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Abstract—The fast increasing location-dependent applications
in mobile devices are manufacturing a plethora of geospatial
data. Outsourcing geospatial data storage to a powerful cloud
is an economical approach. However, safeguarding data users’
location privacy against the untrusted cloud while providing
efficient location-aware query processing over encrypted data are
in conflict with each other. As a step to reconcile such conflict,
we study secure k nearest neighbor (SkNN) queries processing
over encrypted geospatial data in cloud computing. We design
2D SkNN (2DSkNN), a scheme achieves both strong provable
security and high-efficiency. Our approach employs locality sen-
sitive hashing (LSH) in a dimensional-increased manner. This is
a counter-intuitive leverage of LSH since the traditional usage of
LSH is to reduce the data dimensionality and solve the so-called
“curse of dimensionality” problem. We show that increasing
the data dimensionality via LSH is indeed helpful to tackle
2DSkNN problem. By LSH-based neighbor region encoding and
two-tier prefix-free encoding, we turn the proximity test to be
sequential keywords query with a stop condition, which can be
well addressed by any existing symmetric searchable encryption
(SSE) scheme. We show that 2DSkNN achieves adaptive indis-
tinguishability under chosen-keyword attack (IND2-CKA) secure
in the random oracle model. A prototype implementation and
experiments on both real-world and synthetic datasets confirm
the high practicality of 2DSkNN.

I. INTRODUCTION

With the proliferation of location-based services on clouds,
protecting the privacy of data while keeping data utility is
of great importance. Most of the mobile devices (like smart-
phones and mobile vehicles) nowadays are equipped with GPS
and many mobile applications (such as Google Map and Face-
book) provide location-based services by sending the current
user location as a geospatial query parameter to a remote cloud
and the cloud returns the corresponding query results (such
as the list of nearby restaurants). By resorting to the cloud
storage, data owners can gain tremendous economic savings
and the data users can enjoy the convenience of location-based
services. Many commercial companies, such as Dropbox Inc.,
Microsoft Inc., are providing free or cheap storage capacity
on servers they administer. Despite the tremendous benefit of
cloud storage, the security concern is the key road block for
its development due to the fact that the public clouds are not
fully trusted. On one hand, data owners are concerned with the
privacy of their data, which is outsourced to the cloud. On the
other hand, data users are concerned with their location privacy
because their locations are leaked to the cloud in the query
processing process. There are strong financial incentives for

the public cloud to collect its customers’ sensitive information.
The cloud may sell the collected information for money. More-
over, public clouds may be hacked and the stored information
may be leaked. For example, a recent report [1] shows that
dropbox has been hacked and more than 68 million account
details are now for sale on the darknet marketplace. Therefore,
it is crucial to provide privacy preserving countermeasures for
location-based queries in cloud storage.

The type of query we study in this work is secure k nearest
neighbor (SkNN) query, which is a very popular geospatial
data query. For instance, taxi drivers may often want to retrieve
top five nearest restaurants. Therefore, we aim to design a
scheme that provides strong data privacy against the untrusted
cloud storage server, while still reserves the cloud’s ability to
efficiently answer kNN queries over encrypted geospatial data.

A. Problem Formulation

Relaxed kNN. The kNN query processing problem we
consider can be mathematically described as follows: suppose
that there are a set of spatial data items that are represented by
points p1, · · · , pn in the two-dimensional (2D) geographical
work space U , given a query point q ∈ U , the target of kNN
is to find top-k nearest points of q. The distance metric we
use is the Euclidean distance. It is shown that an approximate
answer of kNN suffices for many applications, so we do
not insist on the exact answer. Accordingly, the problem
we attempt to tackle is a relaxation of kNN problem. Such
granularity of relaxation well captures most location-based
practical applications, while offering more space for protocol
design.

System Model. We consider 2D SkNN query processing
system model as depicted in Fig. 1, where there exist a data
owner and a cloud. We adopt the index-aid cryptographic
approach to solve SkNN problem. In this approach, data
owner and authenticated data users share some secret keys in
advance. Each data item hosted by the data owner consists of
location information (spatial attributes) and other information
(non-spatial attributes). In order to remain the ability to query
and retrieve the data efficiently, the data owner extracts the
spatial attributes of each data item and builds a secure index
and then encrypts the entire data item by using the shared
keys. Each secure index item should contain the identifier
information to record the association between the secure index
item and the encrypted data item. Afterward, the data owner
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Fig. 1. 2D SkNN System Model

outsources both the secure index items and the encrypted data
items to the powerful cloud, which provides both storage and
search services. After the cloud receives the secure index and
encrypted data items, the authorized data users can use the
shared keys to generate valid search tokens and search for the
corresponding SkNN results.

