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Definitions

Let n be a natural number. Then, an integer partition of n is a sequence
(λ1, λ2, · · · , λk) such that λi is a positive integer for all i ,
λ1 + λ2 + · · ·λk = n. Moreover, λ1 ≥ λ2 ≥ · · ·λk ≥ 1. We call each λi a
part. Let p(n) be the number partitions of n. If λ is a partition of n, we
denote it by |λ| = n and n is called the size of λ.

Example

Let n = 4. Then, all partitions of 4 can be listed as follows: 4, 3 + 1 ,
2 + 2 , 2 + 1 + 1 , 1 + 1 + 1 + 1. Thus, p(4) = 5.
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Partition Identities
Usually, we want to consider a certain subset of integer partitions specified
by some conditions. Let’s look at some examples:

Example

Let n = 5. All partitions of 5 where each part is odd can be listed as: 5 ,
3 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Example

Similarly, all partitions of 5 where parts are distinct can be listed as: 5 ,
4 + 1 and 3 + 2.

Definition

Any identity of the form

p(n|CONDITION 1) = p(n|CONDITION 2)

is called a partition identity.
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Euler’s Identity

First partition identity is due to Euler:

Theorem (Euler’s Identity)

Let n be a nonnegative integer. Then,

p(n|all parts are odd) = p(n|all parts are distinct)
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Generating Functions

Definition

A combinatorial class A is a countable set on a which a size function ,
|.| : A −→ N, is defined, satisfying the following conditions:

1 The size of an element is a nonnegative integer

2 The number of elements of any given size is finite.

Definition

Let A be a combinatorial class, the generating function for A is

A(q) :=
∑
α∈A

q|α|

For this talk, we see A(q) as a formal object, i.e there is no convergence
issues.
Central Idea: To prove a partition identity, show that their generating
functions for both sides are the same.
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q−Pochammer Symbol

Before proving Euler’s Identity, let’s define q−Pochammer symbol:
Let n ≥ 0. Then,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1).

Also, (a; q)0 := 1.
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Generating Functions for Partitions

Let’s look at some generating function examples. Let P be the
combinatorial class which contains all integer partitions.

Example

1 The generating function for partitions in which each part is at most m:

∑
λ∈P, parts in {1,2,··· ,m}

q|λ| = 1+q+2q2+· · · = 1

1− q

1

1− q2
· · · 1

1− qm

2 The generating function for partitions without any restrictions is:

∑
λ∈P

q|λ| = 1 + q + 2q2 + · · · =
∞∏
n=1

1

1− qn
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Examples(Continued)

Example

The generating function for partitions each part is equivalent to a mod k :∑
λ∈P, parts ≡ a mod k

q|λ| =
∏

n≡ a mod k

1

1− qn
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Proof of Euler’s Identity

Let’s show that generating function of odd partitions and distinct
partitions are the same:

∑
all odd partitions λ

q|λ| =
∞∏
n≥1

1

1− q2n−1

=
∏
n≥1

1− q2n

(1− q2n−1)(1− q2n)

=
∏
n≥1

1− q2n

1− qn
=

∏
n≥1

(1 + qn)

=
∑

all distinct partitions λ

q|λ|

(1)

We are done!
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General View on Euler’s Identity

Let’s recall Euler’s Identity:

Theorem (Euler’s Identity)

Let n be a nonnegative integer. Then,

p(n|all parts are odd) = p(n|all parts are distinct)

On the left hand side, we have a modulus condition, on the right hand side
we have a difference condition.
This is a very general family of partitions as we will see in the following
slide.
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Difference Conditions-Modulus Conditions
Let’s look at some famous theorems of the form:

p(n|difference conditions) = p(n|modulus conditions)

.

Theorem (Rogers-Ramanujan 1)

Let n be any natural number. Let A(n) be the number of partitions of n
into parts such that the consecutive differences between the parts are at
least 2. Let B(n) be the number of partitions of n into parts where each
part is ≡ ±1 mod 5. Then, A(n) = B(n) for all n.

Theorem (Rogers-Ramanujan 2)

Let n be any natural number. Let A(n) be the number of partitions of n
into parts such that the consecutive differences between the parts are at
least 2 and 1 does not appear as a part. Let B(n) be the number of
partitions of n into parts where each part is ≡ ±2 mod 5. Then,
A(n) = B(n) for all n.
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into parts such that the consecutive differences between the parts are at
least 2. Let B(n) be the number of partitions of n into parts where each
part is ≡ ±1 mod 5. Then, A(n) = B(n) for all n.

