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Abstract—Advances in sensing and tracking technology lead
to the proliferation of location-based services. Location service
providers (LSPs) often resort to commercial public clouds to
store the tremendous geospatial data and process location-based
queries from data users. To protect the privacy of LSP’s geospatial
data and data user’s query location against the untrusted cloud,
they are required to be encrypted before sending to the cloud.
Nevertheless, it is not easy to design a fast and secure location-
based query processing scheme over the encrypted data. In this
paper, we propose a Fast and Secure kNN (FSkNN) scheme
to support secure k nearest neighbor (kNN) search in cloud
computing. We reveal the inherent connection between an SkNN
protocol and a secure range query protocol and further describe
how to construct FSkNN based on a secure range query protocol.
FSkNN leverages a customized accuracy-assured strategy to
ensure the result accuracy and adopts a data structure named
random Bloom filter (RBF) to build a secure index for efficiently
searching. We formally prove the security of FSkNN under the
random oracle model. Our evaluation results show that FSkNN
is highly practical.

I. INTRODUCTION

In a location-based service, the local service provider (LSP)
hosts a big geospatial database that contains the information
for massive locations. A user can send her current location
to the LSP and then the LSP returns her the query results
(e.g., the top 5 nearest hotels). One common practice for
LSPs is to outsource the geospatial database to a powerful
public cloud for both geospatial database storage and location-
based queries processing. Cloud computing is identified as the
next-generation computing paradigm, which can bring LSPs
many benefits like lower operation fees and better performance.
Nevertheless, LSPs would lose direct control over their data
if they outsource their geospatial data to the public cloud,
which leads to security issues that hinder the popularization
of the new computing paradigm. For instance, the cloud may
collect the location of the data user (i.e., the querier) and
track the data user. Moreover, the cloud may be hacked and
the stored data may be leaked. The leaked data allows the
adversaries for commercial benefits or criminal purposes or
gain improper benefits. To ensure LSP’s data privacy, the
geospatial data is required to be encrypted before sending
to the cloud. Such a requirement is enforced by emerging
laws (e.g., General Data Protection Regulation 2018 [1], [2]).
However, the enforcement of data encryption reduces the data
utility because it is usually less efficient to process location-
based queries over the encrypted data. In this paper, we focus

on location-based secure k nearest neighbor (SkNN) query,
which is a ubiquitous query in real-world applications (e.g.,
search for the top 5 nearest hotels). Therefore, it is imperative
to devise techniques to provide strong security against the
untrusted cloud while still maintaining the cloud’s kNN search
performance over the encrypted database.

The studied problem is gradually formulated as follows.
Geospatial Database. The LSP (i.e., data owner) hosts a
geospatial database that contains n data items. Each geospatial
data item is composed of two types of attributes. The first type
is the spatial attribute (location information) and the second
type is the non-spatial attribute(s) (non-location information).
For example, the spatial attribute can be a hotel location and
the non-spatial attributes may include the hotel name, price
information, and its customer reviews. Each data item can be
indexed and represented by its spatial information, which is a
point in the two-dimensional (2-D) geospatial space. Hence, we
can also use the term “point” to represent a data item in this
paper. Let S = {p1, · · · , pn} represent the set of all points.
A point pi can also be treated as a vector from the origin
point O to pi, represented as −→pi . SkNN Search. There are
three types of entities: a data owner, a cloud, and a group of
data users. The data owner sends the database to the public
cloud for storage. On receiving a query point q from a data
user, the cloud processes kNN query and returns the k nearest
points to the data user. The Euclidean distance is used as the
distance metric. The SkNN queries processing problem is: the
cloud should assist the data owner to store geospatial data and
answer users’ kNN queries while the cloud cannot learn useful
information about the data owner’s geospatial data and the data
users’ query point locations. Threat Model. We assume that
the cloud is the adversary who is semi-honest (a.k.a., honest-
but-curious) [3], [4]. In the semi-honest model, the cloud does
not deviate from the defined protocol. However, the cloud
tries to use legitimately received data to infer other private
or sensitive information. For instance, the cloud may want to
infer the data owner’s geospatial data and the data users’ query
locations. Consequently, to protect the data owner’s geospatial
data privacy and data user’s query location privacy, both the
geospatial data and query location should be encrypted before
sending to the public cloud.

More specifically, the proposed FSkNN service model is
shown in Fig. 1. In FSkNN scheme, the data users can obtain
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the right to use the SkNN query service by requesting the
secret keys from the data owner. To support fast and secure
query processing, the data owner builds a secure index using
the spatial attributes of all data items. Then, the data owner en-
crypts the whole data item. The pointers are used to record the
association between the secure index item and the encrypted
data item. Next, the data owner sends the secure index and the
encrypted data items to the public cloud, which is responsible
for data storage and query processing. Subsequently, the data
users can generate valid search tokens and send them to
the cloud for SkNN search. On receiving them, the cloud
performs the search and sends back the results. Finally, the
data user performs some post-processing operations (e.g., data
item decryption) and gets the desirable SkNN results.
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Fig. 1. FSkNN service model.

Two design goals are figured out for FSkNN.
- Security. FSkNN should preserve the following three types

of privacy. (1) Data privacy: from the encrypted data items,
the adversary cannot reveal any useful information about the
data. (2) Index privacy: from the secure index, the adversary
cannot learn any useful information about the data items.
(3) Token privacy: from the encrypted search token, the
adversary cannot infer any useful information about the data
user’s location information.