Threat Model. In the system model, the security threats
primarily come from the behavior of the public cloud. We as-
sume that the cloud is semi-honest, or equivalently, honest-but-
curious. In the semi-honest threat model, the cloud correctly
follows the protocol specification. However, the cloud records
all the information it can access and attempts to use this to
learn information that should remain private.

Design Goals. Security. Informally speaking, the protocol
should satisfy three-fold. 1) Ciphertext privacy: the encrypted
data items reveal no useful information about the data. 2) Index
privacy: from the encrypted index, the adversary cannot learn
any useful information about the spatial information of the
data items. 3) Token privacy: from the encrypted search token,
the adversary cannot infer any information about the query
point’s location. Result Accuracy. The results obtained are of
high accuracy in comparison with the ground truth. Efficiency.
Two aspects regarding efficiency should be satisfied. 1) Low
query latency: the data user can get the result within a
reasonable amount of time even if the data user is of low
computation ability and there are a huge amount of points in
the dataset. 2) Low communication overhead: first, the data
transferred between the data owners and the cloud, other than
the encrypted data items, is low. Second, except the query
results, the amount of data exchanged between the data users
and the cloud should be small. Third, the protocol should be
non-interactive, or it just requires a small constant number of
interactions.

B. Limitation of Prior Art

One of the major limitation of previous solutions that are
applicable to solve 2D SkNN is that while some solutions can
achieve strong provable security, but they are not sufficiently
efficient, such as non-index cryptographic approach (e.g., [2]–
[5]). At a high level, the intuition why non-index cryptographic
approaches suffer from inefficiency is: if the strong semantic
secure encryption algorithm is employed, namely the cipher-
text does not leak any information to the adversary, then every
encrypted data item needs to be touched in order to reveal
information inside it. As a result, the optimal query processing

time of non-index semantic secure cryptographic solutions is
linear, which is still prohibitively expensive for large dataset.
The other major limitation is that while some solutions can
achieve high-efficiency, but they suffers from weak security
guarantee, such as location obfuscation approach (e.g., [6],
[7]) and data transformation approach (e.g., [2], [8]). These
approaches do not employ formal encryption methods, so it is
not easy for them to achieve provable security. In summary,
prior works suffer from either weak security guarantee or
insufficient efficiency.

C. Proposed Approach

In order to obtain both high-efficiency and strong provable
security guarantee, we adopt the index-aid cryptographic ap-
proach to cope with the 2D SkNN problem. In this approach,
the data owner extracts the spatial attributes of each data record
to build a secure index and encrypts the entire records via a
formal encryption algorithm. Then, the data owner outsources
both the encrypted data and secure index to the cloud, which
provides storage and search services. On one hand, by building
index before outsourcing, the high-efficiency can be achieved.
One the other hand, by formal encryption of the data items,
the strong security can be ensured.

D. Technical Challenges and Solutions

The first technical challenge is how to achieve efficient
sublinear search time. Our solution is first to perform implicit
space encoding by employing locality sensitive hashing (LSH)
in a dimension-increased manner. The LSH codes can help
us to transform the secure kNN computational problem (i.e.,
computation over ciphertext) to be a decisional problem with
an only yes-or-no answer (i.e., Is exist evaluation). Then,
through organizing neighbor region codes into a binary tree
structure, the cloud is able to directly pinpoint a near neighbor
region and search the points therein. This can help the cloud to
prune most of the points in the space and perform incremental
search from the smallest neighbor region of the queried point
to the largest one and stop once enough points are found.

The second technical challenge is how to use LSH to realize
proximity test over 2D space. The traditional LSH is designed
for high-dimensional data, there are no existing LSH that
works directly for 2D data. Therefore, we first design a special
2DLSH that works over 2D space by a slight generalization of
the traditional LSH. We then use single 2DLSH to encode an
infinite space and use 2DLSH composition to encode a finite
neighbor region. LSH-based neighbor region encodes enable
us to perform proximity test by equality checking. We want
to emphasize that the idea of employing 2DLSH to increase
the data dimensionality to better differentiate near points is
not unique. For example, the kernel support vector machine
(SVM) projects data to high-dimensional space in order to
better classify them.