Theorem (Rogers-Ramanujan 2)

Let n be any natural number. Let A(n) be the number of partitions of n
into parts such that the consecutive differences between the parts are at
least 2 and 1 does not appear as a part. Let B(n) be the number of
partitions of n into parts where each part is ≡ ±2 mod 5. Then,
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Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 12 / 46



Gordon’s Generalization

Gordon generalizes Rogers-Ramanujan identities as follows:

Theorem (Rogers-Ramanujan-Gordon,1961)

Let a and k be natural numbers such that 1 ≤ a ≤ k. Then, the number
of partitions of n into parts not equivalent to 0,±a mod 2k + 1 is equal
to the number of partitions of n = λ1 + λ2 + · · ·+ λm where
λi ≥ λi+k−1 + 2 and the number of 1’s are at most a− 1.

Remark

(k, a) = (2, 1) corresponds to Rogers-Ramanujan 1. Similarly,
(k, a) = (2, 2) corresponds to Rogers-Ramanujan 2.
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An Example

Example

Let (k , a) = (3, 2), i.e the difference should be at least 2 in distance 2 and
we can use at most one 1 as a part, and n = 7. Then, on the modulus side
we have 6 + 1 , 4 + 3 , 4 + 1 + 1 + 1 , 3 + 3 + 1 , 3 + 1 + 1 + 1 + 1 ,
1 + 1 + 1 + 1 + 1 + 1 + 1. Similarly, on the difference side we have 7 ,
6 + 1 , 5 + 2 , 4 + 3 , 4 + 2 + 1 , 3 + 3 + 1.
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Analytic Version of Rogers-Ramanujan-Gordon

Andrews found the corresponding version of Rogers-Ramanujan-Gordon
identities:

Theorem (Andrews,1974)

Let 1 ≤ a ≤ k be integers. Then,

∑
n1,n2,··· ,nk−1≥0

qN
2
1+N2

2+···+N2
k−1+Na+Na+1+···+Nk−1

(q; q)n1(q; q)n2 · · · (q; q)nk−1

=
∞∏
n=1

n ̸≡ 0,±a

1

1− qn

where Ni := ni + ni+1 + · · ·+ nk−1.
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Notation

Let a, k ,m, n be nonnegative integers such that 1 ≤ a ≤ k . Then, we
define rrgk,a(m, n) as follows: Number of partitions of n into m parts,
λ = λ1 + λ2 + · · ·+ λm such at most a− 1 parts are 1 and the difference
at distance k is at least 2, i.e λi ≥ λi+k−1 + 2.
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Andrews-Gordon Series when k = 3

If forget about the modulus side of the Andrew-Gordon series, take
number of parts into account and specialize for (k, a) = (3, 3), we get:

∑
m,n≥0

rrg3,3(m, n)qnxm =
∑

m,n≥0

q4(
m+1
2 )+2mn+2(n+1

2 )−2m−nx2m+n

(q; q)m(q; q)n
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A New Series for RRG when k=3

Our series for RRG k = 3 is as follows:

Theorem (YCK, 2023)

1 ∑
n,m≥0

rrg3,1(m, n)qnxm =
∑

m,n≥0

q4(
m+1
2 )+2mn+(n+1

2 )+nx2m+n

(q2; q2)m(q; q)n

2 ∑
n,m≥0

rrg3,2(m, n)qnxm =
∑

m,n≥0

q4(
m+1
2 )+2mn+(n+1

2 )x2m+n

(q2; q2)m(q; q)n

3 ∑
n,m≥0

rrg3,3(m, n)qnxm =
∑

m,n≥0

q4(
m+1
2 )+2mn+(n+1

2 )−2mx2m+n

(q2; q2)m(q; q)n
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Intuitive Ideas

Suppose we are given an evidently positive generating function of the form

∑
m,n≥0

qQUADRATIC+LINEARxLINEAR

(qB ; qC )m(qD ; qE )n

Then, the numerator corresponds to the base partition and the
denominator corresponds to the moves on each part. Thus, given a
partition which satisfies the properties, we will find the smallest weight
partition that satisfies the conditions and using moves construct the given
partition.
Given a partition which satisfies the conditions of rrg3,3, our aim is to
construct it starting from the base partition and using moves on the parts.
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Examples