- Efficiency. FSkNN should satisfy two types of efficiency
requirements. (1) Low query processing time: the data user
can get the query results within a reasonable amount of time.
(2) Low interaction rounds: the number of interaction rounds
between the data user and the cloud should be small. It is
desirable that the protocol only requires a small constant
number of interaction rounds.
The major challenge for FSkNN is that it is difficult to

achieve strong security and query processing efficiency simul-
taneously. The enforcement of data encryption on the cloud
reduces the data utility. Thus, it becomes thorny to efficiently
processing kNN queries on the encrypted data. A naive solution
is that the data user encrypts the query point q and then sends
to the cloud. The cloud computes the Euclidean distances
between the encrypted query point q and the encrypted points
in the database and then sorts the computed distances to
get the query results. However, this solution is impossible
to achieve strong security and query processing efficiency
simultaneously. If a strong encryption algorithm, e.g., FHE
(fully homomorphic encryption) [5], is employed, computing

distance between strongly encrypted points is inefficient and
hence search performance is low. If a weak encryption al-
gorithm, such as OPE (order-preserving encryption) [6], is
applied, then the strong security goal is breached. To tackle
this conflict, we adopt the index-aid approach to sidestep
the complex computations over the encrypted data. In this
approach, the geospatial data items can be formally encrypted
by standard strong encryption methods (e.g., AES) to achieve
strong data privacy while search operations can be performed
over a secure index. One issue of this approach is that it
is still time-consuming to perform complex operations (i.e.,
computing Euclidean distance) over a strongly encrypted index.
To avoid complex computations over the secure index, our key
idea is to adopt the simpler range queries to realize the complex
kNN search functionalities. As a result, FSkNN can achieve
strong security and fast query processing simultaneously. The
next problem is how to design a kNN protocol from a range
query protocol. FSkNN addressed this problem by adopting
the prefix membership verification technique [18] with proper
customized design. Moreover, FSkNN employs random Bloom
filter (RBF)-based data structure to build a secure index. To
support efficient query processing, FSkNN organizes the RBFs
into a binary tree structure so that the query processing can be
finished in sublinear time.

TABLE I
COMPARISON BETWEEN FOUR PREVIOUS SCHEMES AND FSKNN

( : SUPPORTED, : NOT SUPPORTED).
[7] [8] [9] [10] FSkNN

Strong security
Sublinear time
Accurate results
Support k > 1
High dimensions
No local index
Single server
Interaction rounds O(1) O(1) O(1) O(1) O(1)

We compare FSkNN with four previous SkNN schemes [7]–
[10]. Table I summarizes the comparison results, which show
that FSkNN outperforms the previous art. The limitations of
previous solutions are explained as follows. Elmehdwi et al.
[7] proposed a secure kNN protocol using a twin-cloud model
[11] and Paillier cryptosystem [12]. This protocol employs
too many expensive cryptographic operations, so its query
processing time is too long to be used in reality (especially
for large datasets). Wang et al. [8] developed a secure kNN
scheme based on order-preserving encryption (OPE). The OPE
only has weak privacy guarantees and therefore it fails to
resist many real-world attacks [13]. Yao et al. [9] designed
a solution that can support secure 1NN search by exploiting
the Voronoi diagram [14] for space division. This scheme
requires each data user to store a local index for searching,
but the large-size local index is not desirable for weak users.
Recently, a projection function-based approach is proposed in
[10] to address SkNN problem. However, this approach suffers
from two major limitations. First, it cannot ensure the results
accuracy; only approximated results are supported. Second, it
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cannot handle high-dimensional data.
Three major contributions of this paper are identified.

• We develop a novel mechanism which converts a secure kNN
problem into a secure range query problem. Accordingly,
we propose FSkNN scheme, which preserves both query
efficiency and security for kNN search.

• We design an accuracy-assured strategy on top of FSkNN
scheme. The strategy enables FSkNN to provide users with
accurate results while high query efficiency and security are
still supported.

• We figure out the information leakage in FSkNN and for-
mally prove that FSkNN scheme achieves security in the
random oracle model based on the simulation proof tech-
nique.

II. kNN PROTOCOL IN PLAINTEXT DOMAIN

In this section, we first introduce how to construct a kNN
query processing protocol from a range query processing
protocol. Then, we develop a strategy to ensure the results
accuracy of the constructed kNN protocol. Last, the parameter
choices of the constructed kNN protocol are discussed. Note
that this section does not consider the data privacy protection.
We assume that the cloud hosts the geospatial database in
plaintext and the data user submits range queries in plaintext
to the cloud for a kNN search.

A. kNN Query from Range Query

1) 1-D Data: We show that a kNN query processing proto-
col in 1-D data can be constructed by leveraging a range query
processing protocol. The key idea is that the cloud can launch a
range query in which the center of the range is the query point
q. Then, by gradually increasing the range scopes in a series
of range queries, the cloud can gradually search for the nearby
points from the dataset. Fig. 2 shows a simplified example.
Assume that there are 8 1-D points stored on the cloud, i.e.,
{0, 1, · · · , 7}. Given a query point q = 3.5 and 4NN query, the
cloud first launches a range query [3, 4] and gets two points
{3, 4}. Then, the cloud has a larger range query [2, 5] and gets
another two points {2, 5}. Last, the cloud returns {2, 3, 4, 5}
as the 4NN query results.

1 2 3 4 5 6 70

3.5q �

Fig. 2. kNN query processing in 1-D data.

