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Abstract—Nowadays, location-based services are proliferating
and being widely deployed. For example, a Yelp user can obtain
a list of the recommended restaurants near his/her current
location. For some small or medium location service providers,
they may rely on commercial cloud services, e.g., Dropbox, to
store the tremendous geospatial data and deal with a number
of user queries. However, it is challenging to achieve a secure
and efficient location-based query processing over encrypted
geospatial data stored on the cloud. In this paper, we propose
the Secure and Efficient Query Processing (SecEQP) scheme to
address the secure k nearest neighbor (SkNN) query problem.
SecEQP employs the projection function-based approach to code
neighbor regions of a given location. Given the codes of two
locations, the cloud server only needs to compare whether codes
equal or not to check the proximity of the two locations. The
codes are further embedded into an indistinguishable Bloom
filter tree to build a secure and efficient index. The security
of SecEQP is formally proved in the random oracle model. We
further prototype SecEQP scheme and evaluate its performance
on both real-world and synthetic datasets. Our evaluation results
show that SecEQP is a highly efficient approach, e.g., top-10 NN
query over 1 million datasets only needs less than 40 msec to get
queried results.

I. INTRODUCTION
A. Motivations

In location-based services, a user sends his/her current

location to a location service provider, and the service provider

then responds the user with the query results (such as the top

five nearest restaurants). For lower cost, higher performance,

and better flexibility, location service providers often host their

geospatial data on public clouds. However, in this service

model, security and privacy are major concerns as public

clouds are typically not fully trusted. The confidential geospa-

tial data and querier location information may be leaked or

inferred by the cloud service providers. These storage clouds

may have financial incentives (e.g., delivering advertisements

to users) to collect or infer their customer sensitive information

by analyzing the stored data and user queries. Moreover, these

public storage clouds may be compromised and all of the

stored information is further leaked by hackers. For example,

it is reported that Dropbox is hacked and more than 68 million

Dropbox account information is now for sale on the DarkNet

marketplace [1].

In this paper, we focus on secure k nearest neighbor

(SkNN) query. The location-based kNN search is one of the

most widely used location-based services. The state-of-the-

art solutions are either not sufficiently efficient or non-strong-

provable-secure to perform the location-based kNN searches

over the encrypted geospatial data on cloud. Therefore, it is

crucial to develop a scheme that provides strong provable

security against the untrusted clouds, while still preserving

the cloud’s ability to efficiently perform location-based kNN

queries over the encrypted geospatial data.

B. Problem Formulation

• Threat Model. We consider a service model which consists

of a data owner, a cloud, and multiple users. The data owner

will store the geospatial data on the cloud. The cloud will serve

the users’ location-based queries. The adversary we consider

is the cloud, which is assumed to be honest-but-curious. More

specifically, the cloud provides reliable data and query services

as the protocol specification, but it is curious about data it

stores and queries it receives. Therefore, to protect data privacy

and users’ location privacy, the data owner needs to encrypt

data before outsourcing and the data users need to encrypt the

queries before submitting to the cloud.

• Geospatial Data. We consider that the data owner stores

geospatial data items. Each data item consists of spatial

information (e.g., the location of a restaurant) and non-spatial

information (e.g., the rating of a restaurant). Data items

can be represented and indexed by their spatial information.

Formally, they are represented by points p1, · · · , pn in the

two-dimensional geographical space.

• Approximate kNN. The secure kNN problem is modeled

as how the cloud finds the top-k nearest points of q ∈ U
given by a user, as well as provides both the data owner and

the user with the security guarantee. It should be ensured

that the honest-but-curious cloud cannot deduce any useful

information from the data it stores. Meanwhile, when the data

user submits its current location to the cloud to launch a

kNN query, the honest-but-curious cloud cannot learn the data

user’s location. In SecEQP, we use the Euclidean distance

as the distance metric. To reduce query latency, SecEQP

does not aim to discover strict accurate results but acceptable

approximate results (e.g., the error is limited to 10%). Note

that an approximate answer of kNN with a small error is still

very useful in some use scenarios. For example, a user wants

to find the top five nearest restaurants within 1 km for lunch.

SecEQP may return five nearest restaurants within 1.1 km.

The approximate results can still help the user to find a nearby

restaurant (s)he likes.
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TABLE I
THE COMPARISON AMONG PREVIOUS SCHEMES AND SECEQP.

Features Wong et al. [2] Hu et al. [3] Yi et al. [4] Elmehdwi et al. [5] Wang et al. [6] Yao et al. [7] Our SecEQP

Strong security × × × √ × √ √
Sublinear query latency × √ × × √ √ √
Result accuracy Accurate Accurate Accurate Accurate Accurate Accurate Approximate

#

kNN or 1NN k k k k k 1 k
High-dimensional data

√ √ × √ √ × ×∗

No local index
√ × √ √ √ × √

Single server
√ √ √ × √ √ √

Rounds of interaction 1 O(logn) 1 1 1 2 1

#: SecEQP can achieve high result accuracy by well-developed strategies.

