of partitions of n into parts such that the consecutive differences between the parts are at least 2 and 1 does not appear as a part. Let B(n) be the number of partitions of n into parts where each part is $\equiv \pm 2 \mod 5$. Then, A(n) = B(n) for all n.

Yalçın Can Kılıç

Difference Conditions-Modulus Conditions

Let's look at some famous theorems of the form:

p(n|difference conditions) = p(n|modulus conditions)

Theorem (Rogers-Ramanujan 1)

Let n be any natural number. Let A(n) be the number of partitions of n into parts such that the consecutive differences between the parts are at least 2. Let B(n) be the number of partitions of n into parts where each part is $\equiv \pm 1 \mod 5$. Then, A(n) = B(n) for all n.

Theorem (Rogers-Ramanujan 2)

Let n be any natural number. Let A(n) be the number of partitions of n into parts such that the consecutive differences between the parts are at least 2 and 1 does not appear as a part. Let B(n) be the number of partitions of n into parts where each part is $\equiv \pm 2 \mod 5$. Then, A(n) = B(n) for all n.

Yalçın Can Kılıç

Gordon's Generalization

Gordon generalizes Rogers-Ramanujan identities as follows:

Theorem (Rogers-Ramanujan-Gordon,1961)

Let a and k be natural numbers such that $1 \le a \le k$. Then, the number of partitions of n into parts not equivalent to $0, \pm a \mod 2k + 1$ is equal to the number of partitions of $n = \lambda_1 + \lambda_2 + \cdots + \lambda_m$ where $\lambda_i \ge \lambda_{i+k-1} + 2$ and the number of 1's are at most a - 1.

Remark

(k, a) = (2, 1) corresponds to Rogers-Ramanujan 1. Similarly, (k, a) = (2, 2) corresponds to Rogers-Ramanujan 2.

Gordon's Generalization

Gordon generalizes Rogers-Ramanujan identities as follows:

Theorem (Rogers-Ramanujan-Gordon, 1961)

Let a and k be natural numbers such that $1 \le a \le k$. Then, the number of partitions of n into parts not equivalent to $0, \pm a \mod 2k + 1$ is equal to the number of partitions of $n = \lambda_1 + \lambda_2 + \cdots + \lambda_m$ where $\lambda_i \ge \lambda_{i+k-1} + 2$ and the number of 1's are at most a - 1.

Remark

(k, a) = (2, 1) corresponds to Rogers-Ramanujan 1. Similarly, (k, a) = (2, 2) corresponds to Rogers-Ramanujan 2.

Gordon's Generalization

Gordon generalizes Rogers-Ramanujan identities as follows:

Theorem (Rogers-Ramanujan-Gordon, 1961)

Let a and k be natural numbers such that $1 \le a \le k$. Then, the number of partitions of n into parts not equivalent to $0, \pm a \mod 2k + 1$ is equal to the number of partitions of $n = \lambda_1 + \lambda_2 + \cdots + \lambda_m$ where $\lambda_i \ge \lambda_{i+k-1} + 2$ and the number of 1's are at most a - 1.

Remark

(k, a) = (2, 1) corresponds to Rogers-Ramanujan 1. Similarly, (k, a) = (2, 2) corresponds to Rogers-Ramanujan 2.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

An Example

Example

Let (k, a) = (3, 2), i.e the difference should be at least 2 in distance 2 and we can use at most one 1 as a part, and n = 7. Then, on the modulus side we have 6 + 1, 4 + 3, 4 + 1 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1. Similarly, on the difference side we have 7, 6 + 1, 5 + 2, 4 + 3, 4 + 2 + 1, 3 + 3 + 1.

Analytic Version of Rogers-Ramanujan-Gordon

Andrews found the corresponding version of Rogers-Ramanujan-Gordon identities:

Analytic Version of Rogers-Ramanujan-Gordon

Andrews found the corresponding version of Rogers-Ramanujan-Gordon identities:

- 本間下 本臣下 本臣下 三臣

Notation

Let a, k, m, n be nonnegative integers such that $1 \le a \le k$. Then, we define $rrg_{k,a}(m, n)$ as follows: Number of partitions of n into m parts, $\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_m$ such at most a - 1 parts are 1 and the difference at distance k is at least 2, i.e $\lambda_i \ge \lambda_{i+k-1} + 2$.

And rews-Gordon Series when k = 3

If forget about the modulus side of the Andrew-Gordon series, take number of parts into account and specialize for (k, a) = (3, 3), we get:

$$\sum_{m,n\geq 0} rrg_{3,3}(m,n)q^n x^m = \sum_{m,n\geq 0} \frac{q^{4\binom{m+1}{2}+2mn+2\binom{n+1}{2}-2m-n}x^{2m+n}}{(q;q)_m(q;q)_n}$$

April 2024 17 / 46

A New Series for RRG when k=3

Our series for RRG k = 3 is as follows: $\sum_{n,m\geq 0} \operatorname{rrg}_{3,1}(m,n) q^n x^m = \sum_{m,n\geq 0} \frac{q^{4\binom{m+1}{2}+2mn+\binom{n+1}{2}+n} x^{2m+n}}{(q^2;q^2)_m(q;q)_n}$ $\sum_{n,m\geq 0} rrg_{3,3}(m,n)q^n x^m = \sum_{m,n\geq 0} \frac{q^{4\binom{m+1}{2}+2mn+\binom{n+1}{2}-2m} x^{2m+n}}{(q^2;q^2)_m(q;q)_n}$

April 2024 18 / 46

A New Series for RRG when k=3

- 本間 と く ヨ と く ヨ と 二 ヨ

Suppose we are given an evidently positive generating function of the form

$$\sum_{m,n\geq 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q^B; q^C)_m (q^D; q^E)_n}$$

Then, the numerator corresponds to the *base partition* and the denominator corresponds to the moves on each part. Thus, given a partition which satisfies the properties, we will find the smallest weight partition that satisfies the conditions and using moves construct the given partition.

Given a partition which satisfies the conditions of $rrg_{3,3}$, our aim is to construct it starting from the *base partition* and using *moves* on the parts.

Suppose we are given an evidently positive generating function of the form

$$\sum_{m,n\geq 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q^B; q^C)_m (q^D; q^E)_n}$$

Then, the numerator corresponds to the base partition and the

denominator corresponds to the moves on each part. Thus, given a partition which satisfies the properties, we will find the smallest weight partition that satisfies the conditions and using moves construct the given partition.

Given a partition which satisfies the conditions of $rrg_{3,3}$, our aim is to construct it starting from the *base partition* and using *moves* on the parts.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Suppose we are given an evidently positive generating function of the form

$$\sum_{m,n\geq 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q^B; q^C)_m (q^D; q^E)_n}$$

Then, the numerator corresponds to the *base partition* and the denominator corresponds to the moves on each part. Thus, given a partition which satisfies the properties, we will find the smallest weight partition that satisfies the conditions and using moves construct the given partition.