2) 2-D Data: An approximate kNN query processing pro-
tocol in 2-D data can also be constructed by employing a
range query processing protocol. An example is plotted in Fig.
3(a) to explain the idea. Two vectors −→α1 and −→α2 are randomly
generated where −→α1 ⊥ −→α2. The coordinate values of a point are
defined by the scalar projection of the point onto the vectors−→α 1 and −→α 2, respectively. Given a query point q = (3.5, 3.5)
and 4NN query, the cloud first launches a range query [3, 4]
for all the points’ scalar projection onto the vector −→α1, i.e.,

Proj−→α1
(pi) =

−→pi ·−→α1

|−→α1| , i = [n], where [n] is the abbreviation
of 1, · · · , n. Let R(−→α1) represent the corresponding query
result set. Similarly, the cloud continues to have a range query
of [3, 4] for all the points’ scalar projection onto the vector−→α2, i.e., Proj−→α2

(pi) =
−→pi ·−→α2

|−→α2| , i = [n]. Let R(−→α2) denote the
corresponding query result set. Then, the cloud computes the
conjunctive result set of the above two range queries, i.e.,
R(−→α1)∩R(−→α2). In Fig. 3(a), R(−→α1)∩R(−→α2) contains all of the
points in Square1. In the example, the cloud gets one point p1.
Next, the cloud enlarges the range query to be [2, 5] and finds
all of the points in Square2, in which the cloud gets points p2,
p3, and p4. Last, the cloud returns {p1, p2, p3, p4} as the 4NN
query results. In case more than 4 nearby points are required,
(i.e., k > 4), the cloud continues to enlarge the range query to
be [1, 6] and searches for the points in Square3. In this way, the
cloud gradually increases the range scopes in the range queries
and stops searching until k distinct points are found. Note that
the proposed kNN protocol only returns approximate results.
A strategy to ensure the query results accuracy is presented in
Section II-B.
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(a) kNN in 2-D data.
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Fig. 3. Approximate kNN query processing in 2-D data and 3-D data.

3) 3-D Data and Higher Dimensional Data: Note that a
range query processing protocol can also be exploited to build
an approximate kNN query processing protocol in 3-D data and
higher-dimensional data. As shown in Fig. 3(b), by having 3
range queries onto three vectors −→α1, −→α2, −→α3 in 3-D space, where−→α1 ⊥ −→α2 ⊥ −→α3, and computing the conjunctive query results
set, the cloud can search from the smallest Cube1 to the larger
cubes (e.g., Cube2, Cube3). The search process terminates until
the cloud finds k distinct points. For higher-dimensional data
(e.g., 4-D data), the cloud can launch multiple (e.g., 4) range
queries to specify a higher dimensional cube (i.e., a hypercube).
Likewise, the cloud can search from the smallest hypercube to
the larger hypercubes and gradually finds k distinct points. In
the rest of the paper, we focus on kNN protocol in 2-D data
since 2-D location privacy is the major concern of this paper.

B. Accuracy-Assured Strategy

We now develop a strategy to ensure results accuracy for 2-
D kNN protocol. As shown in Fig. 4, the accurate kNN search
process should search nearby points in circles whose center
is the query point q. However, the 2 range queries-based kNN
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protocol searches nearby points in squares. Therefore, it cannot
guarantee the results accuracy.

qq

1 2 3Circle Circle Circle� �

(a) Accurate kNN search.

qq

1 2 3Square Square Square� �

(b) Approximate kNN search.
Fig. 4. Accurate vs. approximate kNN search process.

To facilitate the description of the accuracy-assured strategy,
we first describe some mathematical notations below. Consider
that there are L levels of gradually increased range queries
which specifies Square1, · · · , SquareL, where Square1 ⊂ · · · ⊂
SquareL. For each data point returned from the cloud, the data
user can compute its Euclidean distance to the query point q.
Let dist(p, q) represent the Euclidean distance between two
points p and q. As depicted in Fig. 5, for a point pi ∈ Squarej ,
if dist(pi, q) ≤ rj , then pi locates in Circlej ; otherwise,
it locates in Squarej but outside of Circlej . Let all points
in Squarej that satisfy d(pi, q) ≤ rj be in the accuracy-
assured set, denoted as Aj . Moreover, let all points in Squarej
that satisfy d(pi, q) > rj be in the accuracy-uncertainty set,
denoted as Uj . We define Rj = Aj ∪ Uj , so Rj contains all
points in Squarej . We use |Aj |, |Uj |, and |Rj | to denote the
cardinality of the set Ai, Ui, and Rj , respectively.

q

Circle j Square j

jrjr

Fig. 5. Points in Circlej are in
Aj . Points outside Circlej but
in Squarej are in Uj .

q

π/3 π/3
π/3

1�

2�3�

o
Fig. 6. The 3 range queries onto 3
vectors specify a regular hexagon.

Our accuracy-assured strategy is developed based on the
following critical observation: all points in Ai must be the
accurate top |Ai|NN results. The top k (k ≤ |Ai|) nearest
points in Ai must be the accurate top kNN results.

More specifically, the accuracy-assured strategy is described
in Algorithm 1. In the algorithm, the cloud first searches in
Square1 and obtains the result set R1. If |R1| < εk (the result
set expansion factor ε > 1), then the cloud continues to search
for larger squares until |Rj | ≥ εk. The adjustable factor ε is
introduced to ensure a slightly more than k points are returned
to the data user. Assume that the cloud finds sufficient points
after searching of Squarej , then the cloud returns all points
in Squarej to the data user. The data user can identify all the
data points that in the accuracy-assured set Aj . If |Aj | < k,
the data user informs the cloud to continue to search in larger
squares until the data user can get a set Aj such that |Aj | ≥ k.

Then, the data user sorts the data points in Aj according to
their distance to the query point q and selects the top k nearest
points as the accurate kNN query results. Note that by properly
choosing the expansion factor ε, this strategy only requires a
small constant number of interaction rounds between the cloud
and the data user.