∗: Handling data with dimensionality more than two is not required for location-based services.

C. Service Model and Design Goals

We propose SecEQP scheme to address the aforementioned

secure kNN problem. The service model and design goals of

SecEQP scheme are elaborated below.

• Service Model. The proposed SecEQP service model is

depicted in Figure 1. In SecEQP scheme, data owner delegates

the query service to authenticated data users by sharing the

secret keys with them. Each Geospatial data item hosted

by the data owner consists of location information (spatial

attributes) and other information (non-spatial attributes). In

order to preserve the ability to query and retrieve the data

efficiently, the data owner extracts the spatial attributes of each

data item and builds a secure index and then encrypts the

entire data items by using the shared keys. Because queries

are processed on the secure index, the data items can be

encrypted by any encryption algorithms including the standard

encryption algorithms with strongest security assurance (e.g.,

AES). Each secure index item should contain the identifier

information (i.e., a pointer) to record the association between

the secure index item and the encrypted data item. Afterward,

the data owner outsources both the secure index items and the

encrypted data items to the powerful cloud, which provides

both storage and search services. After the cloud receives the

secure index and encrypted data items, the authorized data

users can use the shared keys to generate valid search tokens

and search for the corresponding SkNN results.

Data 
owner

Data 
users

SkNN query

Encrypted data 

Shared secret keys

Results

Spatial attribute

Non-Spatial attr.

Secure index 
CloudGeospatial data

Pointers
Outsource

Fig. 1. SecEQP Service Model.

• Design Goals. There are three design goals: security, effi-

ciency, and accuracy, which are described in detail as follows.

• Security. SecEQP should preserve the following three types

of privacy. (1) Data privacy: from the encrypted data items,

the adversary cannot reveal any useful information about

the data. (2) Index privacy: from the secure index, the

adversary cannot learn any useful information about the

spatial information of the data items. (3) Token privacy: from

the encrypted search token, the adversary cannot infer any

information about the query point’s location.

• Efficiency. SecEQP should satisfy two types of efficiency

requirements. (1) Low query latency: the data user can get

the result within a reasonable amount of time. (2) Low

interaction: the protocol should be non-interactive, or it just

requires a small constant number of interactions between the

data user and the cloud server.

• Accuracy. Let oi be the ith nearest point returned by SecEQP

scheme, and let o∗i be the ground truth, i.e., the actual ith
nearest point. We can compute their distances between the

query point q, denoted as ‖q, oi‖ and ‖q, o∗i ‖, respectively.

SecEQP should keep that ‖oi, q‖ is as close as possible

to ‖o∗i , q‖ (for all i = 1, · · · , k). A formal definition of

accuracy metric can be found in Section V.

D. Comparison with Prior Arts

We compare our proposed SecEQP with other six state-

of-the-art SkNN schemes [2]–[7] based on features that a

secure kNN scheme is expected to satisfy, such as the support

of strong security (i.e., the data privacy and users’ loca-

tion privacy will not be disclosed or inferred), the support

of sublinear query processing time (i.e., the query running

time is in O(k logn)), etc. The results are summarized in

Table I. Among these features, the two important ones are

the support of strong security and the support of sublinear

query processing time. The major limitation for most of the

previous secure kNN schemes is that it is hard to achieve both

of them simultaneously. Wang et al. [6] proposed a secure

kNN scheme based on order-preserving encryption (OPE) [8],

which is a deterministic encryption scheme whose encryption

function preserves numerical ordering of the plaintexts. A

similar method called distance-recoverable encryption (DRE)

is leveraged in [2] and [3] to support secure kNN search.

The DRE enables anyone to recover the distance between

two points by running a function over their encrypted data.

The OPE and DRE are two cases of property-preserving

encryptions, which only provide weak privacy protection.

They are vulnerable to various serious attacks, as analyzed

in [9]. Elmehdwi et al. [5] proposed a novel protocol over

encrypted data based on a twin-cloud model [10] and Paillier

cryptosystem [11]. This protocol employs too many heavy

cryptographic operations, so its query latency is too long,

rendering it impractical for large datasets. The private in-

formation retrieval (PIR)-based schemes [4] mainly consider

how to protect query privacy but not data privacy. Besides,

the inefficiency of PIR significantly increases the total search
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time. Yao et al. [7] designs a solution that can support secure

nearest neighbor search by exploiting Voronoi diagram [12]

for space partition. Voronoi-based schemes require each data

user to download and maintain a copy of the large-size index

locally for query processing, which seriously impedes its real-

world applications. Besides, the generation of order-k Voronoi

diagram for kNN is very computational intensive, as analyzed

in [13].

Different from the previous works, SecEQP scheme can

support the two most important features (i.e., strong security

and sublinear query processing time). However, we would like

to point out that SecEQP still has two downsides: (1) returning

approximate results to a query instead of accurate ones and

(2) only supporting 2-dimensional data, which may not fit

all use scenarios (e.g., requiring strict accurate results or 3-

dimensional data).