Given a partition which satisfies the conditions of $rrg_{3,3}$, our aim is to construct it starting from the *base partition* and using *moves* on the parts.

Suppose we are given an evidently positive generating function of the form

$$\sum_{m,n\geq 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q^B; q^C)_m (q^D; q^E)_n}$$

Then, the numerator corresponds to the *base partition* and the denominator corresponds to the moves on each part. Thus, given a partition which satisfies the properties, we will find the smallest weight partition that satisfies the conditions and using moves construct the given partition.

Given a partition which satisfies the conditions of $rrg_{3,3}$, our aim is to construct it starting from the *base partition* and using *moves* on the parts.

Suppose we are given an evidently positive generating function of the form

$$\sum_{m,n\geq 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q^B; q^C)_m (q^D; q^E)_n}$$

Then, the numerator corresponds to the *base partition* and the denominator corresponds to the moves on each part. Thus, given a partition which satisfies the properties, we will find the smallest weight partition that satisfies the conditions and using moves construct the given partition.

Given a partition which satisfies the conditions of $rrg_{3,3}$, our aim is to construct it starting from the *base partition* and using *moves* on the parts.

Examples

Let's look at an example: $\lambda = 14 + 14 + 11 + 7 + 7 + 2 + 1.$

Our aim is to construct a partition triple (β, μ, ν) where β is the base partition, μ is the partition which contains backward moves applied on the pairs of λ and ν is the partition which contains backward moves applied on the singletons.

Side Note: We allow 0 as a part in μ and ν .

Examples

Let's look at an example:

 $\lambda = 14 + 14 + 11 + 7 + 7 + 2 + 1.$

Our aim is to construct a partition triple (β, μ, ν) where β is the base partition, μ is the partition which contains backward moves applied on the pairs of λ and ν is the partition which contains backward moves applied on the singletons.

Side Note: We allow 0 as a part in μ and ν .

Firstly, we divide the parts into two: The ones which repeats(pairs) and the ones which do not repeat(singletons). $\lambda = [14, 14] + (11) + [7, 7] + (2) + (1)$. Now, we are looking for a partition which contains m = 2 pairs and n = 3 singletons. Firstly, we divide the parts into two: The ones which repeats(pairs) and the ones which do not repeat(singletons). $\lambda = [14, 14] + (11) + [7, 7] + (2) + (1)$. Now, we are looking for a partition which contains m = 2 pairs and n = 3 singletons. Now, we will answer the following question: What is the smallest weight partition that contains 2 pairs and 3 singletons?

$\beta = (7) + (6) + (5) + [3,3] + [1,1]$

Now, we will answer the following question: What is the smallest weight partition that contains 2 pairs and 3 singletons?

$$\beta = (7) + (6) + (5) + [3,3] + [1,1]$$

April 2024

3 1 4

We want to reach $\beta = (7) + (6) + (5) + [3,3] + [1,1]$ from $\lambda = [14, 14] + (11) + [7,7] + (2) + (1)$. Firstly, we will obtain [1, 1] using backward moves:

Firstly, we will obtain [1,1] using backward moves:

$$\begin{split} [14,14] + (11) + [7,7] + (2) + (1) &\rightarrow [14,14] + (11) + \textbf{[6,6]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[5,5]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[4,4]} + (2) + (1) \end{split}$$

Now, we want to pull back [4, 4] to get [3, 3] however the resulting partition does not satisfy the conditions $rrg_{3,3}$. Thus, we need to do some arrangements on the parts.

We want to reach $\beta = (7) + (6) + (5) + [3,3] + [1,1]$ from $\lambda = [14, 14] + (11) + [7,7] + (2) + (1)$. Firstly, we will obtain [1,1] using backward moves:

$$\begin{split} [14,14] + (11) + [7,7] + (2) + (1) &\rightarrow [14,14] + (11) + \textbf{[6,6]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[5,5]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[4,4]} + (2) + (1) \end{split}$$

Now, we want to pull back [4, 4] to get [3, 3] however the resulting partition does not satisfy the conditions $rrg_{3,3}$. Thus, we need to do some arrangements on the parts.

We want to reach $\beta = (7) + (6) + (5) + [3,3] + [1,1]$ from $\lambda = [14, 14] + (11) + [7,7] + (2) + (1)$. Firstly, we will obtain [1,1] using backward moves:

$$\begin{split} \textbf{[14, 14]} + \textbf{(11)} + \textbf{[7, 7]} + \textbf{(2)} + \textbf{(1)} &\rightarrow \textbf{[14, 14]} + \textbf{(11)} + \textbf{[6, 6]} + \textbf{(2)} + \textbf{(1)} \\ &\rightarrow \textbf{[14, 14]} + \textbf{(11)} + \textbf{[5, 5]} + \textbf{(2)} + \textbf{(1)} \\ &\rightarrow \textbf{[14, 14]} + \textbf{(11)} + \textbf{[4, 4]} + \textbf{(2)} + \textbf{(1)} \end{split}$$

Now, we want to pull back [4, 4] to get [3, 3] however the resulting partition does not satisfy the conditions $rrg_{3,3}$. Thus, we need to do some arrangements on the parts.

We want to reach $\beta = (7) + (6) + (5) + [3,3] + [1,1]$ from $\lambda = [14, 14] + (11) + [7,7] + (2) + (1)$. Firstly, we will obtain [1,1] using backward moves:

$$\begin{split} [14,14] + (11) + [7,7] + (2) + (1) &\rightarrow [14,14] + (11) + [6,6] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [5,5] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [4,4] + (2) + (1) \end{split}$$

Now, we want to pull back [4, 4] to get [3, 3] however the resulting partition does not satisfy the conditions $rrg_{3,3}$. Thus, we need to do some arrangements on the parts.

- 4 回 ト 4 三 ト 4 三 ト
We want to reach $\beta = (7) + (6) + (5) + [3,3] + [1,1]$ from $\lambda = [14, 14] + (11) + [7,7] + (2) + (1)$. Firstly, we will obtain [1,1] using backward moves:

$$\begin{split} [14,14] + (11) + [7,7] + (2) + (1) &\rightarrow [14,14] + (11) + \textbf{[6,6]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[5,5]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[4,4]} + (2) + (1) \end{split}$$

Now, we want to pull back [4, 4] to get [3, 3] however the resulting partition does not satisfy the conditions $rrg_{3,3}$. Thus, we need to do some arrangements on the parts.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ →

We want to reach $\beta = (7) + (6) + (5) + [3,3] + [1,1]$ from $\lambda = [14, 14] + (11) + [7,7] + (2) + (1)$. Firstly, we will obtain [1,1] using backward moves:

$$\begin{split} [14,14] + (11) + [7,7] + (2) + (1) &\rightarrow [14,14] + (11) + \textbf{[6,6]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[5,5]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[4,4]} + (2) + (1) \end{split}$$

Now, we want to pull back [4, 4] to get [3, 3] however the resulting partition does not satisfy the conditions $rrg_{3,3}$. Thus, we need to do some arrangements on the parts.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ →

We want to reach $\beta = (7) + (6) + (5) + [3,3] + [1,1]$ from $\lambda = [14, 14] + (11) + [7,7] + (2) + (1)$. Firstly, we will obtain [1,1] using backward moves:

$$\begin{split} [14,14] + (11) + [7,7] + (2) + (1) &\rightarrow [14,14] + (11) + \textbf{[6,6]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[5,5]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[4,4]} + (2) + (1) \end{split}$$

Now, we want to pull back [4, 4] to get [3, 3] however the resulting partition does not satisfy the conditions $rrg_{3,3}$. Thus, we need to do some arrangements on the parts.