Algorithm 1: Accuracy-assured strategy
Input: pi(i = [n]); q; k; ε; L levels of gradually increased

range queries which specifies Square1, · · · , SquareL.
Output: Accurate kNN query results.

1 Initialization: Rj = ∅, for j = 0, · · · , L; j = 0;
2 while (|Rj | < εk) do
3 j ++;
4 The cloud searches in Squarej and obtains the result set

Rj ;
5 The cloud returns Rj to the data user for computing |Aj |;
6 while (|Aj | < k) do
7 j ++;
8 The cloud continues to search in Squarej and obtains the

result set Rj ;
9 The cloud returns Rj to the data user for computing |Aj |;

10 The data user sorts the data points in Aj according to their
distance to the query point q and selects the top k nearest
points as the accurate kNN query results;

C. Extending to Multiple Vectors

In the 2-D kNN protocol, more than 2 vectors can be
used so that the cloud can have range queries onto each of
them in searching. It is observed that the more vectors, the
smaller |Uj |. For example, consider there are 3 vectors −→α 1,−→α 2, and −→α 3 that equally divide 2-D space (i.e., the degree
between two adjacent vectors is π/3). As shown in Fig. 6,
the corresponding 3 range queries specify a regular hexagon.
Generally speaking, d vectors specify a regular polygon with
2d edges. As exhibited in Fig. 7, the larger d is, the closer the
search area is a circle and the smaller |Uj |. In the extreme case,
we have limd→+∞ |Uj | = 0. Then, the kNN search is exactly
in circles and the returned results are always accurate.

q q
120

q
90 135

q

2d � 3d � 4d � d � ��
Fig. 7. Geometrically, the search area is a regular polygon with 2d edges.
The larger d is, the closer the search area is a circle.

III. SECURE kNN PROTOCOL

This section describes how to convert the above kNN
protocol to be a secure kNN protocol. We first describe how
to construct a range query processing protocol from keyword
queries. Then, we introduce how to differentiate range queries
onto multiple vectors. Next, the secure index data structure
is elaborated, followed by the detailed secure kNN protocol
design. Last, the secure analysis of FSkNN is presented.
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A. Prefix-based Range Query Processing Protocol

Theoretically, any existing secure range query protocols
(e.g., [15]) can be exploited to build a secure kNN protocol.
In this paper, we employ the prefix membership verification
scheme [16] to design a range query processing protocol based
on keyword queries. For an integer p of v bit, its binary
representation can be represented as b1b2 · · · bv . The prefix
family of the number p, denoted as F (p), is set of v + 1
prefixes {b1b2 · · · bv, b1b2 · · · bv−1∗, · · · , b1 ∗ · · · ∗, ∗ ∗ · · · ∗}.
For instance, the prefix family of integer 3 of 3 bits is
F (3) = F (011) = {011, 01∗, 0 ∗ ∗, ∗ ∗ ∗}. For a range
[a, b], it can be represented by a minimum set of prefixes
(called minimum prefix family), denoted as S([a, b]), such
that the union of the prefixes equal to [a, b]. For example,
S([0, 4]) = S([000, 100]) = {0 ∗ ∗, 100}, where the prefix
“0 ∗ ∗” represents 0, 1, 2, 3 and the prefix “100” represents 4.
Therefore, the union of the prefixes “0 ∗ ∗” and “100” equal
to all integers in the range [000, 100]. There is an important
property holds between the prefix family of an integer p and
the minimum prefix family of a range [a, b]. Given an integer
p and a range [a, b], p ∈ [a, b] if and only if there exists a
prefix pf ∈ S([a, b]) such that pf ∈ F (p). Or equivalently,
p ∈ [a, b] if and only if F (p) ∩ S([a, b]) �= ∅. An example is
presented below to explain this property.

Example. To test if the range [0, 4] contains the integer 3,
we first compute the minimum prefix family of the range [0, 4]
as S([0, 4]) = S([000, 100]) = {0∗∗, 100}. Then, we compute
the prefix family of the integer 3 of 3 bits as F (3) = F (011) =
{011, 01∗, 0∗∗, ∗∗∗}. Because S([0, 4])∩F (3) = {0∗∗} �= ∅,
it holds that 3 ∈ [0, 4].

Based on the above property, the prefix-based range query
processing protocol can be constructed based on disjunctive
keyword queries. Given n 1-D points p1, · · · , pn, the data
owner computes the prefix families F (p1), · · ·F (pn) and out-
sources them to store on the cloud. For a range query [a, b],
the data user computes S([a, b]) and sends it to the cloud.
On receiving S([a, b]), for a point pi, the cloud checks if
any prefix in S([a, b]) is also in F (pi). If there exists any
prefix in S([a, b]) that is also in F (pi), then the cloud puts pi
in the range query result set. Let R(pfi) represent the query
result set for a prefix pfi ∈ S[a, b], then the final range query
result set can be computed by the disjunctive operation, i.e.,⋃|S[a,b]|

i=1 R(pfi). Hence, by treating each prefix as a keyword,
the prefix-based range query protocol can be constructed using
disjunctive keyword queries.