E. Technical Challenges and Proposed Solutions

There are three technical challenges SecEQP shall deal with.

• C1: How to achieve strong data privacy while still support-

ing efficient kNN query processing? To measure the proximity

of two encrypted points, the straightforward approach is to

compute their distance over the encrypted data. A dilemma

arises: on one hand, to ensure low query latency requires

the data is weakly encrypted (e.g., using order-preserving

encryption); on the other hand, if strong encryption (e.g.,

fully homomorphic encryption (FHE) [14]) is used, the query

latency will be prohibitively long. To address the dilemma, we

propose the projection-based space encoding method to build

a secure index. In SecEQP, the geospatial data can be formally

encrypted by standard encryption methods to achieve strong

data privacy (e.g., CPA-secure [15]). The secure index enables

SecEQP to circumvent heavy computation over encrypted data

while still supports secure kNN query processing (Section II).

• C2: How to design a secure index for sublinear query latency

while preserving the index privacy? Building a secure index

is not enough for secure kNN query processing. Without any

index optimization, the cloud may linearly scan each encrypted

data item in the database to evaluate its distance with the

queried location. The linear query latency is prohibitively slow

for a large dataset (e.g., a million locations are stored in the

cloud). To tackle this challenge, we first propose the prefix-

free encoding technique to turn the kNN query processing

problem to be the keywords query problem. Then, we exploit

the indistinguishable Bloom filter (IBF) tree data structure for

the secure index building, which can ensure the protocol to be

secure and sublinear (Section IV).

• C3: How to develop effective strategies to improve the result

accuracy of SecEQP? SecEQP can only return approximate

query results. How to satisfy the high query result accuracy

demands is not an easy task. In order to solve this problem, we

leverage the observed successive inclusion property to develop

an effective strategy to improve the result accuracy (Section

V-D).

F. SecEQP Scheme Overview

Figure 2 sketches the SecEQP scheme. We first turn the

kNN problem into the equality checking problem via the

projection-based space encoding technique (§ II). We further

translate the equality checking problem into the keywords

query problem by the prefix-free encoding technique (§ IV-A).

Finally, we employ the indistinguishable Bloom filter (IBF)

tree data structure for index building (§ IV-C) which can ensure

our SecEQP to be secure and efficient (i.e., the results to kNN

queries are given in sublinear time). The details of provable

security are provided in (§ IV-E); we prove that SecEQP is

secure in the random oracle model. Moreover, the accuracy

of SecEQP results is adaptive and configurable. By leveraging

the observed successive inclusion property (§ III), the accuracy

of query results can be further improved (§ V-D).

kNN problem
Projection-based 
space encoding 

Equality checking 
problem

Prefix-free encoding
Keywords query 

problem
Ensure secure and 

sublinear
IBF tree-based index

Improve accuracy 

Successive inclusion property

Provable security

Random oracle model

SSSSS(     II)SS(     II)

SSSSS(     IV-A)SS(     IV-A)

SSSSS(     IV-C)SS(     IV-C)

SSSSS(    IV-E)

SSSSS(      III)(      III)

SSSSS(     V-D)SS(     V-D)
Fig. 2. SecEQP scheme overview.

G. Main Contributions

This paper makes the following main contributions.

• We leverage a projection-based approach to realize space

encoding over two-dimensional space. Space encoding en-

ables the cloud to perform the proximity test between the

queried location and the locations in the database by just

equality checking operations.

• We design a prefix-free encoding method to embed the codes

into an indistinguishable Bloom filter tree to build a secure

index. By using the binary search over the indistinguishable

Bloom filter tree, our protocol can ensure a sublinear search

time.

• We formalize the information leakage functions and for-

mally prove that the SecEQP scheme achieves strong prov-

able security in the random oracle model.

H. Paper Organization

The remainder of this paper proceeds as follows. Section

II introduces how to realize space encoding via projection

functions. In Section III, we describe how to process kNN

queries in plaintext domain. In section IV, we introduce how

to transform the designed kNN protocol to be a secure and

sublinear protocol. The related analysis is also well presented.

Section V conducts the performance evaluation. Section VI

overviews the related work. Finally, some conclusions are

drawn in Section VII.

II. SPACE ENCODING

In this section, we propose the space encoding technique,

which can be used to build a secure index for secure kNN

query processing. In the following, we first introduce our
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customized primitive projection function. Then, we intro-

duce how to encode/stipulate a searching region with in-

finite space by a single primitive projection function and

how to encode/stipulate a searching region with finite space

by projection function composition (i.e., multiple primitive

projection functions). Moreover, we will introduce how to

perform proximity testing between two locations by using the

generated codes.

A. Projection Function Introduction

The projection function is defined as follows.