Let’s look at an example:
λ = 14 + 14 + 11 + 7 + 7 + 2 + 1.
Our aim is to construct a partition triple (β, µ, ν) where β is the base
partition, µ is the partition which contains backward moves applied on the
pairs of λ and ν is the partition which contains backward moves applied
on the singletons.
Side Note: We allow 0 as a part in µ and ν.
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Step 1

Firstly, we divide the parts into two: The ones which repeats(pairs) and
the ones which do not repeat(singletons).
λ = [14, 14] + (11) + [7, 7] + (2) + (1). Now, we are looking for a partition
which contains m = 2 pairs and n = 3 singletons.
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Step 2

Now, we will answer the following question: What is the smallest weight
partition that contains 2 pairs and 3 singletons?

β = (7) + (6) + (5) + [3, 3] + [1, 1]
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Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 22 / 46



Step 3

We want to reach β = (7) + (6) + (5) + [3, 3] + [1, 1] from
λ = [14, 14] + (11) + [7, 7] + (2) + (1).
Firstly, we will obtain [1, 1] using backward moves:

[14, 14] + (11) + [7, 7] + (2) + (1) −→ [14, 14] + (11) + [6,6]+ (2) + (1)

−→ [14, 14] + (11) + [5,5]+ (2) + (1)

−→ [14, 14] + (11) + [4,4]+ (2) + (1)

Now, we want to pull back [4, 4] to get [3, 3] however the resulting
partition does not satisfy the conditions rrg3,3. Thus, we need to do some
arrangements on the parts.
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Step3(Continued)

[14, 14] + (11) + [4, 4] + (2) + (1) −→ [14, 14] + (11) + (4) + (3) + [1,1]

Now, we obtained [1, 1]. Next, we will obtain [3, 3]:

[14, 14] + (11) + (4) + (3) + [1, 1] −→ [13,13]+ (11) + (4) + (3) + [1, 1]

Again, we want to pull [13, 13] back, however it is not possible!
Thus, we will perform a similar arrangements on the parts again.
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Step 3(Continued)

Still, we are aiming for [3, 3].

[13, 13] + (11) + (4) + (3) + [1, 1] −→ (13) + [11,11]+ (4) + (3) + [1, 1]

−→ (13) + [10,10]+ (4) + (3) + [1, 1]

−→ (13) + [9,9]+ (4) + (3) + [1, 1]

−→ (13) + [8,8]+ (4) + (3) + [1, 1]

−→ (13) + [7,7]+ (4) + (3) + [1, 1]

−→ (13) + [6,6]+ (4) + (3) + [1, 1]

−→ (13) + (6) + (5) + [3,3]+ [1, 1]

We did obtained [3, 3]. We are finished with the pairs. Now, we need to
obtain singletons.
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We did obtained [3, 3]. We are finished with the pairs. Now, we need to
obtain singletons.
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Step 3 Continued

Let’s recall β = (7) + (6) + (5) + [3, 3] + [1, 1]. Now, we will obtain the
singletons, (5) , (6) and (7) in this order. However, (5) and (6) are already
present! We just need to obtain (7):

(13) + (6) + (5) + [3, 3] + [1, 1] −→ (12)+ (6) + (5) + [3, 3] + [1, 1]

−→ (11)+ (6) + (5) + [3, 3] + [1, 1]

−→ (10)+ (6) + (5) + [3, 3] + [1, 1]

−→ (9)+ (6) + (5) + [3, 3] + [1, 1]

−→ (8)+ (6) + (5) + [3, 3] + [1, 1]

−→ (7)+ (6) + (5) + [3, 3] + [1, 1]

We are done!
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Step 4

Let’s store the number of moves we applied on each singleton and each
pairs:
We applied 4 backward moves on the pair [7, 7] and 8 backward moves on
the pair [13, 13]. Thus, µ = (8× 2, 4× 2).
Similarly, we applied 0 backward moves on the singleton (1), 0 backward
moves on the singleton (2) and 6 backward moves on the singleton (11).
Hence, ν = (6, 0, 0).
As a result, we obtained the following correspondence