B. Range Queries onto Multiple Vectors

The kNN protocol in 2-D data leverages range queries
onto multiple vectors. To distinguish the range queries on
different vectors, we develop the following strategy. Assume
that the data owner intends to calculate the prefix family of
a point pi onto vector −→αj , denoted as F (pi,

−→αj). To make
each prefix family unique, the data owner lets each prefix
in a prefix family append its projected vector. For example,
assume that Proj−→αj

(pi) = 3, then we have F (pi,
−→αj) =

F (3,−→αj) = {011||−→αj , 01 ∗ ||−→αj , 0 ∗ ∗||−→αj , ∗ ∗ ∗||−→αj}, where
“||” represents concatenation. Then, the data owner outsources
F (3,−→αj) to the cloud for storage. For a range query [a, b] onto
vector −→αj , the data user also needs to append the projected
vector to each prefix in its minimum prefix family before
sending to the cloud for query results. Let S([a, b],−→αj) rep-
resent the minimum prefix family of [a, b] onto vector −→αj .
For instance, S([0, 4],−→αj) = {0 ∗ ∗||−→αj , 100||−→αj}. Because
F (3,−→αj) ∩ S([0, 4],−→αj) = {0 ∗ ∗||−→αj}, we have 3 ∈ [0, 4]
onto vector −→αj .

C. Secure Index Design

We have shown that a kNN protocol can be constructed
from conjunctive range queries and a range query protocol can
be constructed from disjunctive keyword queries. Therefore,
a kNN protocol can be constructed based on conjunctive
and disjunctive keyword queries. The secure index used in
FSkNN for the underlying keyword queries is built based on
a data structure called the random Bloom filter (RBF).

RBF. The data structure RBF [17] is revised from the classic
Bloom filter [18]. A set containing multiple keywords can be
inserted into an RBF. After insertion, the RBF can be used to
check if a keyword is inserted or not. As shown in Fig. 8, an
RBF can be viewed as a 2-D binary array B with 2 rows and
m columns. Let B[i][j] ∈ {0, 1} denote the bit value in the ith
row and jth column of an RBF B. Each entry in the 2-D array
is called a cell. The two cells in a column are called a cell-pair.
For an empty RBF, each cell in each cell-pair is initialized to be
either 0 or 1 randomly while keeping the bit values of two cells
in a cell-pair to be different. According to their bit values, the
two cells in a cell-pair are called 0-cell and 1-cell, respectively.
An RBF is associated with a random number rB , kB +1 hash
functions h1, h2, · · · , hkB+1, and a random oracle H [19]. In
this work, we use the keyed hash message authentication code
(HMAC) [19] to instantiate these hash functions. Suppose that
there are kB + 1 secret keys k1, · · · , kB + 1. For the first kB
hash functions, they can be represented as hi(·) = HMACi(·)
mod m, for i = [kB ]. For the last hash function, it can be
denoted as hkB+1(·) = HMACkB+1(·). The used random
oracle is instantiated as H(·) = SHA256(·) mod 2. Let ⊕
represent XOR operation.
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Fig. 8. An RBF example.
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Fig. 9. An RBF tree example.

To insert a keyword kw into an RBF, for j = [kB ], we set

B[H(hkB+1(hj(kw))⊕ rB)][hj(kw)]=1. (1)
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In Eq. (1), H(hkB+1(hj(kw)) ⊕ rB) determines the chosen
cell from a cell-pair. The other unchosen cell of a cell-pair is
set to be 0, i.e., for j = [kB ], we set

B[1−H(hkB+1(hj(kw))⊕ rB)][hj(kw)]=0. (2)

Note that the chosen cell for a given cell-pair is always the
same. For example, in inserting two different keywords kw1

and kw2, suppose that two different keywords kw1 and kw2 are
mapped to the same cell-pair under two different hash functions
h1 and h2, respectively. That is, h1(kw1) = h2(kw2). Then, it
holds that H(hkB+1(h1(kw1))⊕rB) = H(hkB+1(h2(kw2))⊕
rB). Therefore, the chosen cell for h1(kw1) (or h2(kw2))-th
cell-pair always stays the same during the keywords insertion.

To check whether a keyword kw is inserted into the RBF B,
we need to re-compute Eq. (1) and test whether this equation
holds for all j ∈ [kB ]. If it holds, then the keyword kw is
inserted into the RBF, otherwise not.

For the traditional Bloom filter, the more keywords are
inserted, the more 1-cells appear in the Bloom filter. Hence, the
information about the number of embedded keywords is par-
tially leaked. However, the RBF-based index is a completely
random data structure consists of an equal number of 1-cells
and 0-cells. Therefore, the RBF-based index is more secure
than the traditional BF-based index.

RBF Tree. To achieve sublinear time for a keyword search,
we organize multiple RBFs to be a balanced binary tree
structure. An example of the RBF tree is depicted in Fig. 9.
Consider we want to build an RBF tree from 2 RBFs Bl and
Br, where Bl is the left child RBF and Br is the right child
RBF. Let Bp represent their parent RBF and ∨ represent logical
OR operation. For i = [m], Bp is computed as

Bp[H(hkB+1(i)⊕ rBp
)][i] = Bl[H(hkB+1(i)⊕ rBl

)][i]

∨Br[H(hkB+1(i)⊕ rBr
)][i].

(3)

Eq. (3) shows that Bp’s ith cell-pair is the bitwise OR operation
of Bl’s ith cell-pair and Br’s ith cell-pair. If there are more than
2 RBFs, we can repeatedly use the above approach to generate
a balanced binary RBF tree from a group of leaf RBFs in a
bottom-up manner until there is only one root RBF. There is
an important property holds between a parent RBF Bp and its
two children RBFs Bl and Br: if RBF Bl embeds a keyword
set S1 and RBF Br embeds a keyword set S2, then their
parent RBF Bp embeds the keyword set S1 ∪ S2. Below is
an example to explain this property.

