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Part 1 – Introduction



Partition function

Definition (Partition)

A partition of n ∈ N is a non-increasing sequence of positive

integers that sums up to be n.

Example

14 = 4 + 4 + 4 + 2.
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Partition function

Definition (Partition function)

The number of different partitions of n ∈ N is the partition

function denoted by P(n). We define P(0) = 1.

Example – P(4)

All partitions of 4 are as follows:

4 = 4,

= 3 + 1,

= 2 + 2,

= 2 + 1 + 1,

= 1 + 1 + 1 + 1.

Therefore, P(4) = 5.
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Frobenius symbols

From the Ferrers diagram of a partition, we can construct a 2 by d

matrix by carrying out the following steps:

• Remove all the dots lying on the diagonal of the diagram.

• Fill the first row of the matrix with entries r1,j , where r1,j is

the number of dots on the j-th row that are to the right of

the diagonal.

• Fill the second row of the matrix with entries r2,j , where r2,j is

the number of dots on the j-th column that are below the

diagonal.
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Frobenius symbols - Example (From C-W-Y)

For the partition 14 = 4 + 4 + 4 + 2 the Ferrer diagram is
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Frobenius symbols - Example (From C-W-Y)

For the partition 14 = 4 + 4 + 4 + 2 the Ferrer diagram is

Therefore the Frobenius symbol for this partition is(
3 2 1

3 2 0

)
.
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Generalized Frobenius symbols and Generalized Frobenius par-

titions

We define the generalized Frobenius symbol, by allowing at most

N repetitions in each row of the Frobenius symbol. For a

generalized Frobenius symbol with entries ri ,j , where i = 1, 2, and

1 ≤ j ≤ d , the generalized Frobenius partition of n is given by

n = d +
d∑

j=1

(r1,j + r2,j).

The number of Generalized Frobenius partitions of n is denoted by

ϕN(n).
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N-Colored Generalized Frobenius Partitions

N-Colored Generalized Frobenius Partitions:

The entries in each row are distinct and are taken from N copies

of the non-negative integers distinguished by color and in each

row the entries are ordered according to the rule that xi < yj if

x < y or if x = y and i < j where i and j are integers in the

interval [1,N] indicating the color of the non-negative integer.

The number of N-colored generalized Frobenius partitions of n is

denoted by cϕN(n). We note that cϕ1(n) = P(n), the number of

ordinary partitions of n.
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Example (From C-W-Y)

Below we list the 2-colored generalized Frobenius symbols which

give rise to the 2-colored generalized Frobenius partitions of 2:

(
11

01

)
,

(
11

02

)
,

(
12

01

)
,

(
12

02

)
,(

01

11

)
,

(
02

11

)
,

(
01

12

)
,

(
02

12

)
,(

02 01

02 01

)
.

Therefore, we have cϕ2(2) = 9.

9



Comparison with the partition function

Theorem (Kolitsch (1991))

For all n ∈ N0 we have

cϕ5(n) = 5P(5n − 1) + P(n/5),

cϕ7(n) = 7P(7n − 2) + P(n/7),

and

cϕ11(n) = 11P(11n − 5) + P(n/11).
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History

Theorem (Chan-Wang-Yang (2019))

For all n ∈ N0, we have

cϕ13(n) = 13P(13n − 7) + P(n/13) + a(n),

where q
(q13; q13)∞
(q; q)2∞

=
∞∑
n=1

a(n)qn. When p ≥ 17 is a prime then we

have

∞∑
n=0

(
cϕp(n)− p · P

(
pn − p2 − 1

24

)
− P(n/p)

)
qn

=
hp(z) + 2p(p−11)/2(η(pz)/η(z))p−11

(qp; qp)∞
,

where hp(z) is a modular function on Γ0(p) with a zero at ∞ and a

pole of order (p + 1)(p − 13)/24 at 0.
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Our Results

Theorem (A., Nguyen (2023))

Let N be a squarefree positive integer with gcd(N, 6) = 1.

i) Then for all n ∈ N0 we have

cϕN(n) =
∑
d |N

N

d
· P
(
N

d2
n − N2 − d2

24d2

)
+ b(n),

where C (z) := (q; q)N∞
∑∞

n=1 b(n)q
n is a cusp form in

S(N−1)/2(Γ0(N), χN).

ii) We have C (z) = 0 if and only if N = 5, 7, or 11.

iii) If N ̸= 5, 7, or 11, then there is no M ≥ 0 such that b(n) = 0

for all n > M.
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Our Results

Theorem (A., Nguyen (2023))

Let N be a squarefree positive integer with (N, 6) = 1. We have

cϕN(n) ∼
∑
d |N

N

d
· P
(
N

d2
n − N2 − d2

24d2

)
as n → ∞.
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The Generating Function

Let us denote the generating function of cϕN(n) by

CΦN(q) :=
∞∑
n=0

cϕN(n)q
n.