The third technical challenge is how to improve the result
accuracy. In order to achieve the high result accuracy, we
identify the successive inclusion property, which means that
by carefully adjusting parameters in 2DSkNN, a series of
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successive gradually increased near neighbor regions can be
obtained. This property allows the cloud to perform repeated
filtering for the points in the nearest neighbor. Therefore, the
proposed 2DSkNN scheme can achieve top nearest accuracy
property, by which we mean that the nearer the point, the
less probability it will be missed in the search process. This
property is of practical significance since most of the decisions
we made (e.g., which restaurant to choose) are always among
the top nearest query results.

II. SPACE ENCODING

The traditional LSH is designed for high-dimensional data,
there are no existing LSH that works for 2D data. In this
section, we first construct a specific LSH that works over 2D
space and then illustrate how to encode space by a single
2DLSH and 2DLSH composition, respectively.

A. 2DLSH Introduction

We design the following conceptually simpler and elegant
LSH (named 2DLSH) that works over 2D space.

(2DLSH) 2DLSH is defined as

h(q) = b~a · ~q + b

d
c,

where ~a = (θ, r) denotes the vector in polar coordinate form,
the angle θ ← U [0, 2π) and the radius r = 1. b is a random
variable follows b← [0, d).

To facilitate description, we use H to denote the 2DLSH
family that contains all of the 2DLSHs generated by Eq. (II-A).
Likewise, we denote by g ← H the process of randomly
sampling a 2DLSH g from 2DLSH family H.

B. 2DLSH Space Encoding

It is observed that 2DLSH can be used to encode a geo-
metric region. We now explain such observation by casting a
micro-view of the geometric interpretation of a single 2DLSH.

Given a point q ∈ R2, let’s investigate the feasible region
of p such that h(p) = h(q), where h ← H. The property of
the feasible region is identified by the following Theorem.

Theorem II.1. Given a point q, the feasible region of p such
that h(p) = h(q) is between two parallel lines l1 and l2 that
are perpendicular to ~a. Define the width of the feasible region
wid as the distance of l1 and l2, we have wid = d, which is
independent of the location of p and the choice of b.

According to Theorem II.1, 2DLSH code value enables us
to test whether two points p, q are in the same infinite d-width
space by checking h(q) ?

= h(p).

C. 2DLSH Composition Space Encoding

It has been shown that a single 2DLSH allows us to encode
an infinite space, we now continue to illustrate how to use the
2DLSH composition to encode a finite space. Given a 2DLSH
familyH, new LSH families can be constructed by either And-
composition or Or-composition.

d

q

dd
Feasible Region

Fig. 2. Illustration of Feasible Region by Using 2DLSH And-composition

Definition II.1. 1) (And-composition) A new family Hd
v,1 is

defined by taking v pairwise independent functions h1, · · · , hv
with interval length d from H. For a hash function g ∈ Hd

v,1,
g(p) = g(q) iff hi(p) = hi(q) for all i ∈ [v], where [v] denotes
the set {1, · · · , v}.

2) (Or-composition) A new familyHd
1,t is defined by taking t

pairwise independent functions h1, · · · , ht with interval length
d from H . For a hash function g ∈ Hd

1,t, g(p) = g(q) iff
hi(p) = hi(q) for at least one i ∈ [t], where [t] denotes the
set {1, · · · , t}.

We use Hd
v,t to represent LSH family as constructed by the

following two steps. Step 1): we first apply And-composition
of v pairwise independent 2DLSH with interval length d from
H and obtain LSH family Hd

v,1. Step 2): we continue to apply
Or-composition of t pairwise independent LSH from Hd

v,1 and
obtain LSH family Hd

v,t.
Given a point q, we now study the feasible region of p

such that g(p) = g(q), where g ← Hd
v,1. Taking v = 3 as

an example, the geometric illustration of the feasible region is
shown in Fig. 2. The LSH g specifies three randomly chosen
vectors. According to Theorem II.1, the feasible region of p
with respect to each vector is between a pair of parallel lines
with width d. Since g is constructed by three And-composition,
the feasible region is the intersected area between three pairs
of parallel lines, i.e., the polygon region shown in Fig. 2. With
a slight abuse of terminology, we denote the feasible region
specified by g (g ← Hd

v,1), as a Hd
v,1-neighbor-region (Hd

v,1-
NR, for short) of q.