Definition 1: (Primitive Projection Function) The primi-

tive projection function h : R2 → Z maps a two-dimensional

vector �q to an integer,

h(�q) = �
�a · �q + b

d
�, (1)

where �a = (θ, r) denotes a two-dimensional vector in polar

coordinate form, where the angle θ is chosen uniformly from

the range [0, 2π) and the radius r = 1. The parameter b is

chosen uniformly from the range [0, d).
• Geometric Interpretation. The primitive projection func-

tion has a simple geometric interpretation. As shown in Figure

3, suppose that �a crosses the origin and its slope is identical

with the straight line in the figure. So the projection of a point

q is a point A onto the line �a. By viewing the vector along �a
as a new coordinate axis, A can be represented by its distance

from the origin, i.e., A = �a · �q. The point B is also on the

line by shifting A a distance of b. Then, the straight line is

divided by discrete intervals of length d. The projected value

is the ID of the interval containing B. The farthest bound that

B can reach is C, where C = �a ·�q+d, i.e., B ∈ [A,C) along

the line.

q

A a q
B a q b

d

a
C a q d

Fig. 3. Geometric illustration of the primitive projection function.

• Comparison with LSH. The primitive projection function

in Equation (1) has a similar form with locality sensitive

hashing (LSH) defined in [16], where the LSH is defined to

map a high-dimensional data to an integer. The parameter �a is

a high-dimensional vector with entries chosen independently

from a p-stable distribution. The traditional usage of LSH

is to reduce the dimensionality of high-dimensional data for

accelerating similarity search without security considerations.

Different from traditional usage, SecEQP exploits multiple

primitive projection functions to project two-dimensional data

to high-dimensional data (i.e., the data has a high-dimensional

vector representation) for secure kNN search.

B. Space Encoding via a Single Primitive Projection Function

We now illustrate how to use a single primitive projection

function to encode an infinite geometric region.

Definition 2: (Feasible Region) Given a point q in the two-

dimensional space and a projection function h, we define the

feasible region of �q with respect to the projection function h as

consisting of all the possible points �p, such that h(�q) = h(�p),
denoted as FR(h(�q)).

d
d 2d 3d

d
Feasible region 
(infinite space)

q
2d

O

l1 l2
2aa

1aa

(a) The feasible region with re-
spect to a single primitive pro-
jection function.

d
d 2d 3d

d
Feasible region 
(finite space)

q
2d

O

l1 l2

l4

l3

1aa

2aa

(b) The feasible region with re-
spect to two orthogonal projec-
tion functions.

Fig. 4. Two examples to illustrate the feasible region.

Figure 4(a) shows an example to illustrate the feasible

region with respect to a single primitive projection function.

Consider a projection function h(�q) = � �a1·�q+b
d � with b = 0.

Given a point q ∈ R2, suppose that d ≤ �a1 · �q < 2d, so we

have h(�q) = 1. As shown in Figure 4(a), for any point in the

shadowed area will be projected to be 1. Therefore, the feasible

region of q is an infinite region between two parallel lines l1
and l2. The distance of l1 and l2 is exactly d. In more general

cases, the properties of the feasible region are identified by

the following Theorem.

Theorem 1: Given a point q ∈ R2, the feasible region of q
is between two parallel lines l1 and l2 that are perpendicular

to �a, as shown in Figure 4(a). Define the width of the feasible

region wid as the distance of l1 and l2, we have wid = d,

which is independent of the location of q and the choice of b.
The projected code value enables us to test whether two

points p, q are in the same infinite d-width space by checking

h(�q)
?
= h(�p). For example, as shown in Figure 4(a), if

h(�q) = h(�p), then point q must locate in the feasible region

(shadowed area). Note that the proximity testing by using a

single projected code is not accurate because the encoded

space is infinite. Two far away points may have the same

projected code.

C. Projection Function Composition Introduction

We use two kinds of compositions: AND-composition and

OR-composition, which are defined as follows.

Definition 3: (AND-composition and OR-composition)

• AND-composition: Consider there are v projection functions

h1, · · · , hv . A new composite projection function g can be

constructed as the AND-composition of them, denoted as

g = AND(h1, · · · , hv). Equal criterion: given any two

points q and p, g(�q) = g(�p) if and only if hi(�q) = hi(�p) for

all i ∈ [v], where [v] denotes the set {1, · · · , v}.
• OR-composition: Consider there are t projection functions

h1, · · · , ht. A new composite projection function g can be

constructed as the OR-composition of them, denoted as g =
OR(h1, · · · , ht). Equal criterion: given any two points q
and p, g(�q) = g(�p) if and only if hi(�q) = hi(�p) for at least

one i ∈ [t], where [t] denotes the set {1, · · · , t}.

The outputs of a composite projection function can be

represented in many ways (e.g., it can be represented by a

hierarchical table, as shown in Table II). We give the following
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example to illustrate how to determine if two composite

projection functions equal or not.