Andrews has given CΦN(q) in terms of a theta function.

14



The Generating Function

Let

θN(x) :=
N∑
i=1

x2i +
∑

1≤i<j≤N

xixj .

be a quadratic form in N variables, and

fθN (z) :=
∑
x∈ZN

qθN(x),

be the associated theta function. Then, we have

CΦN(z) =
fθN−1

(z)∏
n≥1

(1− qn)N
.
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Part 2 – Quadratic forms and

Modular forms



Quadratic forms

Theorem

Let θ be a positive definite quadratic form in 2k variables. Then

we have

fθ(z) ∈ Mk(Γ0(N), χD),

where N is the smallest positive integer such that the matrix

N × Q−1 has even diagonal entries, where Q denotes the matrix

associated with θ and

D :=

(−1)kS if S is odd and (−1)kS ≡ 1 (mod 4),

(−1)k4S otherwise,

where S denotes the squarefree part of det(Q).
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Matrix associated with fθN−1
(z)

The matrix Q associated with θN−1 is

Q =


2 1 1 1 · · · 1

1 2 1 1 · · · 1
...

...
...

...

1 1 1 1 · · · 2

 .

It is calculated by Chan, Wang, Yang (2019) that det(Q) = N, and

Q−1 =
1

N


N − 1 −1 −1 −1 · · · −1

−1 N − 1 −1 −1 · · · −1
...

...
...

...

−1 −1 −1 −1 · · · N − 1

 .
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Modularity of fθN−1
(z)

Chan-Wang-Yang (2019)

Let N be a squarefree integer with gcd(N, 6) = 1. We have

fθN−1
(z) ∈ M(N−1)/2(Γ0(N), χN), where

χN(a) =
((−1)(N−1)/2N

a

)
.
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Modular forms

The modular subgroup of level N ∈ N is defined by

Γ0(N) =

{(
a b

c d

)∣∣∣ a, b, c , d ∈ Z, c ≡ 0 (mod n), ad − bc = 1

}
.

Let k ∈ N and let χ be a Dirichlet character mod N, where

χ(−1) = (−1)k . We denote the space of modular forms of weight

k and character χ on Γ0(N) by Mk(Γ0(N), χ).

The Eisenstein and cusp form subspaces of Mk(Γ0(N), χ) are

denoted by Ek(Γ0(N), χ) and Sk(Γ0(N), χ), respectively. Then we

have

Mk(Γ0(N), χ) = Ek(Γ0(N), χ)⊕ Sk(Γ0(N), χ).
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Modular forms

Thus, for f (z) =
∑∞

n=0 af (n)q
n ∈ Mk(Γ0(N), χ), there are unique

functions

Ef (z) =
∞∑
n=0

ef (n)q
n ∈ Ek(Γ0(N), χ)

and

Cf (z) =
∞∑
n=0

cf (n)q
n ∈ Sk(Γ0(N), χ),

such that

af (n) = ef (n) + cf (n).

On the other hand, it is known that

cf (n) = O(nk/2).
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Eisenstein series

Next, we describe how we write ef (n) explicitly in terms of

generalized divisor functions defined by

σk(ϵ, ψ; n) :=


∑

1≤d |n ϵ(n/d)ψ(d)d
k if n ∈ N,

0 if n ̸∈ N,

where ϵ and ψ are primitive Dirichlet characters of conductors L

and M.