We continue to study the feasible region by incorporating
Or-composition of LSH. Given a point q, where is the feasible
region of p such that g(p) = g(q) (g ← Hd

v,t)? According
the definition of Or-composition, it not hard to know that the
feasible region is the union of t Hd

v,1-NRs of q. Likewise, the
corresponding feasible region is denoted as a Hd

v,t-neighbor-
region (Hd

v,t-NR) of q.
In analogy to the single 2DLSH space encoding, 2DLSH

composition code values enable us to perform proximity test-
ing. More specifically, we can test whether two points p,
q are in the same finite space Hd

v,t-NR of q by checking

g(p)
?
= g(q), where g ← Hd

v,t.

III. KNN PROTOCOL

We now describe the process of kNN query processing in
plaintext domain. Consider the system model as dipicted in
Fig. 1. The system setups several global parameters including
v, t, and L successive increasing interval lengths (d1, · · · , dL).

235235235233233233233233233233233233



0 500 1000 1500 2000
0

500

1000

1500

2000

Fig. 3. Illustration of Successive Inclusion Property

The cloud hosts a dataset of n data items in plaintext, then
it extracts the spatial attributes, denoted as p1, · · · , pn. The L
successive increasing interval lengthes (d1, · · · , dL) can result
in a couple of neighbor regions of q: Hd1

v,t-NR,· · · , HdL
v,t-

NR. If v and t are properly chosen and the gap between
two successive values in (d1, · · · , dL) is sufficiently large, it
almost holds thatHd1

v,t-NR ⊂ Hd2
v,t-NR ⊂ · · · ⊂ HdL

v,t-NR. We
call this property as successive inclusion property, which is
illustrated by an experiment as shown in Fig. 3, where cross
symbol represents a H400

10,20-NR, square symbol represents a
H800

10,20-NR, and circle symbol represents a H1600
10,20-NR. All of

them are generated with respect to point q in (1000, 1000),
which is depicted as a big and red dot in Fig. 3.

The design rationale of the kNN protocol is verbally in-
terpreted as follows. First, the cloud invokes Index-Building
Alg. to compute and store LSH values of each point in the
index. Then, the data user calls the Token-Generation Alg. to
compute and store LSH values of the query point in a token
array. Recall that whether two points are in the same region or
not can be deduced by comparing their LSH values, the cloud
calls Query-Processing Alg. to check whether pi(i ∈ [L])
is in the smallest Hd1

v,t-NR with query point q via checking

g1(q)
?
= g1(pi). According to the successive inclusion proper-

ty, the cloud searches from the smallest neighbor region Hd1
v,t-

NR to the largest one HdL
v,t-NR and stops until k distinct points

are found. Upon receiving the k distinct points, the data user
computes their distance to the query point and then sorts them
to get the approximate kNN results.

IV. METHODOLOGIES FOR SECURE AND SUBLINEAR
PROTOCOL

With the help of LSH-based space encoding, we actually
turn the kNN query processing to be sequential keyword query
processing with a stop condition. Consequently, we can turn
our kNN protocol to be a secure and sublinear protocol by us-
ing any existing protocol SSE scheme. Our method minimizes
the probability of designing a flawed protocol, as long as the
underlying SSE scheme is secure. As a proof of concept, we
make use of the recently proposed indistinguishable Bloom
filter (IBF) [9] index structure, since IBF enables cloud to

realize high-efficiency in query processing. See [9] for further
details.

V. EXPERIMENTAL RESULTS SUMMARY

The intensive experiments on both real-world and synthetic
datasets demonstrate 2DSkNN scheme is unprecedentedly fast.
More specifically, the query latency for 50NN is less than
50 ms in datasets with 1 million points in our experiments.
Meanwhile, 2DSkNN scheme can achieve high result accu-
racy, the average overall approximation ration (OAR) of the
results is about 1.3 on our datasets. Furthermore, by employing
the successive inclusion property, we can improve the average
OAR to be about 1.1.

VI. CONCLUSION

In this demonstration, we have illustrated the design ratio-
nale of 2DkNN scheme, which enables practical SkNN query
processing over encrypted geospatial data in cloud computing.
Via a counter-intuitive leverage of LSH and then by employing
SSE, the constructed 2DkNN scheme can simultaneously
fulfill the design goals of security, result accuracy, and high-
efficiency. Our study demonstrates that dimensionality is not
always a curve: increasing data dimensionality via LSH is
indeed helpful to tackle the 2D SkNN problem. At a high level,
schemes based on LSH for high-dimensional kNN search suc-
ceed in trading off result accuracy for speed up. Analogously,
2DSkNN scheme succeeds in trading off result accuracy for
both security and speed up. Therefore, the proposed 2DSkNN
scheme is of great practical significance in the era when big
data meets security.
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