Example. Suppose that RBFs Bl and Br have 6 cell-pairs.
The chosen cells of RBFs Bl and Br constitute the bit arrays
Al = 001010 and Ar = 101000, respectively. According to Eq.
(3), the chosen cells of the parent RBF Bp is a bit array Ap

computed by Ap = 001010∨ 101000 (bitwise OR) = 101010.
Suppose that in inserting a keyword kw into RBF Bl, it is
mapped to the 3rd and 5th locations, so we have Al = 001010.
Due to the bitwise OR operation, the 3rd and 5th locations in
the bit array Ap must be 1. Therefore, the keyword kw must
also be inserted in the RBF Bp. The random oracle H(·) in Eq.
(1)-(3) is introduced to keep the number of 1-cells and 0-cells

equal. In the presence of the random oracle, the above property
still holds. Consequently, if RBF Bl embeds a keyword set S1

and RBF Br embeds a keyword set S2, then their parent RBF
Bp embeds the keyword set S1 ∪ S2.

The above property allows us to search from the root RBF
to a leaf RBF in O(log n) time. Assume that there are four
RBFs B1, · · · , B4, where Bi embeds the keyword set Si, for
i = [4]. The four RBFs generate a binary RBF tree as shown in
Fig. 9. Assume that a keyword kw ∈ S2 but kw /∈ S1, S3, S4.
To search kw in the RBF tree, the cloud first searches in the
root RBF B1234 and finds that kw is inserted in it (because
kw ∈ S1 ∪ S2 ∪ S3 ∪ S4). Then, the cloud continues to search
the left child RBF B12 and right child RBF B34. The cloud
finds that B34 does not embed kw, so the search terminates (all
RBFs under B34 are pruned). Next, the cloud finds that B12

embeds kw (because kw ∈ S1∪S2), so the cloud continues to
search the left child RBF B1 and right child RBF B2. Last, the
cloud confirms that kw is inserted in B2 and hence kw ∈ S2.
Thus, it only takes O(log n) time to perform a keyword search
over an RBF tree.

D. SkNN Protocol Design

We next introduce the detailed FSkNN design. FSkNN is
composed of four subroutines: (1) index-building, (2) token-
generation, (3) query-processing, and (4) post-processing.

(1) Index-building. For each data point in the database, the
data owner computes the prefix families for its scaler projection
onto each vector, i.e., F (pi,

−→αj), for i = [n], j = [d]. All
prefixes of a point are embedded into a distinct RBF. Each
RBF represents a point and is associated with its encrypted data
item by using a pointer (see Fig. 1). All RBFs generated by
data points now serve as the leaf nodes to construct a balanced
binary RBF tree (see Eq. (3)). Note that each RBF in the RBF
tree is associated with a random number. The secure index is
the RBF tree and its RBF-specific random numbers.

(2) Token-generation. Given a 2-D query point q =
(x, y), the data user chooses L levels of ranges radiuses
ri (i = [L]) where r1 < r2 < · · · < rL. For a vec-
tor −→αj , the data user computes Proj−→αj

(q). Then, the data
user computes the minimum prefix family of each range
scope onto each vector. To facilitate description, we define
Q(j, i, q) = S([Proj−→αj

(q) − ri, Proj−→αj
(q) + ri],

−→αj). The data
user computes Q(j, i, q) for j = [d], i = [L]. For each prefix in
Q(j, i, q), the data user treats it as a keyword. For a keyword
kw, the data user computes kB-pair of hashes and locations:
{hkB+1(hi′(kw)), hi′(kw)}, for i′ = [kB ]. The kB-pair of
hashes and locations serve as the search token tkw of keyword
kw. The data user generates search tokens in the above way
for all prefixes in Q(j, i, q) (j = [d], i = [L]) and sends these
search tokens to the cloud for search results.

(3) Query-processing. On receiving these search tokens,
the cloud processes them one by one in sequential. Let tkw
represent the search token for a keyword kw. The search
process is described below. Let tkw[i] represent the ith ordered
pair in tkw. We have tkw[i] = {hkB+1(hi(kw)), hi(kw)}. Let
tkw[i][1] and tkw[i][2] represent the first and second element
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in tkw[i], respectively. To check if kw is inserted in an
RBF B, the cloud tests if there exist i ∈ [kB ] such that
B[H(tkw[i][1] ⊕ rB)][tkw[i][2]] = 0. If yes, then it holds that
kw is not inserted in the RBF B. If the cloud finds that kw
is not inserted in the RBF B, then the cloud stops searching
(all RBFs under RBF B are pruned). Otherwise, the cloud
tests if kw is inserted in the left and right children of the
RBF B. The binary search tops until the cloud arrives at the
leaf RBF and gets the result. Harnessing the above process
for a secure keyword search, the cloud can have disjunctive
keyword queries (by treating each prefix as a keyword) to
realize the secure range query (see Section III-A). Based on
the secure range query, the cloud can realize secure kNN
search (see Section II). Once enough points are obtained, the
cloud stops searching. Then, the cloud returns the searched
encrypted data items to the data user.

(4) Post-processing. On receiving the encrypted data items
from the cloud, the data user exploits the results accuracy-
assured strategy (see Algorithm 1) to obtain the accurate kNN
query results.

E. Security Analysis

FSkNN is built based on using conjunctive range queries.
The adopted prefix-based range query is realized by using
disjunctive keyword queries (each prefix is treated as a key-
word). Hence, FSkNN is constructed based on conjunctive and
disjunctive keyword queries. The security of the underlying
keyword query protocol can provide the security guarantee for
FSkNN. Therefore, we prove the security of the underlying
keyword query protocol in this section.