For example if n is odd, we have

σk(χ−4, χ1; 2
j · n) =

∑
d |2j

χ−4(2
j/d)χ1(d)d

k

σk(χ−4, χ1; n)

= 2jkσk(χ−4, χ1; n).
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Eisenstein series

Eisenstein series

We define the weight k Eisenstein series associated with ϵ and ψ

by

Ek(z ; ϵ, ψ) :=ϵ(0)−
2k

Bk,χ

∞∑
n=1

σk−1(ϵ, ψ; n)e
2πinz ,

where χ is a primitive Dirichlet character such that ϵ ·ψ = χ, and

Bk,χ is the Bernoulli number associated with the Dirichlet

character χ.
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Eisenstein series

The space Ek(Γ0(N), χ) admits a natural basis of weight k

Eisenstein series:

It is known that when k ≥ 2 and (k , χ) ̸= (2, χ1) the collection

Ek(Γ0(N), χ) = {Ek(dz ; ϵ, ψ) | ϵ · ψ = χ and LMd | N}

forms a basis for the space Ek(Γ0(N), χ), and when k = 1 or

(k , χ) = (2, χ1) the collection

E2(Γ0(N), χ1) = {Ek(dz ; ϵ, ψ) | ϵ · ψ = χ and LMd | N}

includes a basis for the space E2(Γ0(N), χ1).
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Recall that

Thus, for f (z) =
∑∞

n=0 af (n)q
n ∈ Mk(Γ0(N), χ), there are unique

functions

Ef (z) =
∞∑
n=0

ef (n)q
n ∈ Ek(Γ0(N), χ)

and

Cf (z) =
∞∑
n=0

cf (n)q
n ∈ Sk(Γ0(N), χ),

such that

af (n) = ef (n) + cf (n).

On the other hand, it is known that

cf (n) = O(nk/2).
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Previous Results

Theorem (A., 2022-2023)

Let f (z) ∈ Mk(Γ0(N), χ), where N, k ∈ N, k > 1, χ is a primitive

Dirichlet character with conductor dividing N and satisfying

χ(−1) = (−1)k . Let Ef (z) be the Eisenstein part of f , then

Ef (z) =
∑

(ϵ,ψ)∈E(k,N,χ)

∑
d|N/LM

af (ϵ, ψ, d)E
∗
k (Mdz ; ϵ, ψ),

where

af (ϵ, ψ, d) =
∏
p|N

pk

pk − ϵ(p)ψ(p)

∑
c|N/L,
M|c

Rk,ϵ,ψ(d , c/M)Sk,N/LM,ϵ,ψ(d , c/M)[f ]c,ψ ,

with

Rk,ϵ,ψ(d , c) := ϵ

(
−d

gcd(d , c)

)
ψ

(
c

gcd(d , c)

)(
gcd(d , c)

c

)k

,

Sk,N,ϵ,ψ(d , c) := µ

(
dc

gcd(d , c)2

) ∏
p|gcd(d,c),

0<vp(d)=vp(c)<vp(N)

(
pk + ϵ(p)ψ(p)

pk

)
.
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Corollary

Let N be a squarefree integer with gcd(N, 6) = 1. Let f (z) be a

modular form in M(N−1)/2(Γ0(N), χN). Then we have

f (z) = [f ]1/N

+
∑
d|N

[f ]1/d
A(d ,N)

· (1− N)(N/d)(N−2)/2

B(N−1)/2,χN

∑
n≥1

σ(N−3)/2(χN/d , χd ; n)q
n

+ C (z),

where C (z) is some cusp form in S(N−1)/2(Γ0(N), χN) and

A(d ,N) =


1 if d ≡ 1 (mod 4) and N ≡ 1 (mod 4),

i if d ≡ 3 (mod 4) and N ≡ 1 (mod 4),

−i if d ≡ 1 (mod 4) and N ≡ 3 (mod 4),

1 if d ≡ 3 (mod 4) and N ≡ 3 (mod 4).
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Part 3 – Modular identities



Constant terms

Let a ∈ Z and c ∈ N0 be coprime. For an f (z) ∈ Mk(Γ0(N), χ) we

denote the constant term of f (z) in the Fourier expansion of f (z)

at the cusp a/c by

[f ]a/c := lim
z→i∞

(cz + d)−k f

(
az + b

cz + d

)
,

where b, d ∈ Z are such that

[
a b

c d

]
∈ SL2(Z). The value of

[f ]a/c does not depend on the choice of b, d .
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Modular identities

To get necessary modular identities from the above theorem we

need to compute [fθN−1
]1/d for each d | N. It is known that we

have

[fθN−1
]1/d =

(
−i

d

)(N−1)/2 GN−1(1, d)√
N

,

where the quadratic Gauss sum GN(a, c) for N, a, c ∈ N is defined

by

GN(a, c) :=
∑

x∈(Z/cZ)N
e2πiaθN(x)/c .