• An Example to Illustrate Equal Criterion. Table II

shows an example to illustrate equal criterion for the com-

posite projection function. Consider there are 4 primitive

projection functions h1,1,1, h1,1,2, h1,2,1, h1,2,2. Suppose that

g1,1 is constructed by AND-composition of h1,1,1, h1,1,2 de-

noted as g1,1 = AND(h1,1,1, h1,1,2). Likewise, suppose

that g1,2 is AND-composition of h1,2,1, h1,2,2 denoted as

g1,2 = AND(h1,2,1, h1,2,2). Let f1 be constructed by OR-

composition of g1,1, g1,2, i.e., f1 = OR(g1,1, g1,2). In the

example, given two points q and p, since h1,1,1(�q) =
h1,1,1(�p), h1,1,2(�q) = h1,1,2(�p), we have g1,1(�q) = g1,1(�p).
Because h1,2,1(�q) �= h1,2,1(�p), we have g1,2(�q) �= g1,2(�p).
Moreover, it holds that f1(�q) = f1(�p), because either

g1,1(�q) = g1,1(�p) or g1,2(�q) = g1,2(�p) will lead to f1(�q) =
f1(�p).

TABLE II
AN EXAMPLE TO ILLUSTRATE EQUAL CRITERION.

point q

f1(�q) = OR(g1,1(�q), g1,2(�q))

g1,1(�q) = AND(h1,1,1(�q), h1,1,2(�q)) g1,2(�q) = AND(h1,2,1(�q), h1,2,2(�q))

h1,1,1(�q) = 1 h1,1,2(�q) = 2 h1,2,1(�q) = 1 h1,2,2(�q) = 2

point p

f1(�p) = OR(g1,1(�p), g1,2(�p))

g1,1(�p) = AND(h1,1,1(�p), h1,1,2(�p)) g1,2(�p) = AND(h1,2,1(�p), h1,2,1(�p))

h1,1,1(�p) = 1 h1,1,2(�p) = 2 h1,2,1(�p) = 3 h1,2,2(�p) = 4

D. Space Encoding via Projection Function Composition

In this section, we illustrate how to use projection function

composition to encode a finite space.

• Space Encoding by only AND-composition. Given a point

q ∈ R2, we now study the feasible region of q with respect

to a projection function g, where g is AND-composition of v
primitive projection functions. Taking the simplest case v = 2
as an example, let

g(�q) = AND(h1(�q), h2(�q)), (2)

where h1(�q) = �
�a1·�q+b1

d � and h2(�q) = �
�a2·�q+b2

d �, b1 = b2 =
0, �a1 and �a2 are orthogonal vectors (i.e., �a1 ⊥ �a2), d ≤ �a1 ·
�q < 2d, and d ≤ �a1 · �q < 2d. As shown in Figure 4(b), the

feasible region of q with respect to h1 is an infinite region

between l1 and l2. Likewise, the feasible region of q with

respect to h2 is an infinite region between l3 and l4. Therefore,

the feasible region of q with respect to g = AND(h1, h2) is

the intersection region (i.e., a d-width square), as shown in

Figure 4(b) (shadowed area).

• Space Encoding by first AND-composition and then

OR-composition. Given a point q ∈ R2, where is the

feasible region of q with respect to a projection function

which is constructed by first AND-composition and then OR-

composition? We consider there are two projection functions

g1(�q) and g2(�q), which are constructed by AND-composition

in the same way as Equation (2). Let f = OR(g1, g2). Because

each of g1(�q) and g2(�q) specifies a square feasible region

of q as shown in Figure 4(b). Therefore, the feasible region

of q with respect to f is the union of two d-width square

feasible regions. For instance, Figure 5 shows feasible regions

Feasible region
for interval d1

q
Feasible region
for interval d2

q

Feasible region
for interval d3

q q

q

qq

Feasible region
boundary

Fig. 5. An example to illustrate successive inclusion property (FR(f1(q)) ⊂
FR(f2(q)) ⊂ FR(f3(q))).

generated by the union of three square feasible regions with

different choices of parameter d.

In analogy to the single primitive projection function-based

space encoding, the composite projection function code values

enable us to perform proximity testing over a finite two-

dimensional space. More concretely, we can test whether a

point p is in the feasible region FR(f(�q)) of q by checking

f(�q)
?
= f(�p). The proximity testing over a finite space can get

a much more accurate result than proximity testing over an

infinite space.

III. kNN PROTOCOL FOR PLAINTEXT DOMAIN

In this section, we describe how to process kNN queries

in plaintext domain (i.e., no data encryption is enforced) and

then elaborate on how to transform it to secure kNN protocol

in Section IV.

Our kNN protocol design is developed on the top of an

essential property: successive inclusion property. It can be used

to generate a series of gradually enlarged feasible regions for

a point. The cloud can search from the smallest feasible region

to the largest one and gradually find the k nearest points.

In the following, we will introduce the successive inclusion

property, present our kNN protocol design, and discuss two

critical parameters used in our protocol.