Secure Model & Leakage Function. To prove the security
of a keyword query protocol, we adopt the widely used se-
cure model called adaptive Indistinguishability under Chosen-
Keyword Attack (IND-CKA) [20]. The set of data items is de-
noted as D = {d1, · · · , dn}. Let I, T, and c represent the real
index, real search token, and real ciphertext, respectively. We
assume that a CPA-secure encryption algorithm [19] is adopted
by FSkNN to encrypt data items. Two leakage functions L1

and L2 specify the information that is allowed to be leaked to
the adversary. (1) L1(I,D): On input I and D, it reveals the
size of each RBF, the number of data items in the database,
the data item identifiers ID = (id1, · · · , idn), and the size of
each encrypted data item. (2) L2(I,D, kw): On input I, D,
and kw, it reveals the access pattern and the search pattern.
The access pattern shows the data item identifiers that match
the keyword query kw. The search pattern shows whether the
same search token was searched before or not.

Secure Intuition. The intuition for data privacy is that the
data items are formally encrypted. The intuition for index pri-
vacy is that the RBF tree-based index is a random data structure
with an equal number of 1-cells and 0-cells. The intuition for
token privacy is that the search tokens are generated by non-
invertible one-way hashes. To sum up, it is hard for the cloud
to infer the useful information from just viewing the encrypted
data items, RBF-tree based index, and hash-generated search
tokens. Formally, we have the following Theorem.

Theorem 1: Under the permitted leakage functions L1 and
L2, FSkNN scheme is adaptive IND-CKA secure in the random
oracle model.

We exploit the simulation proof technique [21] to prove
the security of FSkNN. If a probabilistic polynomial-time
(PPT) adversary cannot extract any useful information
from a simulated view to gain non-negligible advantages
to effectively distinguish between a simulated view and the
real view, then FSkNN is secure. The simulation proof thus
captures the notion that nearly “nothing” is learned beyond the
permitted information leakage. Let I∗, T∗, and c∗ represent the
simulated index, simulated search token, and simulated cipher-
text, respectively. In the proof, we first describe an efficient
simulator S that can simulate a view A∗

v = (I∗,T∗, c∗) with
the help of information accessible in the leakage functions L1

and L2. Next, we show that a PPT adversary cannot distinguish
between the simulated view A∗

v = (I∗,T∗, c∗) and the real
adversary view Av = (I,T, c).

Proof: (1) For data privacy (simulate c∗). To simulate an
encrypted data item, S can obtain the size of each encrypted
data item from the leakage function L1. Then, S selects any
plaintext and encrypts it by using a CPA-secure encryption
algorithm. The encrypted ciphertext serves as the simulated
ciphertext. Note that S must ensure that the simulated cipher-
text has the same size as the real ciphertext. Next, S continues
to use the above approach to simulate all encrypted data items.
Because the CPA-secure encryption algorithm achieves cipher-
text indistinguishability, a PPT adversary cannot distinguish the
simulated ciphertext with the real ciphertext.

(2) For index privacy (simulate I
∗). To simulate the secure

index, S first constructs an RBF tree T with an identical
structure with the real index I. S ensures that each RBF
in T has the same size as the RBF in I. At first, for each
cell-pair in an RBF in T , how to assign 0-cell and 1-cell is
determined randomly. Next, a random number is generated by
S to associate with each RBF in T . Finally, S uses T and
its associated random number as the simulated index I

∗. As a
result, I∗ and I are indistinguishable for a PPT adversary.

(3) For token privacy (simulate T∗). Assume that S
receives a keyword query kw. From L2, S knows whether
this query has been searched before or not. If it is searched
before, S re-uses the previous simulated token tkw. Otherwise,
S needs to generate a new search token as illustrated below.
As mentioned above, the search token consists of kB-pair of
hashes and locations. From L2, S knows the information about
which leaf RBF in the index contains the keyword kw. If an
RBF contains the keyword kw, then we say that the RBF
matches the search token tkw. For the leaf RBF that matches
tkw, S can program the output bit of the random oracle H to
select kB-pair of hashes and locations to generate tkw while
ensuring that the RBF matches the simulated tkw. For the leaf
RBF that does not match tkw, S can program the output bit
of H to generate tkw while ensuring that the RBF does not
match the simulated tkw. By this way, the simulated search
token T∗ can be generated. Obviously, a PPT adversary cannot
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TABLE II
COMPARISON BETWEEN TWO PREVIOUS SCHEMES AND FSKNN (NA REPRESENTS “NOT APPLICABLE”).

Scheme
Time cost Space cost Ave.

k = 1 k = 50
Token size

Index size interaction
n=104 n=105 n=106 n=104 n=105 n=106 n=104 n=105 n=106 rounds

FSkNN 23 ms 46 ms 73 ms 61 ms 94 ms 148 ms 0.43 MB 0.57 GB 4.07 GB 20.5 GB 1.09

Yao et al. [9] 5 ms 9 ms 12 ms Na Na Na 8 byte 14.8 MB 17.4 MB 20.3 MB 1

Elmehdwi et al. [7] 0.15 s 1.44 s 14.3 s 0.12 min 1.18 min 11.8 min 16 byte Na Na Na 1

distinguish between T∗ and T because the search token is
produced by the random hash functions and the random oracle.

In summary, from the view of a PPT adversary, A∗
v =

(I∗,T∗, c∗) and Av = (I,T, c) are indistinguishable. Hence,
under the permitted leakage functions L1 and L2, FSkNN
scheme is adaptive IND-CKA secure in the random oracle
model. �

IV. EXPERIMENTS

In this section, we evaluate the performance of FSkNN and
compare it with two previous schemes.