We want to reach $\beta = (7) + (6) + (5) + [3,3] + [1,1]$ from $\lambda = [14, 14] + (11) + [7,7] + (2) + (1)$. Firstly, we will obtain [1,1] using backward moves:

$$\begin{split} [14,14] + (11) + [7,7] + (2) + (1) &\rightarrow [14,14] + (11) + \textbf{[6,6]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[5,5]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[4,4]} + (2) + (1) \end{split}$$

Now, we want to pull back [4,4] to get [3,3] however the resulting partition does not satisfy the conditions $rrg_{3,3}$. Thus, we need to do some arrangements on the parts.

$[14, 14] + (11) + [4, 4] + (2) + (1) \rightarrow [14, 14] + (11) + (4) + (3) + [1, 1]]$

Now, we obtained [1, 1]. Next, we will obtain [3, 3]:

$[14, 14] + (11) + (4) + (3) + [1, 1] \rightarrow [13, 13] + (11) + (4) + (3) + [1, 1]$

Again, we want to pull [13, 13] back, however it is not possible! Thus, we will perform a similar arrangements on the parts again.

• = • •

$[14,14] + (11) + [4,4] + (2) + (1) \rightarrow [14,14] + (11) + (4) + (3) + [1,1]$

Now, we obtained [1, 1]. Next, we will obtain [3, 3]:

$[14, 14] + (11) + (4) + (3) + [1, 1] \rightarrow [13, 13] + (11) + (4) + (3) + [1, 1]$

Again, we want to pull [13, 13] back, however it is not possible! Thus, we will perform a similar arrangements on the parts again.

→ Ξ →

24 / 46

$[14, 14] + (11) + [4, 4] + (2) + (1) \rightarrow [14, 14] + (11) + (4) + (3) + [1, 1]$

Now, we obtained [1, 1]. Next, we will obtain [3, 3]:

$[14, 14] + (11) + (4) + (3) + [1, 1] \rightarrow [13, 13] + (11) + (4) + (3) + [1, 1]$

Again, we want to pull [13, 13] back, however it is not possible! Thus, we will perform a similar arrangements on the parts again.

A B b A B b

24 / 46

$[14, 14] + (11) + [4, 4] + (2) + (1) \rightarrow [14, 14] + (11) + (4) + (3) + [1, 1]$

Now, we obtained [1, 1]. Next, we will obtain [3, 3]:

$[14,14] + (11) + (4) + (3) + [1,1] \rightarrow \textbf{[13,13]} + (11) + (4) + (3) + [1,1]$

Again, we want to pull [13, 13] back, however it is not possible! Thus, we will perform a similar arrangements on the parts again.

• • = • • = •

 $[14, 14] + (11) + [4, 4] + (2) + (1) \rightarrow [14, 14] + (11) + (4) + (3) + [1, 1]$

Now, we obtained [1, 1]. Next, we will obtain [3, 3]:

$$[14,14] + (11) + (4) + (3) + [1,1] \rightarrow \textbf{[13,13]} + (11) + (4) + (3) + [1,1]$$

Again, we want to pull [13, 13] back, however it is not possible! Thus, we will perform a similar arrangements on the parts again.

Still, we are aiming for [3, 3].

```
\begin{split} [13,13] + (11) + (4) + (3) + [1,1] &\rightarrow (13) + [11,11] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [10,10] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [9,9] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [8,8] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [7,7] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [6,6] + (4) + (3) + [1,1] \\ &\rightarrow (13) + (6) + (5) + [3,3] + [1,1] \end{split}
```

We did obtained [3, 3]. We are finished with the pairs. Now, we need to obtain singletons.

Still, we are aiming for [3, 3].

 $\begin{aligned} [\mathbf{13},\mathbf{13}] + (\mathbf{11}) + (\mathbf{4}) + (\mathbf{3}) + [\mathbf{1},\mathbf{1}] &\to (13) + [\mathbf{11},\mathbf{11}] + (4) + (3) + [1,1] \\ &\to (13) + [\mathbf{10},\mathbf{10}] + (4) + (3) + [1,1] \\ &\to (13) + [\mathbf{9},\mathbf{9}] + (4) + (3) + [1,1] \\ &\to (13) + [\mathbf{8},\mathbf{8}] + (4) + (3) + [1,1] \\ &\to (13) + [\mathbf{7},\mathbf{7}] + (4) + (3) + [1,1] \\ &\to (13) + [\mathbf{6},\mathbf{6}] + (4) + (3) + [1,1] \\ &\to (13) + (\mathbf{6}) + (\mathbf{5}) + [\mathbf{3},\mathbf{3}] + [1,1] \end{aligned}$

We did obtained [3, 3]. We are finished with the pairs. Now, we need to obtain singletons.

A B b A B b

Still, we are aiming for [3, 3].

 $[13, 13] + (11) + (4) + (3) + [1, 1] \rightarrow (13) + [11, 11] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [10, 10] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [9,9] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [8,8] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [7,7] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [6,6] + (4) + (3) + [1, 1]$ $\rightarrow (13) + (6) + (5) + [3,3] + [1, 1]$

We did obtained [3, 3]. We are finished with the pairs. Now, we need to obtain singletons.

Still, we are aiming for [3, 3].

 $[13, 13] + (11) + (4) + (3) + [1, 1] \rightarrow (13) + [11, 11] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [10, 10] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [9,9] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [8,8] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [7,7] + (4) + (3) + [1, 1]$ $\rightarrow (13) + [6,6] + (4) + (3) + [1, 1]$ $\rightarrow (13) + (6) + (5) + [3,3] + [1, 1]$

We did obtained [3, 3]. We are finished with the pairs. Now, we need to obtain singletons.

A B b A B b

Still, we are aiming for [3, 3].

```
 [13, 13] + (11) + (4) + (3) + [1, 1] \rightarrow (13) + [11, 11] + (4) + (3) + [1, 1] 
 \rightarrow (13) + [10, 10] + (4) + (3) + [1, 1] 
 \rightarrow (13) + [9,9] + (4) + (3) + [1, 1] 
 \rightarrow (13) + [8,8] + (4) + (3) + [1, 1] 
 \rightarrow (13) + [7,7] + (4) + (3) + [1, 1] 
 \rightarrow (13) + [6,6] + (4) + (3) + [1, 1] 
 \rightarrow (13) + (6) + (5) + [3,3] + [1, 1]
```

We did obtained [3, 3]. We are finished with the pairs. Now, we need to obtain singletons.