• Successive Inclusion Property. We construct three pro-

jection functions f1, f2, f3, each of which is constructed by

first AND-composition of two primitive projection functions

(as in Equation (2)) and then three OR-composition. In the

construction of f1, f2, and f3, three parameters d1, d2, and

d3 are used to generate the corresponding primitive projection

function, respectively. Suppose that d1 < d2 < d3, Figure 5

shows an example of the feasible regions of q with respect

to f1, f2, and f3, respectively. It is shown in Figure 5 that

FR(f1(�q)) ⊂ FR(f2(�q)) ⊂ FR(f3(�q)). In general, consider

there is a series of composite projection function f1, · · · , fL
(with the same first AND-composition and then OR-composite
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patterns), which are constructed by a series of interval lengths

(d1, · · · , dL) (with d1 < · · · < dL), respectively. If the gap

between two successive values in d1, · · · , dL is sufficiently

large, it holds that

FR(f1(�q)) ⊂ FR(f2(�q)) ⊂ · · · ⊂ FR(fL(�q)). (3)

We call the property exhibited in Formula (3) as successive

inclusion property.

1) kNN Protocol Design: We next elaborate on our kNN

protocol high-level design rationale and present its main

algorithms in detail.

• High-level Design Rationale. Consider the service model

as depicted in Figure 1. The data owner hosts a dataset

of n data items in plaintext, then (s)he extracts the spatial

attributes, denoted as p1, · · · , pn, to build an index for kNN

search. The data owner chooses a series of composite pro-

jection functions with successive increasing interval lengths

(d1, · · · , dL). Given composite projection functions and a data

point pi, the data owner computes a series of feasible regions

with successive increasing interval lengths (d1, · · · , dL). Each

feasible region is represented by its composite projection

function codes, which is outsourced to the cloud to serve as

the index. For a query point q, the data user computes a series

of the above chosen composite projection functions outputs,

and send the codes to cloud for results. Upon reception of the

query from the data user, the cloud evaluates the proximity of q
and pi by comparing whether their corresponding composite

projection function output codes equal. The cloud searches

from the smallest feasible region of q to the largest one

until k points are found. Figure 6(b) shows an example of

three feasible regions of q that satisfy the successive inclusion

property (i.e., FR(f1(�q)) ⊂ FR(f2(�q)) ⊂ FR(f3(�q)))). Each

feasible region is generated by first two AND-composition and

then three OR-composition, as shown in Figure 5. For the

query point q, the cloud searches from the smallest feasible

region FR(f1(�q)) to the largest feasible region FR(f3(�q)) to

gradually find the closest points.

qq

1 2 3Circle Circle Circle

(a) Circle-based accu-
rate kNN search pro-
cess.

qqq

1 2 3( ( )) ( ( )) ( ( ))f q f q f qFR FR FR

(b) Projection-based approx-
imate kNN search process.

Fig. 6. Comparison between accurate and approximate kNN search process.

• kNN Protocol in Detail. The kNN protocol design involves

in choosing a group of composite projection functions. We

first define the following mathematical notations to facilitate

our description. Then, we describe kNN protocol in detail.

Definition 4: (Projection Function Family)

• Hdi

1,1: We define Hdi

1,1 to be the primitive projection function

family which contains all of primitive projection functions

generated by Equation (1) (with d = di). Let h ← Hdi

1,1 be

the process of randomly sampling a projection function h
from Hdi

1,1, where the randomness comes from the random

choices of the vector �a and b in Equation (1).

•Hdi

v,1 : We define Hdi

v,1 to be AND-composite projection

function family which contains all of composite projection

functions generated by the AND-composition of v randomly

chosen primitive projection functions h1, · · · , hv , where

hi ← H
di

1,1 for all i ∈ [v]. Let g ← Hdi

v,1 be the process of

randomly sampling a composite projection function g from

Hdi

v,1.

•Hdi

v,t: We define Hdi

v,t to be the Or-composite projection func-

tion family which contains all of composite projection func-

tions generated by the OR-composition of t randomly cho-

sen AND-composite projection functions g1, · · · , gt, where

gi ← H
di

v,1 for all i ∈ [t]. Let f ← Hdi

v,t be the process of

randomly sampling a composite projection function f from

Hdi

v,t.

With the above notations, the proposed kNN protocol is

described as follows. First, the data owner setups several global

parameters including v, t, and L successive increasing interval

lengths (d1, · · · dL). Second, the data owner invokes Algorithm

1 (Index-Building) to compute and store the projection

function output values of each point in the index matrix I′.
Afterward, the index I′ is sent to the cloud for storage. Then,

the data user calls the Algorithm 2 (Token-Generation)

to compute and store the projection function output values of

the query point in the token array T′. Recall that whether

two points are in the same feasible region or not can be

deduced by comparing their projection function output val-

ues, the cloud calls Algorithm 3 (Query-Processing) to

check whether pi(i ∈ [n]) is in the smallest feasible region

FR(f1(�q)) of query point q via checking f1(�q)
?
= f1(�pi)

(i.e., T′(1) ?
= I′(i, 1)) (step 3 in Algorithm 3). According to

the successive inclusion property, the cloud searches from the

smallest feasible region of q (i.e., FR(f1(�q))) to the largest one

(i.e., FR(fL(�q))) and stops until at least k distinct points are

found. Suppose that the search stops when k′(k ≥ k) points

are found, the data user computes their accurate distance to

the query point q and sorts them to figure out the top-k closest

points as the query results.