A. Experiment Setup

C++ is used to implement FSkNN. A machine (128 GB
RAM and 2.5 GHz dual CPUs) is leveraged to work as the
cloud. We set the gap between two consecutive range radiuses
to be fixed. Let δ = r1 = ri − ri−1, for i = 2, · · · , L. We
set δ = 0.02max{d(pi, pj)}, for i = [n], j = [n]. The default
value of the number of data items n is set to be 105. The
number of points needed in a query k is set to be 50. The
result set expansion factor ε is set to be 1.8. The number of
used vectors d is set to be 3. The number of hash functions
used by the RBF kB is set to be 7. The number of ranges
scopes L is set to be 8. We adjust the number of cell-pairs
in the RBF so that the false positive rate of the secure index
is extremely small and we cannot observe any false positive
instances. In our experiments, when we change the value of
one parameter under consideration, other parameters are kept
at their default values.

(a) New York (NY) (b) California (CA)
Fig. 10. The data distribution of two real-world datasets.

Three different datasets are used in the experiment. We
download two real-world datasets with 1 million points from
a crowdsourcing project: OpenStreetMap [22]. The first one
is collected from the state of New York, so it is represented
as NY. The second one is collected from California, denoted
as CA. The third dataset is a synthetic dataset generated

from the uniform distribution, represented as UF. Fig. 10
depicts the data distributions of two real-world datasets. Three
performance metrics are tested: (1) time cost, (2) space cost,
and (3) interaction rounds. The time cost is the total time
needed by the cloud to process an SkNN search. The space
cost consists of the search token size and the secure index
size stored by the cloud. The interaction rounds represent the
number of user-cloud interactions in an SkNN search.

B. Experimental Results

� � � � ��
�	
��
����������������� ���

��

��

��

���

���

���

���

(a) Time v.s. n (k = 50).
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(b) Time v.s. k (n = 105).

Fig. 11. Average query processing time when changing n and k.

We report the time cost, space cost, and iteration rounds of
FSkNN as follows. (1) Time Cost. The average query process-
ing time (when changing n and k) is shown in Fig. 11. With
an increasing n, the average query processing time increases
sublinearly. With an increasing k, the average query processing
time increases slightly faster than linear. For k = 50, it takes
less than 130 ms for a secure 50NN search in a dataset
containing 1 million data items. (2) Space Cost. For the space
cost, the secure search token size and the secure index size are
measured. Table II shows the token size for an SkNN query
in FSkNN. The search token of FSkNN only needs 0.43 MB,
indicating a low communication volume in transmission. For
the index size, the existing Bloom filter compression algorithms
[17] is exploited to compress the index. As exhibited in
Table II, the secure index takes 20.5 GB space for 106 data
items. (3) Interaction Rounds. The experiments show that the
average interaction rounds are monotonically decreasing with
an increasing expansion factor ε. When the expansion factor
ε grows from 1 to 2, the average interaction rounds decrease
from 2.13 to 1.05. When ε = 1.8, the average rounds are only
1.09, which means that in the vast majority of cases, only one
interaction round is required. Thus, FSkNN only has a small
constant number of interaction rounds.

������������	
���	
���	������	�
����	���	������������
�����������

Authorized licensed use limited to: Michigan State University. Downloaded on August 11,2020 at 01:43:17 UTC from IEEE Xplore.  Restrictions apply. 



C. Comparison

We compare FSkNN with two previous secure kNN
schemes: Yao’s scheme [9] and Elmehdwi’s scheme [7]. Ta-
ble II summaries the comparison results. We have four observa-
tions. (1) both FSkNN and Yao’s schemes have very fast query
processing time (less than 1 second). (2) all three schemes
do not have very large search tokens (less than 0.5 MB). (3)
the average interaction rounds for all of the three schemes
are small (less than 1.1). (4) FSkNN’s index is significantly
larger than the other two schemes. In essence, this is because
FSkNN trades space (used for index storage) for higher
security, faster query process, and results accuracy. Such
tradeoff is reasonable because space is an abundant and
cheap resource for a powerful cloud. For example, Google
Drive storage price is 100 GB for $1.99 per month [23]. Tens
of GB storage in FSkNN is affordable for an LSP. However,
other metrics including higher security, faster query process,
and results accuracy are much more crucial for good user
experience in real-world applications.

V. RELATED WORK

The existing techniques for SkNN query processing can be
roughly divided into the following six categories. The first type
of works use location obfuscation [24] and data transformation
approach [25], [26]. These works provide high query process
efficiency, but they only provide very weak privacy guarantees
since they do not use strong standard encryption algorithms.
Second, fully homomorphic encryption (FHE) [5] allows cloud
to have secure kNN search directly over the encrypted dataset.
Nevertheless, the search performance of current FHE-based
solutions is still not satisfactory. Third, the private information
retrieval (PIR) technique is exploited in several works such
as [27]. PIR-based schemes can support the data user’s query
location privacy, but they suffer from two limitations. (1) It
does not consider how to protect data privacy. (2) PIR-based
schemes have a very long query processing time (especially for
big datasets). Forth, the Voronoi diagram approach is proposed
in [9] for addressing secure 1NN search. This scheme requires
each data user to store and maintain a big local index for
query processing, which makes it not suitable for weak clients
with limited storage capacity. Fifth, property-preserving en-
cryption approach (including distance-recoverable encryption
(DRE) and order-preserving encryption (OPE)) is developed
in [8], [26], [28]. DRE-based and OPE-based schemes are
quite efficient in searching, However, as analyzed in [13],
they only achieve weak security since their encryption method
leaks statistical information to the adversary. Sixth, a projection
function-based solution is proposed in [10], but this solution
fails to support accurate query results.

VI. CONCLUSION

In this paper, we come up with a brand new approach
to realize fast and secure kNN query processing in cloud
computing. The key contribution lies in: we show that a secure
kNN protocol can always be constructed based on a secure

range query protocol. Therefore, any future advances in the
secure range query protocol can directly lead to advances in
the secure kNN protocol.
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