A B b A B b

Still, we are aiming for [3, 3].

$$[13,13] + (11) + (4) + (3) + [1,1] \rightarrow (13) + [11,11] + (4) + (3) + [1,1] \rightarrow (13) + [10,10] + (4) + (3) + [1,1] \rightarrow (13) + [9,9] + (4) + (3) + [1,1] \rightarrow (13) + [8,8] + (4) + (3) + [1,1] \rightarrow (13) + [7,7] + (4) + (3) + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1] \rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

We did obtained [3,3]. We are finished with the pairs. Now, we need to obtain singletons.

Still, we are aiming for [3, 3].

$$[13, 13] + (11) + (4) + (3) + [1, 1] \rightarrow (13) + [11, 11] + (4) + (3) + [1, 1] \rightarrow (13) + [10, 10] + (4) + (3) + [1, 1] \rightarrow (13) + [9,9] + (4) + (3) + [1, 1] \rightarrow (13) + [8,8] + (4) + (3) + [1, 1] \rightarrow (13) + [7,7] + (4) + (3) + [1, 1] \rightarrow (13) + [6,6] + (4) + (3) + [1, 1] \rightarrow (13) + (6) + (5) + [3,3] + [1, 1]$$

We did obtained [3, 3]. We are finished with the pairs. Now, we need to obtain singletons.

Still, we are aiming for [3, 3].

$$[13,13] + (11) + (4) + (3) + [1,1] \rightarrow (13) + [11,11] + (4) + (3) + [1,1] \rightarrow (13) + [10,10] + (4) + (3) + [1,1] \rightarrow (13) + [9,9] + (4) + (3) + [1,1] \rightarrow (13) + [8,8] + (4) + (3) + [1,1] \rightarrow (13) + [7,7] + (4) + (3) + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1] \rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

We did obtained [3, 3]. We are finished with the pairs. Now, we need to obtain singletons.

Still, we are aiming for [3, 3].

$$\begin{split} [13,13] + (11) + (4) + (3) + [1,1] &\rightarrow (13) + [11,11] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [10,10] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [9,9] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [8,8] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [7,7] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [6,6] + (4) + (3) + [1,1] \\ &\rightarrow (13) + (6) + (5) + [3,3] + [1,1] \end{split}$$

We did obtained [3,3]. We are finished with the pairs. Now, we need to obtain singletons.

April 2024 25 / 46

★ Ξ >

Still, we are aiming for [3, 3].

$$\begin{split} [13,13] + (11) + (4) + (3) + [1,1] &\rightarrow (13) + [11,11] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [10,10] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [9,9] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [8,8] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [7,7] + (4) + (3) + [1,1] \\ &\rightarrow (13) + [6,6] + (4) + (3) + [1,1] \\ &\rightarrow (13) + (6) + (5) + [3,3] + [1,1] \end{split}$$

We did obtained [3,3]. We are finished with the pairs. Now, we need to obtain singletons.

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

▲ 国 ▶ | ▲ 国 ▶

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

▲ 国 ▶ | ▲ 国 ▶

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1]$$

$$\rightarrow (11) + (6) + (5) + [3,3] + [1,1]$$

$$\rightarrow (10) + (6) + (5) + [3,3] + [1,1]$$

$$\rightarrow (9) + (6) + (5) + [3,3] + [1,1]$$

$$\rightarrow (8) + (6) + (5) + [3,3] + [1,1]$$

$$\rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1] \rightarrow (11) + (6) + (5) + [3,3] + [1,1] \rightarrow (10) + (6) + (5) + [3,3] + [1,1] \rightarrow (9) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1] \rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

Let's recall $\beta = (7) + (6) + (5) + [3,3] + [1,1]$. Now, we will obtain the singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already present! We just need to obtain (7):

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (7) + (6) + (5) + [3,3] + [1,1]$$

We are done!

▲ 国 ▶ | ▲ 国 ▶

Let's store the number of moves we applied on each singleton and each pairs:

We applied 4 backward moves on the pair [7,7] and 8 backward moves on the pair [13,13]. Thus, $\mu = (8 \times 2, 4 \times 2)$.

Similarly, we applied 0 backward moves on the singleton (1), 0 backward moves on the singleton (2) and 6 backward moves on the singleton (11). Hence, $\nu = (6, 0, 0)$.

As a result, we obtained the following correspondence

 $[14, 14] + (11) + [7, 7] + (2) + (1) \rightarrow (\beta = (7) + (6) + (5) + [3, 3] + [1, 1], \mu = (8 \times 2, 4 \times 2), \nu = (6, 0, 0))$

・ 何 ト ・ ヨ ト ・ ヨ ト

Let's store the number of moves we applied on each singleton and each pairs:

We applied 4 backward moves on the pair [7,7] and 8 backward moves on the pair [13,13]. Thus, $\mu = (8 \times 2, 4 \times 2)$.

Similarly, we applied 0 backward moves on the singleton (1), 0 backward moves on the singleton (2) and 6 backward moves on the singleton (11). Hence, $\nu = (6, 0, 0)$.

As a result, we obtained the following correspondence

 $[14, 14] + (11) + [7, 7] + (2) + (1) \rightarrow (\beta = (7) + (6) + (5) + [3, 3] + [1, 1], \mu = (8 \times 2, 4 \times 2), \nu = (6, 0, 0))$

・ 何 ト ・ ヨ ト ・ ヨ ト

Let's store the number of moves we applied on each singleton and each pairs:

We applied 4 backward moves on the pair [7,7] and 8 backward moves on the pair [13,13]. Thus, $\mu = (8 \times 2, 4 \times 2)$.

Similarly, we applied 0 backward moves on the singleton (1), 0 backward moves on the singleton (2) and 6 backward moves on the singleton (11). Hence, $\nu = (6, 0, 0)$.

As a result, we obtained the following correspondence

 $[14, 14] + (11) + [7, 7] + (2) + (1) \rightarrow (\beta = (7) + (6) + (5) + [3, 3] + [1, 1], \mu = (8 \times 2, 4 \times 2), \nu = (6, 0, 0))$

・ 何 ト ・ ヨ ト ・ ヨ ト

Let's store the number of moves we applied on each singleton and each pairs:

We applied 4 backward moves on the pair [7,7] and 8 backward moves on the pair [13,13]. Thus, $\mu = (8 \times 2, 4 \times 2)$.

Similarly, we applied 0 backward moves on the singleton (1), 0 backward moves on the singleton (2) and 6 backward moves on the singleton (11). Hence, $\nu = (6, 0, 0)$.

As a result, we obtained the following correspondence

 $[14, 14] + (11) + [7, 7] + (2) + (1) \rightarrow (\beta = (7) + (6) + (5) + [3, 3] + [1, 1], \mu = (8 \times 2, 4 \times 2), \nu = (6, 0, 0))$

く 伺 ト く ヨ ト く ヨ ト

Let's store the number of moves we applied on each singleton and each pairs:

We applied 4 backward moves on the pair [7,7] and 8 backward moves on the pair [13,13]. Thus, $\mu = (8 \times 2, 4 \times 2)$.