Algorithm 1: Index-Building

Input: v, t, L, (d1, · · · , dL), p1, · · · , pn

Output: I′

1 for (i = 1; i ≤ L; i + +) do

2 fi ← Hdi
v,t;

3 for (i = 1; i ≤ n; i + +) do

4 for (j = 1; j ≤ L; j + +) do

5 compute I
′(i, j) = fj(pi);

/* I
′(i, j) represents the composite projection

function output values for data point pi

with d = dj */

2) Analysis of kNN Protocol Parameters: In our kNN

protocol, there are two critical parameters: v (the number of

AND-composition) and t (the number of OR-composition). We
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Algorithm 2: Token-Generation

Input: q and f1, · · · , fL
Output: T′

1 for (j = 1; j ≤ L; j + +) do

2 compute T
′(j) = fj(q);

/* T
′(j) represents the composite projection

function output values for query point q with

d = dj */

Algorithm 3: Query-Processing

Input: k, L, I′, T′ and p1, · · · , pn

Output: R′

/* R
′
represents the set of returned points */

1 Initialization: R′ = Null; i = j = 1; result num = 0;

2 while (result num < k && j ≤ L) do

3 if (Is equal(T′(j), I′(i, j)) == True) && (pi /∈ R
′) /* search

for the data point pi in FR(fj(�q)) */

4 then

5 R
′ = R

′ ∪ pj , result num + +;

6 if (i == n) /* if FR(fj(�q)) have been searched, then

search in FR(fj+1(�q)) */

7 then

8 j + +, i = 1;

9 else

10 i + +;

/* search for the next data point pi+1 in

FR(fj(�q)) */

discuss how they influence the performance of kNN protocol

as follows.

• Geometric Analysis of v. Setting up a larger v implies

an improvement of the proximity measurement precision.

In order to precisely measure the proximity between two

points in two-dimensional space, it is desirable that points

p and q are projected to more random directions on the two-

dimensional plane and then compare their projection function

output values. As a result, a larger v implies an improvement

of the proximity measurement precision.

• Geometric Analysis of t. Setting up a larger t implies an

improvement of the result accuracy. For the query point

q, if the cloud searches from a series of concentric circle

regions (centered at the point q), then the cloud always gets

the accurate results. Figure 6(a) shows an example of the

ideal accurate kNN search process. For the query point q,

the cloud first searches from the smallest circle Circle1

to the largest circle Circle3 to gradually find the closest

points. In comparison, Figure 6(b) shows the projection-based

approximate kNN search process. In order to increase the

result accuracy, it is desirable that the feasible regions are

close to circles with point q at the center. Figure 7 shows

that increasing the number of OR-composition t can make

the feasible region closer to a circle. Therefore, a larger t
implies an improvement of the result accuracy.

• An Optimization in Projection Function Generation. In

the AND-composite function g generation, SecEQP chooses

t random primitive projection functions with t random direc-

tions for a point to project. In order to better measure the

proximity of two points p, q in the space, it is expected that

p, q are projected in many different directions over the space.

qqq

qqq qq qqq
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Fig. 7. The feasible region is getting closer to a circle by increasing the
number of OR-composition t.

The difference between two directions �a1 and �a2 can be rep-

resented by their angle, denoted as �̂a1,�a2. Random projection

direction choices may lead to many pairs of similar directions

(e.g., �̂a1,�a2 is very small). To increase the difference between

projected directions, we refine our direction choice process by

first choosing a random direction �a1 = (θ, 1), and then choose

the remaining v − 1 vectors to equally divide the space. For

example, if there are three chosen directions �a1,�a2, and �a3,

an optimized solution is to keep (�̂a1,�a2) = (�̂a2,�a3) = π/3.

IV. TRANSFORMING kNN TO SECURE kNN

In this section, we describe how to transform the above

kNN protocol to be a secure and sublinear protocol. Our

approach is to leverage searchable symmetric encryption (SSE)

for keyword query [17]. It allows data users to have secure

keyword query processing on the cloud. In order to harness

SSE, there are three technical issues need to be addressed.

• How to generate keywords? Our solution is to design a

prefix-free encoding method (§ IV-A) to encode the pro-

jection function output values to generate keywords.

• How to perform search operations over the index? Our

solution is to do the operation transformation (§ IV-B) which

transforms the Is equal evaluation in Algorithm 3 to be

Is exist evaluation.