[14, 14] + (11) + [7, 7] + (2) + (1) −→
(β = (7) + (6) + (5) + [3, 3] + [1, 1], µ = (8× 2, 4× 2), ν = (6, 0, 0))
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Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 27 / 46



Step 4

Let’s store the number of moves we applied on each singleton and each
pairs:
We applied 4 backward moves on the pair [7, 7] and 8 backward moves on
the pair [13, 13]. Thus, µ = (8× 2, 4× 2).
Similarly, we applied 0 backward moves on the singleton (1), 0 backward
moves on the singleton (2) and 6 backward moves on the singleton (11).
Hence, ν = (6, 0, 0).
As a result, we obtained the following correspondence

[14, 14] + (11) + [7, 7] + (2) + (1) −→
(β = (7) + (6) + (5) + [3, 3] + [1, 1], µ = (8× 2, 4× 2), ν = (6, 0, 0))
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Examples

Now, we want get the other direction of the correspondence, i.e given
(β, µ, ν) obtain λ:
Write them below using the above example. Let
β = (7) + (6) + (5) + [3, 3] + [1, 1], µ = (8× 2, 4× 2) and ν = (6, 0, 0)
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Step 1

This time we will start with the singletons. First, we will apply the forward
moves on the singletons using ν = (6, 0, 0). In other words, we will apply 6
forward moves on (7) and no other forward moves on (6) and (5).

(7) + (6) + (5) + [3, 3] + [1, 1] −→ (8)+ (6) + (5) + [3, 3] + [1, 1]

−→ (9)+ (6) + (5) + [3, 3] + [1, 1]

−→ (10)+ (6) + (5) + [3, 3] + [1, 1]

−→ (11)+ (6) + (5) + [3, 3] + [1, 1]

−→ (12)+ (6) + (5) + [3, 3] + [1, 1]

−→ (13)+ (6) + (5) + [3, 3] + [1, 1]
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Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 29 / 46



Step 1

This time we will start with the singletons. First, we will apply the forward
moves on the singletons using ν = (6, 0, 0). In other words, we will apply 6
forward moves on (7) and no other forward moves on (6) and (5).

(7) + (6) + (5) + [3, 3] + [1, 1] −→ (8)+ (6) + (5) + [3, 3] + [1, 1]

−→ (9)+ (6) + (5) + [3, 3] + [1, 1]

−→ (10)+ (6) + (5) + [3, 3] + [1, 1]

−→ (11)+ (6) + (5) + [3, 3] + [1, 1]

−→ (12)+ (6) + (5) + [3, 3] + [1, 1]

−→ (13)+ (6) + (5) + [3, 3] + [1, 1]
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Step 1

This time we will start with the singletons. First, we will apply the forward
moves on the singletons using ν = (6, 0, 0). In other words, we will apply 6
forward moves on (7) and no other forward moves on (6) and (5).
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Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 29 / 46



Step 2

Now, we will forward moves on the pairs using µ = (8× 2, 4× 2), i.e we
will push the pair [3, 3] 8 times and the pair [1, 1] 4 times:

(13) + (6) + (5) + [3, 3] + [1, 1] −→ (13) + [6,6]+ (4) + (3) + [1, 1]

−→ (13) + [7,7]+ (4) + (3) + [1, 1]

−→ (13) + [8,8]+ (4) + (3) + [1, 1]

−→ (13) + [9,9]+ (4) + (3) + [1, 1]

−→ (13) + [10,10]+ (4) + (3) + [1, 1]

−→ (13) + [11,11]+ (4) + (3) + [1, 1]

−→ [13,13]+ (11) + (4) + (3) + [1, 1]

−→ [14,14]+ (11) + (4) + (3) + [1, 1]

We are finished with [3, 3].

Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 30 / 46



Step 2

Now, we will forward moves on the pairs using µ = (8× 2, 4× 2), i.e we
will push the pair [3, 3] 8 times and the pair [1, 1] 4 times:

(13) + (6) + (5) + [3, 3] + [1, 1] −→ (13) + [6,6]+ (4) + (3) + [1, 1]

−→ (13) + [7,7]+ (4) + (3) + [1, 1]

−→ (13) + [8,8]+ (4) + (3) + [1, 1]

−→ (13) + [9,9]+ (4) + (3) + [1, 1]

−→ (13) + [10,10]+ (4) + (3) + [1, 1]

−→ (13) + [11,11]+ (4) + (3) + [1, 1]

−→ [13,13]+ (11) + (4) + (3) + [1, 1]

−→ [14,14]+ (11) + (4) + (3) + [1, 1]

We are finished with [3, 3].
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Step 2(Continued)

Now, we will push the pair [1, 1]:

[14, 14] + (11) + (4) + (3) + [1, 1] −→ [14, 14] + (11) + [4,4]+ (2) + (1)

−→ [14, 14] + (11) + [5,5]+ (2) + (1)

−→ [14, 14] + (11) + [6,6]+ (2) + (1)

−→ [14, 14] + (11) + [7,7]+ (2) + (1)

We are finished with the pairs as well.
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Step 3

As a result, we showed the following correspondence:

(β = (7) + (6) + (5) + [3, 3] + [1, 1], µ = (8× 2, 4× 2), ν = (6, 0, 0)) −→
[14, 14] + (11) + [7, 7] + (2) + (1)
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Main Theorem

Hence, we showed that

Theorem∑
n,m≥0

rrg3,3(m, n)qnxm =
∑

m,n≥0

q4(
m+1
2 )+2mn+(n+1

2 )−2mx2m+n

(q2; q2)m(q; q)n
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Sketch of the Proof

The proof contains 3 steps:

1 A lemma about the form of the base partition
2 A general form of the moves

1 Forward moves
2 Backward moves

3 Showing that forward moves and backward moves are inverses of each
other
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A lemma about Base Partitions

We will state the lemma about the base partition now:

Lemma (Form of the Base Partition)

The base partition for rrg3,3 with m pairs and n singletons is

(2m+n)+ · · ·+(2m+2)+(2m+1)+[2m−1, 2m−1]+ · · ·+[3, 3]+[1, 1].

Remark: In this case the weight of the base partition
β = 4

(m+1
2

)
− 2m + 2mn +

(n+1
2

)
and the number of parts in β is 2m + n.
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Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 35 / 46



General Form of the Forward Moves, Pairs

Suppose we want to push a pair [b, b], there are two cases to consider:

1 The pair becomes [b + 1, b + 1] and the resulting partition satisfies
rrg3,3 conditions.

2 We cannot make it [b + 1, b + 1] because it violates the rrg3,3
conditions. Thus, there exists a singleton (b + 2) and possibly other
singletons (b + 3), (b + 4), · · · , (b + s) for some integers s ≥ 2.
Then, forward move on the pair [b, b] is defined as:

(b + s) + (b + s − 1) + · · ·+ (b + 3) + (b + 2) + [b, b] −→
[b+s,b+s]+ (b + s − 2) + · · ·+ (b + 1) + (b)
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Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 36 / 46



General Form of the Forward Moves, Pairs

Suppose we want to push a pair [b, b], there are two cases to consider:

1 The pair becomes [b + 1, b + 1] and the resulting partition satisfies
rrg3,3 conditions.

2 We cannot make it [b + 1, b + 1] because it violates the rrg3,3
conditions. Thus, there exists a singleton (b + 2) and possibly other
singletons (b + 3), (b + 4), · · · , (b + s) for some integers s ≥ 2.
Then, forward move on the pair [b, b] is defined as:

(b + s) + (b + s − 1) + · · ·+ (b + 3) + (b + 2) + [b, b] −→
[b+s,b+s]+ (b + s − 2) + · · ·+ (b + 1) + (b)
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General Form of the Forward Moves, Singletons

Suppose we want to push a singleton (a), then (a) becomes (a+ 1), since
there cannot be any problems due to form of the base partition.
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General Form of the Backward Moves, Pairs

Suppose we want to pull a pair [b + 1, b + 1], there are two cases to
consider:

1 The pair becomes, [b, b], and the resulting partition does not violate
rrg3,3 conditions.

2 We cannot make it [b, b]. Thus, there exists a singleton (b − 1) and
possibly (b − 2), (b − 3), · · · , (b − s) where s is an integer 2 ≤ s < b.
Then, we define the backward move on [b + 1, b + 1] as:

[b + 1, b + 1] + (b − 1) + (b − 2) + · · ·+ (b − s + 1) + (b − s) −→
(b + 1) + (b) + · · ·+ (b − s + 2) + [b-s,b-s]
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General Form of the Backward Moves, Pairs