Therefore to calculate [fθN−1
]1/d we need to calculate GN−1(1, d).
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Gauss sum

Lemma

Let N ∈ N. Let α, β, γ ∈ N be mutually coprime. Then we have

GN(γ, αβ) = GN(βγ, α)GN(αγ, β).
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Gauss sum - Recursion formula

Proposition

Let p be an odd prime, N ∈ N be such that N ≥ p− 1 and a ∈ N
are coprime to p. Then we have

GN(a, p) =


i(p−p2)/2 ·

(a
p

)
pp/2 if N = p − 1, or p,

i(p−p2)/2 ·
(a
p

)
pp/2GN−p(a, p) if N > p.
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Gauss sum

Proposition

Let N > 1 be an odd positive squarefree integer and let p be a

prime divisor of N. If gcd(a, p) = 1, then we have

GN−1(a, p) = i(N−Np)/2 ·
(a
p

)
pN/2.
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Gauss sum

Theorem

Let N be an odd positive squarefree integer, let d be a divisor of

N, and let a ∈ Z with gcd(a, d) = 1. Then we have

GN−1(a, d) =
( a
d

)
· i(N−Nd)/2 · dN/2.
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Constant term of the theta function

Theorem

Let N be a positive squarefree integer such that gcd(N, 6) = 1

and d be a divisor of N. Then we have

[fθN−1
(z)]1/d = i(1−Nd)/2 ·

√
d/N.
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Theta function in terms of Eisenstein series

Corollary

Let N be a positive squarefree integer such that gcd(N, 6) = 1.

We have

fθN−1
(z) =1 +

∑
d |N

C (d ,N)(N/d)(N−3)/2 (1− N)

B(N−1)/2,χN

×
∑
n≥1

σ(N−3)/2(χN/d , χd ; n)q
n

+ C3(z),

where C3(z) is some cusp form in S(N−1)/2(Γ0(N), χN), with

C (d ,N) :=
i(1−Nd)/2

A(d ,N)
=
(−8

N

)( 8
d

)(−4

d

)(N−1)/2

.
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Eta quotients

We use eta quotients to relate N-colored Frobenius

partitions to the regular partition function.

The Dedekind eta function η(z), which is a holomorphic function

defined on the upper half plane H is defined by the product formula

η(z) = eπiz/12
∞∏
n=1

(1− e2πinz) = q1/24
∞∏
n=1

(1− qn) = q1/24(q; q)∞.

The quotients of products of η(dz) for d ∈ N in the form∏
d |N

ηrd (dz), rd ∈ Z,

are called the eta quotients.
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Eta quotients

Generating function of the partition function

We have
q1/24

η(z)
=
∑
n≥0

P(n)qn.

Lemma

Let N be a positive squarefree integer such that gcd(N, 6) = 1.

For each d | N, we have

ηN((N/d)z)

η(dz)
∈ M(N−1)/2(Γ0(N), χN).
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Constant terms of eta quotients

Lemma

Let c | N. Then we have

[
ηN((N/d)z)

η(dz)

]
1/c

=


(N/d

d

)
·
(
d

N

)N/2

· i
1−Nd

2 if c = d,

0 otherwise.
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Eta quotients in terms of Eisenstein series

Theorem

Let N be a positive squarefree integer such that gcd(N, 6) = 1.

Then we have

ηN((N/d)z)

η(dz)
=χN/d(0) +

(N/d
d

)
C (d ,N) · d

N
· (1− N)

B(N−1)/2,χN

×
∑
n≥1

σ(N−3)/2(χN/d , χd ; n)q
n

+ C1(z),

where C1(z) ∈ S(N−1)/2(Γ0(N), χN).
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Partition function in terms of Eisenstein series

For m ∈ N we define the operator U(m) by

U(m)
∣∣∣∑
n≥0

anq
n =

∑
n≥0

anmq
n.

Recall that
q1/24

η(z)
=
∑
n≥0

P(n)qn.