Similarly, we applied 0 backward moves on the singleton (1), 0 backward moves on the singleton (2) and 6 backward moves on the singleton (11). Hence, $\nu = (6, 0, 0)$.

As a result, we obtained the following correspondence

 $[14, 14] + (11) + [7, 7] + (2) + (1) \rightarrow (\beta = (7) + (6) + (5) + [3, 3] + [1, 1], \mu = (8 \times 2, 4 \times 2), \nu = (6, 0, 0))$

く 伺 ト く ヨ ト く ヨ ト

Let's store the number of moves we applied on each singleton and each pairs:

We applied 4 backward moves on the pair [7,7] and 8 backward moves on the pair [13,13]. Thus, $\mu = (8 \times 2, 4 \times 2)$.

Similarly, we applied 0 backward moves on the singleton (1), 0 backward moves on the singleton (2) and 6 backward moves on the singleton (11). Hence, $\nu = (6, 0, 0)$.

As a result, we obtained the following correspondence

$$[14, 14] + (11) + [7, 7] + (2) + (1) \rightarrow (\beta = (7) + (6) + (5) + [3, 3] + [1, 1], \mu = (8 \times 2, 4 \times 2), \nu = (6, 0, 0))$$

Examples

Now, we want get the other direction of the correspondence, i.e given (β, μ, ν) obtain λ : Write them below using the above example. Let $\beta = (7) + (6) + (5) + [3,3] + [1,1], \mu = (8 \times 2, 4 \times 2)$ and $\nu = (6,0,0)$

April 2024 2

▲□ ► < □ ► </p>

28 / 46

Examples

Now, we want get the other direction of the correspondence, i.e given (β, μ, ν) obtain λ : Write them below using the above example. Let $\beta = (7) + (6) + (5) + [3,3] + [1,1]$, $\mu = (8 \times 2, 4 \times 2)$ and $\nu = (6,0,0)$
$$(7) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

This time we will start with the singletons. First, we will apply the forward moves on the singletons using $\nu = (6, 0, 0)$. In other words, we will apply 6 forward moves on (7) and no other forward moves on (6) and (5).

$$(7) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

$$(7) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

$$(7) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

$$(7) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

$$(7) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

$$(7) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

$$(7) + (6) + (5) + [3,3] + [1,1] \rightarrow (8) + (6) + (5) + [3,3] + [1,1]
\rightarrow (9) + (6) + (5) + [3,3] + [1,1]
\rightarrow (10) + (6) + (5) + [3,3] + [1,1]
\rightarrow (11) + (6) + (5) + [3,3] + [1,1]
\rightarrow (12) + (6) + (5) + [3,3] + [1,1]
\rightarrow (13) + (6) + (5) + [3,3] + [1,1]$$

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3, 3] 8 times and the pair [1, 1] 4 times:

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1]
\rightarrow (13) + [7,7] + (4) + (3) + [1,1]
\rightarrow (13) + [8,8] + (4) + (3) + [1,1]
\rightarrow (13) + [9,9] + (4) + (3) + [1,1]
\rightarrow (13) + [10,10] + (4) + (3) + [1,1]
\rightarrow (13) + [11,11] + (4) + (3) + [1,1]
\rightarrow [14,14] + (11) + (4) + (3) + [1,1]$$

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1] \rightarrow (13) + [7,7] + (4) + (3) + [1,1] \rightarrow (13) + [8,8] + (4) + (3) + [1,1] \rightarrow (13) + [9,9] + (4) + (3) + [1,1] \rightarrow (13) + [10,10] + (4) + (3) + [1,1] \rightarrow (13) + [11,11] + (4) + (3) + [1,1] \rightarrow [14,14] + (11) + (4) + (3) + [1,1]$$

We are finished with [3,3].

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

 $(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1]$ $\rightarrow (13) + [7,7] + (4) + (3) + [1,1]$ $\rightarrow (13) + [8,8] + (4) + (3) + [1,1]$ $\rightarrow (13) + [9,9] + (4) + (3) + [1,1]$ $\rightarrow (13) + [10,10] + (4) + (3) + [1,1]$ $\rightarrow (13) + [11,11] + (4) + (3) + [1,1]$ $\rightarrow [14,14] + (11) + (4) + (3) + [1,1]$

We are finished with [3,3].

• • = • • = •

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1]
\rightarrow (13) + [7,7] + (4) + (3) + [1,1]
\rightarrow (13) + [8,8] + (4) + (3) + [1,1]
\rightarrow (13) + [9,9] + (4) + (3) + [1,1]
\rightarrow (13) + [10,10] + (4) + (3) + [1,1]
\rightarrow (13) + [11,11] + (4) + (3) + [1,1]
\rightarrow [14,14] + (11) + (4) + (3) + [1,1]$$

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1]
\rightarrow (13) + [7,7] + (4) + (3) + [1,1]
\rightarrow (13) + [8,8] + (4) + (3) + [1,1]
\rightarrow (13) + [9,9] + (4) + (3) + [1,1]
\rightarrow (13) + [10,10] + (4) + (3) + [1,1]
\rightarrow (13) + [11,11] + (4) + (3) + [1,1]
\rightarrow [14,14] + (11) + (4) + (3) + [1,1]$$

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1]
\rightarrow (13) + [7,7] + (4) + (3) + [1,1]
\rightarrow (13) + [8,8] + (4) + (3) + [1,1]
\rightarrow (13) + [9,9] + (4) + (3) + [1,1]
\rightarrow (13) + [10,10] + (4) + (3) + [1,1]
\rightarrow (13) + [11,11] + (4) + (3) + [1,1]
\rightarrow [13,13] + (11) + (4) + (3) + [1,1]
\rightarrow [14,14] + (11) + (4) + (3) + [1,1]$$

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1]
\rightarrow (13) + [7,7] + (4) + (3) + [1,1]
\rightarrow (13) + [8,8] + (4) + (3) + [1,1]
\rightarrow (13) + [9,9] + (4) + (3) + [1,1]
\rightarrow (13) + [10,10] + (4) + (3) + [1,1]
\rightarrow (13) + [11,11] + (4) + (3) + [1,1]
\rightarrow [14,14] + (11) + (4) + (3) + [1,1]$$

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1]
\rightarrow (13) + [7,7] + (4) + (3) + [1,1]
\rightarrow (13) + [8,8] + (4) + (3) + [1,1]
\rightarrow (13) + [9,9] + (4) + (3) + [1,1]
\rightarrow (13) + [10,10] + (4) + (3) + [1,1]
\rightarrow (13) + [11,11] + (4) + (3) + [1,1]
\rightarrow [14,14] + (11) + (4) + (3) + [1,1]$$