Suppose we want to pull a pair [b + 1, b + 1], there are two cases to
consider:

1 The pair becomes, [b, b], and the resulting partition does not violate
rrg3,3 conditions.

2 We cannot make it [b, b]. Thus, there exists a singleton (b − 1) and
possibly (b − 2), (b − 3), · · · , (b − s) where s is an integer 2 ≤ s < b.
Then, we define the backward move on [b + 1, b + 1] as:

[b + 1, b + 1] + (b − 1) + (b − 2) + · · ·+ (b − s + 1) + (b − s) −→
(b + 1) + (b) + · · ·+ (b − s + 2) + [b-s,b-s]
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General Form of the Backward Moves, Singletons

The backward moves on the singletons are straightforward: (a+ 1)
becomes (a), since we pull the singletons first there cannot be any
obstacles along the way!
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Forward and Backward Moves are Inverses of Each Other

This directly follows from the order of the moves and ”local invertibility”.
Question: What happens when a = 1 or a = 2?
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Recall

Theorem (Main Theorem)

1 ∑
n,m≥0

rrg3,1(m, n)qnxm =
∑

m,n≥0

q4(
m+1
2 )+2mn+(n+1

2 )+nx2m+n

(q2; q2)m(q; q)n

2 ∑
n,m≥0

rrg3,2(m, n)qnxm =
∑

m,n≥0

q4(
m+1
2 )+2mn+(n+1

2 )x2m+n

(q2; q2)m(q; q)n

3 ∑
n,m≥0

rrg3,3(m, n)qnxm =
∑

m,n≥0

q4(
m+1
2 )+2mn+(n+1

2 )−2mx2m+n

(q2; q2)m(q; q)n
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The case a = 1

When a = 1, everything is same except for the base partition.
In this case the general form of the base partition becomes:

(2m+n+1)+(2m+n)+· · ·+(2m+3)+(2m+2)+[2m, 2m]+· · ·+[4, 4]+[2, 2]

Remark: Thus, we just push each part of the base partition for the case
a = 3, 1 unit.
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Yalçın Can Kılıç Rogers Ramanujan Gordon Identities when k = 3 April 2024 42 / 46



The case a = 1

When a = 1, everything is same except for the base partition.
In this case the general form of the base partition becomes:

(2m+n+1)+(2m+n)+· · ·+(2m+3)+(2m+2)+[2m, 2m]+· · ·+[4, 4]+[2, 2]

Remark: Thus, we just push each part of the base partition for the case
a = 3, 1 unit.
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The case a = 2

When a = 2, the form of the base partition and definition of the moves
change.

Example

When a = 2, i.e we can use at most one 1, the smallest weight partition
with 1 pair and 1 singletons is neither [1, 1] + (3) nor [2, 2] + (4). It is
(1) + [3, 3].
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a = 2(Continued)

When a = 2 the general form of the base partition is

[n + 2m, n + 2m] + [n + 2m − 2, n + 2m − 2] + · · ·+ [n + 4, n + 4]

+[n + 2, n + 2] + (n) + (n − 1) + · · ·+ (2) + (1)

In this case the moves on the pairs become straightforward and the moves
on the singletons become litte bit trickier.
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Discussion
Let’s look at some future ideas:

1 What happens if k = 4? Then, we will have three types of parts:
singletons, pairs and triples. Thus, we need to look at more cases..
As a rule of thumb, as number of types of parts increase, the
combinatorial interpretation in this framework becomes more and
more difficult.

2 Best case scenario, we will get a series of the form:

∑
m,n≥0

rrgk,k(m, n)qnxm =
∑

n1,n2,··· ,nk−1≥0

qQUADRATIC+LINEARxLINEAR

(q;q)n1 (q
2;q2)n2 ···(qn−1;qn−1)nk−1

3 Our ultimate goal is to automatically interpret any series of the form∑
n1,n2,··· ,nk≥0

qQUADRATIC+LINEARxLINEAR

(qα1 ; qβ1)n1(q
α2 ; qβ2)n2 · · · (qαn ; qβn)nk

Here, we emphasize automatically, i.e determine the different types of
parts and moves in an algorithmic fashion!
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The End

Thank you for your attention!
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