Applying the operator U(N/d) to the left-hand side of the previous

modular identity we obtain:

U(N/d)
∣∣∣ηN((N/d)z)

η(dz)
= (q; q)N∞

∑
n≥0

P

(
N

d2
n − N2 − d2

24d2

)
qn.

If we apply the same operator to the right-hand side of the previous

modular identity and use properties of the sum of divisor functions we

obtain the next modular identity. 39



Partition function in terms of Eisenstein series

Theorem

Let N be a positive squarefree integer such that gcd(N, 6) = 1.

Then we have

χN/d(0) + C (d ,N) · (N/d)(N−3)/2 (1− N)

B(N−1)/2,χN

×
∑
n≥1

σ(N−3)/2(χN/d , χd ; n)q
n

= N/d · (q; q)N∞ ·
∑
n≥0

P

(
N

d2
n − N2 − d2

24d2

)
qn + C2(z),

where C2(z) is some cusp form in S(N−1)/2(Γ0(N), χN).

40



Recall: Theta function in terms of Eisenstein series

Theorem

Let N be a positive squarefree integer such that gcd(N, 6) = 1.

We have

fθN−1
(z) =1 +

∑
d |N

C (d ,N)(N/d)(N−3)/2 (1− N)

B(N−1)/2,χN

×
∑
n≥1

σ(N−3)/2(χN/d , χd ; n)q
n

+ C3(z),

where C3(z) is some cusp form in S(N−1)/2(Γ0(N), χN).
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Recall that

Theorem (A., Nguyen (2023))

Let N be a squarefree positive integer with gcd(N, 6) = 1.

i) Then for all n ∈ N0 we have

cϕN(n) =
∑
d |N

N/d · P
(
N

d2
n − N2 − d2

24d2

)
+ b(n),

where C (z) := (q; q)N∞
∑∞

n=1 b(n)q
n is a cusp form in

S(N−1)/2(Γ0(N), χN).

ii) We have C (z) = 0 if and only if N = 5, 7, or 11.

iii) If N ̸= 5, 7, or 11, then there is no M ≥ 0 such that b(n) = 0

for all n > M.

42



Proof

We start by proving part i). By combining the previous modular

identities we obtain

fθN−1
(z) = (q; q)N∞

∑
d |N

N

d

∑
n≥0

P

(
N

d2
n − N2 − d2

24d2

)
qn + C (z)

for some C (z) ∈ S(N−1)/2(Γ0(N), χN). We divide both sides of this

by (q; q)N∞ to obtain

∑
n≥0

cϕN(n)q
n =

∑
n≥0

∑
d |N

N/d · P
(
N

d2
n − N2 − d2

24d2

) qn +
C (z)

(q; q)N∞
.

Then the result follows by comparing coefficients of qn above.

43



Proof

Now we prove part ii) of the theorem. When N ≥ 29 a squarefree

positive integer coprime to 6 and d < N a divisor of N then
N
d2 − N2−d2

24d2 ≤ 0. Therefore since cϕN(1) = N2 we have

b(1) = cϕN(1)−
∑
d |N

N/d · P
(
N

d2
− N2 − d2

24d2

)

= cϕN(1)− P

(
1

N

)
= N2 ̸= 0.

Hence, when N ≥ 29 is a squarefree positive integer coprime to 6,

we have C (z) ̸= 0.
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Proof

Similarly when N = 13, 17, 19, or N = 23 we have

b(1) = cϕN(1)− N · P
(
N − N2 − 1

24

)
− P

(
1

N

)

=


26 ̸= 0 if N = 13,

170 ̸= 0 if N = 17,

266 ̸= 0 if N = 19,

506 ̸= 0 if N = 23.

This shows that C (z) ̸= 0 when N = 13, 17, 19, or N = 23.

Therefore by Kolitsch identities, we have C (z) = 0 if and only if

N = 5, 7, or 11.
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Proof

Finally, we prove part iii) of the theorem. We prove it by

contradiction. Assume that there is an M ≥ 0 such that b(n) = 0

for all n > M, then we would have

∞∑
n=1

bnq
n =

M∑
n=1

bnq
n =

C (z)

(q; q)N∞
.