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

$$(13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [6,6] + (4) + (3) + [1,1] \rightarrow (13) + [7,7] + (4) + (3) + [1,1] \rightarrow (13) + [8,8] + (4) + (3) + [1,1] \rightarrow (13) + [9,9] + (4) + (3) + [1,1] \rightarrow (13) + [10,10] + (4) + (3) + [1,1] \rightarrow (13) + [11,11] + (4) + (3) + [1,1] \rightarrow [14,14] + (11) + (4) + (3) + [1,1]$$

Now, we will forward moves on the pairs using $\mu = (8 \times 2, 4 \times 2)$, i.e we will push the pair [3,3] 8 times and the pair [1,1] 4 times:

$$\begin{array}{l} (13) + (6) + (5) + [3,3] + [1,1] \rightarrow (13) + [\mathbf{6},\mathbf{6}] + (4) + (3) + [1,1] \\ \rightarrow (13) + [\mathbf{7},\mathbf{7}] + (4) + (3) + [1,1] \\ \rightarrow (13) + [\mathbf{8},\mathbf{8}] + (4) + (3) + [1,1] \\ \rightarrow (13) + [\mathbf{9},\mathbf{9}] + (4) + (3) + [1,1] \\ \rightarrow (13) + [\mathbf{10},\mathbf{10}] + (4) + (3) + [1,1] \\ \rightarrow (13) + [\mathbf{11},\mathbf{11}] + (4) + (3) + [1,1] \\ \rightarrow [\mathbf{13},\mathbf{13}] + (11) + (4) + (3) + [1,1] \\ \rightarrow [\mathbf{14},\mathbf{14}] + (11) + (4) + (3) + [1,1] \end{array}$$

Now, we will push the pair [1,1]:

$$\begin{split} \textbf{[14,14]} + \textbf{(11)} + \textbf{(4)} + \textbf{(3)} + \textbf{[1,1]} &\rightarrow \textbf{[14,14]} + \textbf{(11)} + \textbf{[4,4]} + \textbf{(2)} + \textbf{(1)} \\ &\rightarrow \textbf{[14,14]} + \textbf{(11)} + \textbf{[5,5]} + \textbf{(2)} + \textbf{(1)} \\ &\rightarrow \textbf{[14,14]} + \textbf{(11)} + \textbf{[6,6]} + \textbf{(2)} + \textbf{(1)} \\ &\rightarrow \textbf{[14,14]} + \textbf{(11)} + \textbf{[7,7]} + \textbf{(2)} + \textbf{(1)} \end{split}$$

We are finished with the pairs as well.

Now, we will push the pair [1, 1]:

$$\begin{split} [14,14] + (11) + (4) + (3) + [1,1] &\rightarrow [14,14] + (11) + [4,4] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [5,5] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [6,6] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [7,7] + (2) + (1) \end{split}$$

We are finished with the pairs as well.

April 2024

Now, we will push the pair [1,1]:

$$\begin{split} [14,14] + (11) + (4) + (3) + [1,1] &\rightarrow [14,14] + (11) + [\textbf{4,4}] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [\textbf{5,5}] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [\textbf{6,6}] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [\textbf{7,7}] + (2) + (1) \end{split}$$

We are finished with the pairs as well.

April 2024

< 3 >

Now, we will push the pair [1,1]:

$$\begin{split} [14,14] + (11) + (4) + (3) + [1,1] &\rightarrow [14,14] + (11) + [\textbf{4,4}] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [\textbf{5,5}] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [\textbf{6,6}] + (2) + (1) \\ &\rightarrow [14,14] + (11) + [\textbf{7,7}] + (2) + (1) \end{split}$$

We are finished with the pairs as well.

April 2024 31 / 46

< 3 >

Now, we will push the pair [1,1]:

$$\begin{split} [14,14] + (11) + (4) + (3) + [1,1] &\rightarrow [14,14] + (11) + \textbf{[4,4]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[5,5]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[6,6]} + (2) + (1) \\ &\rightarrow [14,14] + (11) + \textbf{[7,7]} + (2) + (1) \end{split}$$

We are finished with the pairs as well.

< 3 >

As a result, we showed the following correspondence:

$$egin{aligned} &(eta=(7)+(6)+(5)+[3,3]+[1,1],\ \mu=(8 imes2,4 imes2),\
u=(6,0,0))
ightarrow\ &[14,14]+(11)+[7,7]+(2)+(1) \end{aligned}$$

April 2024

< ⊒ >

< 47 ▶

32 / 46

э

Hence, we showed that

Theorem

$$\sum_{n,m\geq 0} rrg_{3,3}(m,n)q^n x^m = \sum_{m,n\geq 0} \frac{q^{4\binom{m+1}{2}+2mn+\binom{n+1}{2}-2m}x^{2m+n}}{(q^2;q^2)_m(q;q)_n}$$

A D N A B N A B N A B N

- A lemma about the form of the base partition
- A general form of the moves
 - I Forward moves
 - Backward moves
- Showing that forward moves and backward moves are inverses of each other

- A lemma about the form of the base partition
- A general form of the moves
 - I Forward moves
 - Backward moves
- Showing that forward moves and backward moves are inverses of each other

- A lemma about the form of the base partition
- A general form of the moves
 - I Forward moves
 - Backward moves
- Showing that forward moves and backward moves are inverses of each other

The proof contains 3 steps:

- A lemma about the form of the base partition
- A general form of the moves
 - Forward moves
 - Ø Backward moves

Showing that forward moves and backward moves are inverses of each other

The proof contains 3 steps:

- A lemma about the form of the base partition
- A general form of the moves
 - Forward moves
 - Backward moves

Showing that forward moves and backward moves are inverses of each other

- A lemma about the form of the base partition
- A general form of the moves
 - Forward moves
 - Backward moves
- Showing that forward moves and backward moves are inverses of each other

A lemma about Base Partitions

We will state the lemma about the base partition now:

Lemma (Form of the Base Partition)

The base partition for rrg_{3,3} with m pairs and n singletons is

 $(2m+n)+\cdots+(2m+2)+(2m+1)+[2m-1,2m-1]+\cdots+[3,3]+[1,1].$

We will state the lemma about the base partition now:

Lemma (Form of the Base Partition)

The base partition for $rrg_{3,3}$ with m pairs and n singletons is

 $(2m+n)+\cdots+(2m+2)+(2m+1)+[2m-1,2m-1]+\cdots+[3,3]+[1,1].$

We will state the lemma about the base partition now:

Lemma (Form of the Base Partition)

The base partition for $rrg_{3,3}$ with m pairs and n singletons is

 $(2m+n)+\cdots+(2m+2)+(2m+1)+[2m-1,2m-1]+\cdots+[3,3]+[1,1].$

We will state the lemma about the base partition now:

Lemma (Form of the Base Partition)

The base partition for $rrg_{3,3}$ with m pairs and n singletons is

 $(2m+n)+\cdots+(2m+2)+(2m+1)+[2m-1,2m-1]+\cdots+[3,3]+[1,1].$

General Form of the Forward Moves, Pairs

Suppose we want to push a pair [b, b], there are two cases to consider:

- 1 The pair becomes [b+1, b+1] and the resulting partition satisfies $rrg_{3,3}$ conditions.
- We cannot make it [b + 1, b + 1] because it violates the rrg_{3,3} conditions. Thus, there exists a singleton (b + 2) and possibly other singletons (b + 3), (b + 4), · · · , (b + s) for some integers s ≥ 2. Then, forward move on the pair [b, b] is defined as:

$$(b+s) + (b+s-1) + \dots + (b+3) + (b+2) + [b,b] \rightarrow$$

[b+s,b+s] + $(b+s-2) + \dots + (b+1) + (b)$

April 2024 36 / 46
Suppose we want to push a pair [b, b], there are two cases to consider:

- The pair becomes [b+1, b+1] and the resulting partition satisfies $rrg_{3,3}$ conditions.
- We cannot make it [b + 1, b + 1] because it violates the rrg_{3,3} conditions. Thus, there exists a singleton (b + 2) and possibly other singletons (b + 3), (b + 4), · · · , (b + s) for some integers s ≥ 2. Then, forward move on the pair [b, b] is defined as:

$$(b+s) + (b+s-1) + \dots + (b+3) + (b+2) + [b,b] \rightarrow$$

[b+s,b+s] + $(b+s-2) + \dots + (b+1) + (b)$

April 2024 36 / 46

Suppose we want to push a pair [b, b], there are two cases to consider:

- The pair becomes [b+1, b+1] and the resulting partition satisfies $rrg_{3,3}$ conditions.
- We cannot make it [b + 1, b + 1] because it violates the rrg_{3,3} conditions. Thus, there exists a singleton (b + 2) and possibly other singletons (b + 3), (b + 4), · · · , (b + s) for some integers s ≥ 2. Then, forward move on the pair [b, b] is defined as:

$$(b+s) + (b+s-1) + \dots + (b+3) + (b+2) + [b,b] \rightarrow$$

[b+s,b+s] + (b+s-2) + \dots + (b+1) + (b)

April 2024

Suppose we want to push a pair [b, b], there are two cases to consider:

- The pair becomes [b+1, b+1] and the resulting partition satisfies $rrg_{3,3}$ conditions.
- We cannot make it [b + 1, b + 1] because it violates the rrg_{3,3} conditions. Thus, there exists a singleton (b + 2) and possibly other singletons (b + 3), (b + 4), · · · , (b + s) for some integers s ≥ 2. Then, forward move on the pair [b, b] is defined as:

$$(b+s) + (b+s-1) + \dots + (b+3) + (b+2) + [b,b] \rightarrow$$

[b+s,b+s] + $(b+s-2) + \dots + (b+1) + (b)$

April 2024

Suppose we want to push a pair [b, b], there are two cases to consider:

- The pair becomes [b+1, b+1] and the resulting partition satisfies $rrg_{3,3}$ conditions.
- We cannot make it [b + 1, b + 1] because it violates the rrg_{3,3} conditions. Thus, there exists a singleton (b + 2) and possibly other singletons (b + 3), (b + 4), · · · , (b + s) for some integers s ≥ 2. Then, forward move on the pair [b, b] is defined as:

$$(b+s) + (b+s-1) + \dots + (b+3) + (b+2) + [b,b] \rightarrow$$

[b+s,b+s] + $(b+s-2) + \dots + (b+1) + (b)$

April 2024 36

Suppose we want to push a pair [b, b], there are two cases to consider:

- The pair becomes [b+1, b+1] and the resulting partition satisfies $rrg_{3,3}$ conditions.
- We cannot make it [b + 1, b + 1] because it violates the rrg_{3,3} conditions. Thus, there exists a singleton (b + 2) and possibly other singletons (b + 3), (b + 4), · · · , (b + s) for some integers s ≥ 2. Then, forward move on the pair [b, b] is defined as:

$$(b+s) + (b+s-1) + \dots + (b+3) + (b+2) + [b,b] \rightarrow$$

[b+s,b+s] + (b+s-2) + \dots + (b+1) + (b)

General Form of the Forward Moves, Singletons

Suppose we want to push a singleton (a), then (a) becomes (a + 1), since there cannot be any problems due to form of the base partition.

April 2024

General Form of the Forward Moves, Singletons

Suppose we want to push a singleton (a), then (a) becomes (a + 1), since there cannot be any problems due to form of the base partition.

Suppose we want to pull a pair [b+1, b+1], there are two cases to consider:

- The pair becomes, [b, b], and the resulting partition does not violate rrg_{3,3} conditions.
- ② We cannot make it [b, b]. Thus, there exists a singleton (b − 1) and possibly (b − 2), (b − 3), · · · , (b − s) where s is an integer 2 ≤ s < b. Then, we define the backward move on [b + 1, b + 1] as:</p>

$$[b+1, b+1] + (b-1) + (b-2) + \dots + (b-s+1) + (b-s) \rightarrow (b+1) + (b) + \dots + (b-s+2) + [b-s,b-s]$$

Suppose we want to pull a pair [b+1, b+1], there are two cases to consider:

The pair becomes, [b, b], and the resulting partition does not violate rrg_{3,3} conditions.

② We cannot make it [b, b]. Thus, there exists a singleton (b-1) and possibly $(b-2), (b-3), \dots, (b-s)$ where s is an integer $2 \le s < b$. Then, we define the backward move on [b+1, b+1] as:

$$[b+1, b+1] + (b-1) + (b-2) + \dots + (b-s+1) + (b-s) \rightarrow (b+1) + (b) + \dots + (b-s+2) + [b-s,b-s]$$

Suppose we want to pull a pair [b+1, b+1], there are two cases to consider:

- The pair becomes, [b, b], and the resulting partition does not violate $rrg_{3,3}$ conditions.
- We cannot make it [b, b]. Thus, there exists a singleton (b − 1) and possibly (b − 2), (b − 3), · · · , (b − s) where s is an integer 2 ≤ s < b. Then, we define the backward move on [b + 1, b + 1] as:

$$[b+1, b+1] + (b-1) + (b-2) + \dots + (b-s+1) + (b-s) \rightarrow (b+1) + (b) + \dots + (b-s+2) + [b-s,b-s]$$

Suppose we want to pull a pair [b+1, b+1], there are two cases to consider:

- The pair becomes, [b, b], and the resulting partition does not violate $rrg_{3,3}$ conditions.
- We cannot make it [b, b]. Thus, there exists a singleton (b-1) and possibly $(b-2), (b-3), \dots, (b-s)$ where s is an integer $2 \le s < b$. Then, we define the backward move on [b+1, b+1] as:

$$[b+1, b+1] + (b-1) + (b-2) + \dots + (b-s+1) + (b-s) \rightarrow (b+1) + (b) + \dots + (b-s+2) + [b-s,b-s]$$

General Form of the Backward Moves, Singletons

The backward moves on the singletons are straightforward: (a + 1) becomes (a), since we pull the singletons first there cannot be any obstacles along the way!

General Form of the Backward Moves, Singletons

The backward moves on the singletons are straightforward: (a + 1) becomes (a), since we pull the singletons first there cannot be any obstacles along the way!

Forward and Backward Moves are Inverses of Each Other

This directly follows from the order of the moves and "local invertibility". Question: What happens when a = 1 or a = 2?

Forward and Backward Moves are Inverses of Each Other

This directly follows from the order of the moves and "local invertibility". **Question:** What happens when a = 1 or a = 2?

Recall

Theorem (Main Theorem) $\sum_{n,m\geq 0} rrg_{3,1}(m,n)q^n x^m = \sum_{m,n\geq 0} \frac{q^{4\binom{m+1}{2}+2mn+\binom{n+1}{2}+n}x^{2m+n}}{(q^2;q^2)_m(q;q)_n}$ n.m>0 2 $\sum_{n,m\geq 0} rrg_{3,2}(m,n)q^n x^m = \sum_{m,n\geq 0} \frac{q^{4\binom{m+1}{2}+2mn+\binom{n+1}{2}}x^{2m+n}}{(q^2;q^2)_m(q;q)_n}$ $n.m \ge 0$ 3 $\sum_{n,m\geq 0} rrg_{3,3}(m,n)q^n x^m = \sum_{m,n\geq 0} \frac{q^{4\binom{m+1}{2}+2mn+\binom{n+1}{2}-2m} x^{2m+n}}{(q^2;q^2)_m(q;q)_n}$ $n.m \ge 0$

April 2024 41 / 46

(人間) トイヨト イヨト 三日

 $(2m+n+1)+(2m+n)+\cdots+(2m+3)+(2m+2)+[2m, 2m]+\cdots+[4, 4]+[2, 2]$

 $(2m+n+1)+(2m+n)+\cdots+(2m+3)+(2m+2)+[2m,2m]+\cdots+[4,4]+[2,2]$

 $(2m+n+1)+(2m+n)+\cdots+(2m+3)+(2m+2)+[2m,2m]+\cdots+[4,4]+[2,2]$

$$(2m+n+1)+(2m+n)+\cdots+(2m+3)+(2m+2)+[2m,2m]+\cdots+[4,4]+[2,2]$$

When a = 2, the form of the base partition and definition of the moves change.

Example

When a = 2, i.e we can use at most one 1, the smallest weight partition with 1 pair and 1 singletons is neither [1, 1] + (3) nor [2, 2] + (4). It is (1) + [3, 3].

When a = 2, the form of the base partition and definition of the moves change.

Example

When a = 2, i.e we can use at most one 1, the smallest weight partition with 1 pair and 1 singletons is neither [1, 1] + (3) nor [2, 2] + (4). It is (1) + [3, 3].

$$a = 2$$
(Continued)

When a = 2 the general form of the base partition is

$$[n+2m, n+2m] + [n+2m-2, n+2m-2] + \dots + [n+4, n+4] + [n+2, n+2] + (n) + (n-1) + \dots + (2) + (1)$$

In this case the moves on the pairs become straightforward and the moves on the singletons become litte bit trickier.

• = • •

$$a = 2$$
(Continued)

When a = 2 the general form of the base partition is

$$[n+2m, n+2m] + [n+2m-2, n+2m-2] + \dots + [n+4, n+4] + [n+2, n+2] + (n) + (n-1) + \dots + (2) + (1)$$

In this case the moves on the pairs become straightforward and the moves on the singletons become litte bit trickier.

Discussion

Let's look at some future ideas:

- What happens if k = 4? Then, we will have three types of parts: singletons, pairs and triples. Thus, we need to look at more cases.. As a rule of thumb, as number of types of parts increase, the combinatorial interpretation in this framework becomes more and more difficult.
- Best case scenario, we will get a series of the form:

$$\sum_{n,n\geq 0} rrg_{k,k}(m,n)q^n x^m = \sum_{n_1,n_2,\cdots,n_{k-1}\geq 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q;q)_{n_1}(q^2;q^2)_{n_2}\cdots(q^{n-1};q^{n-1})_{n_{k-1}}}$$

3 Our ultimate goal is to **automatically** interpret any series of the form $\sum_{n_1,n_2,\cdots,n_k \ge 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q^{\alpha_1};q^{\beta_1})_{n_1}(q^{\alpha_2};q^{\beta_2})_{n_2}\cdots(q^{\alpha_n};q^{\beta_n})_{n_k}}$

Here, we emphasize automatically, i.e determine the different types of parts and moves in an algorithmic fashion!

Discussion

Let's look at some future ideas:

- What happens if k = 4? Then, we will have three types of parts: singletons, pairs and triples. Thus, we need to look at more cases.. As a rule of thumb, as number of types of parts increase, the combinatorial interpretation in this framework becomes more and more difficult.
- Ø Best case scenario, we will get a series of the form:

$$\sum_{m,n\geq 0} rrg_{k,k}(m,n)q^n x^m = \sum_{n_1,n_2,\cdots,n_{k-1}\geq 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q;q)_{n_1}(q^2;q^2)_{n_2}\cdots(q^{n-1};q^{n-1})_{n_{k-1}}}$$

3 Our ultimate goal is to **automatically** interpret any series of the form $\sum_{n_1,n_2,\cdots,n_k \ge 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q^{\alpha_1};q^{\beta_1})_{n_1}(q^{\alpha_2};q^{\beta_2})_{n_2}\cdots(q^{\alpha_n};q^{\beta_n})_{n_k}}$

Here, we emphasize automatically, i.e determine the different types of parts and moves in an algorithmic fashion!

Discussion

Let's look at some future ideas:

- What happens if k = 4? Then, we will have three types of parts: singletons, pairs and triples. Thus, we need to look at more cases.. As a rule of thumb, as number of types of parts increase, the combinatorial interpretation in this framework becomes more and more difficult.
- Ø Best case scenario, we will get a series of the form:

$$\sum_{m,n\geq 0} rrg_{k,k}(m,n)q^n x^m = \sum_{n_1,n_2,\cdots,n_{k-1}\geq 0} \frac{q^{QUADRATIC+LINEAR} x^{LINEAR}}{(q;q)_{n_1}(q^2;q^2)_{n_2}\cdots(q^{n-1};q^{n-1})_{n_{k-1}}}$$

• Our ultimate goal is to **automatically** interpret any series of the form $\sum_{n_1,n_2,\cdots,n_k \ge 0} \frac{q^{QUADRATIC+LINEAR} \chi^{LINEAR}}{(q^{\alpha_1}; q^{\beta_1})_{n_1} (q^{\alpha_2}; q^{\beta_2})_{n_2} \cdots (q^{\alpha_n}; q^{\beta_n})_{n_k}}$ Here, we emphasize automatically, i.e. determine the different types of

Here, we emphasize automatically, i.e determine the different types of parts and moves in an algorithmic fashion!

Yalçın Can Kılıç

The End

Thank you for your attention!

э

A D N A B N A B N A B N