The right-hand side of this equation is a meromorphic modular

function and the left-hand side is an exponential sum. This is

possible only if C(z)
(q;q)N∞

= 0, which is shown to be false unless

N = 5, 7, or 11 in the proof of part ii) of the theorem.
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Part 4 – Asymptotic behavior



Asymptotic behavior

Let

U(n) = 1− N

B(N−1)/2,χN

∑
d |N

C (d ,N)(N/d)(N−3)/2σ(N−3)/2(χN/d , χd ; n).

We start by investigating the size of U(n).

Lemma

We have U(n) > 0 for every n ∈ N and

U(n) ≫ n(N−3)/2 if N > 5,

U(n) ≫ n/ log log n if N = 5.
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Asymptotic behavior

For each non-negative integer r , we define Vr (n) for n ≥ 0 by:

∑
n≥0

Vr (n)q
n =

1

(q; q)r∞
=

∑
n≥0

P(n)qn

r

=
∑
n≥0

∑
x∈Nr

0∑
xi=n

r∏
i=1

P(xi )q
n.

We have:

Proposition

For r ≥ 1:

(i) lim
n→∞

Vr (n)

Vr (n − 1)
= 1.

(ii) lim
n→∞

Vr−1(n)

Vr (n)
= 0.
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Proof – Asymptotic behavior

When N = 5, 7 or 11 from Sturm’s theorem, we have

cϕN(n) =
∑

d |N N/d · P
(

N
d2 n − N2−d2

24d2

)
( ̸= 0). Therefore the

statement for N = 5, 7 or 11 follows immediately. From now on

assume N > 11. By a modular identity from before we have

fθN−1
(z)− 1−

∑
n≥1

U(n)qn ∈ S(N−1)/2(Γ0(N), χN).
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Proof – Asymptotic behavior

Thus, by using Hecke bound, we have

fθN−1
(z)− 1−

∑
n≥1

U(n)qn =
∑
n≥1

O(n(N−1)/4)qn.

On the other hand, by another modular identity, we have

(q; q)N∞
∑
d|N

(N/d)
∑
n≥0

P

(
N

d2
n −

N2 − d2

24d2

)
qn − 1−

∑
n≥1

U(n)qn ∈ S(N−1)/2(Γ0(N), χN).

Hence, by using Hecke bound, we obtain

(q; q)N∞
∑
d |N

(N/d)
∑
n≥0

P

(
N

d2
n − N2 − d2

24d2

)
qn − 1−

∑
n≥1

U(n)qn

=
∑
n≥1

O(n(N−1)/4)qn.
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Proof – Asymptotic behavior

Now we let V(n) := VN(n) so that

1

(q; q)N∞
=
∑
n≥0

V(n)qn.

With this notation and the earlier arguments, we obtain

cϕN(n)−
∑

ℓ+m=n

V(m)U(l) = O

( ∑
ℓ+m=n

V(m)ℓ(N−1)/4

)
,

and ∑
d |N

(N/d)
∑
n≥0

P

(
N

d2
n − N2 − d2

24d2

)
−
∑

ℓ+m=n

V(m)U(ℓ)

= O

( ∑
ℓ+m=n

V(m)ℓ(N−1)/4

)
.
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Proof – Asymptotic behavior

From above we have

lim
n→∞

cϕN(n)∑
d |N

(N/d)P

(
N

d2
n − N2 − d2

24d2

)

= lim
n→∞

∑
ℓ+m=n

V(m)U(ℓ) + O

( ∑
ℓ+m=n

V(m)ℓ(N−1)/4

)
∑

ℓ+m=n

V(m)U(ℓ) + O

( ∑
ℓ+m=n

V(m)ℓ(N−1)/4

) .
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Proof – Asymptotic behavior

To obtain the desired result, we prove:

∑
ℓ+m=n

V(m)ℓ(N−1)/4 = o

( ∑
ℓ+m=n

V(m)U(ℓ)

)
as n → ∞.

Since N > 11, we have that U(ℓ) ≫ ℓ(N−3)/2 dominates ℓ(N−1)/4

when ℓ is large.
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Result

Theorem (A., Nguyen (2023))

Let N be a squarefree positive integer with (N, 6) = 1. We have

cϕN(n) ∼
∑
d |N

N/d · P
(
N

d2
n − N2 − d2

24d2

)
as n → ∞.
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Thanks!
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