• How to build a secure index? Our solution is to use the

indistinguishable Bloom filter (IBF) tree based secure index

(§ IV-C) which provides the sublinear search time as well

as a strong security guarantee.

In the following, we will elaborate on our remedies to

the above technical issues in detail and finally present how

to apply them to the SkNN protocol (i.e., SecEQP) design

(§ IV-D).

A. Prefix-free Encoding

In Algorithm 3 (Query-Processing), for two points p and

q, in order to know whether p locates in the feasible region

FR(fi(�q)) of q, we need to evaluate the logic expression

Is equal(fi(�q), fi(�p)), (4)

where fi = OR(gi,1, · · · , gi,t). Then, the logic expression (4)

can be translated to

Is equal(gi,1(�q), gi,1(�p)) ∨ · · · ∨ Is equal(gi,t(�q), gi,t(p)). (5)

Consider gi,j = AND(hi,j,1, · · · , hi,j,v), we let

str(gi,j(�q)) = hi,j,1(�q))|| · · · ||hi,j,v(�q)), where “||” denotes
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the string concatenation. In order to circumvent Is equal

evaluation, we construct two sets by prefix encoding as

Qi = {i||1||str(gi,1(�q)), · · · , i||t||str(gi,t(�q))},

Pi = {i||1||str(gi,1(�p)), · · · , i||t||str(gi,t(�p))}.
(6)

For each component in the coding, we reserve a fix number

of bit to ensure that the code is prefix-free. The prefix-free

encoding ensures if one element in the set Qi equals to another

element in set Pi, then their each coding component must

equal to each other. For example, suppose that h1,1,1(�q) =
1, h1,1,2(�q) = 11, h1,1,1(�p) = 11, and h1,1,2(�p) = 1, a direct

encoding will lead to 1||1||str(gi,j(�q)) = “1”+“1”+“11”+
“1” = “11111” and 1||1||str(gi,j(�p)) = “1” + “1” + “1” +
“11” = “11111”. This leads to str(gi,j(�q)) = str(gi,j(�p))
despite gi,j(�q) �= gi,j(�p). However, if we fix 2 digits to encode

each component, then we have 01||01||str(gi,j(�q)) = “01” +
“01”+“11”+“01” = “01011101” and 01||01||str(gi,j(�p)) =
“01”+“01”+“01”+“11” = “01010111”, so str(gi,j(�q)) �=
str(gi,j(�p)). Therefore, prefix-free encoding preserves the

equal relationship after coding. In the above example, we

choose 2 digits for each coding component. However, in real

applications, the data owner should choose a number which is

not less than the maximum number of digits for each coding

component.

B. Operation Transformation

With the prefix-free encoding, the following Theorem holds

immediately.

Theorem 2: Logic expression (4) and (5) are True ⇐⇒
Qi ∩ Pi �= ∅, where “⇐⇒” denotes logical equivalence.

Let us reuse the settings in Table II as an example.

According to prefix-free encoding described in Equation

(6), we have Q1 = {01010102, 01020102} and P1 =
{01010102, 01020304}, where we fix 2 bits for each com-

ponent in coding. Because Q1 ∩ P1 = {01010102} �= ∅, we

have f1(�q) = f1(�p). Based on Theorem 2, we can employ

Is exist evaluation to replace Is equal evaluation. That is,

we can know whether query point p is located in the feasible

region FR(fi(�q)) of q by checking Qi ∩ Pi
?
= ∅. In order to

check Qi ∩ Pi
?
= ∅, we can traverse every element in Qi and

then test whether it exists in Pi.

C. Indistinguishable Bloom Filter Tree based Secure Index

The secure index used in SecEQP is built based on a data

structure called indistinguishable Bloom filter (IBF) tree. In

the following, we will provide the primer of indistinguishable

bloom filter and then introduce how to construct an IBF tree

for the secure index. Finally, we will discuss why IBF-based

index is secure and efficient.

• Indistinguishable Bloom Filter. The indistinguishable

Bloom filter (IBF) is a data structure that is extended from

Bloom filter [18]. It can be used to test whether an element is

a member of a set or not. IBF is defined as follows.

Definition 5: (IBF [19]) An IBF is an array B of m twins,

kB different hash functions h1, h2, · · · , hkB
, and a random

oracle H . Each twin consists of two cells where each cell

stores either 0 or 1 and the two cells should be different. The

two cells in a twin are named as 0-cell and 1-cell, respectively.

For each twin, the oracle H determines which cell is chosen in

a random fashion. For every twin, the chosen cell is initialized

to 0 and the unchosen cell is set to 1. Given one keyword w,

we hash it to kB twins B[h1(w)], B[h2(w)], · · · , B[hkB
(w)],

and for each of these kB twins, we set its chosen cell to 1 and

the unchosen cell to 0.

Figure 8(a) shows an example of IBF. Let us describe how

to embed a keyword wi into an IBF. We assume that the data

owner and data users share kB+1 secret keys K1, · · · ,KkB+1.

We construct kB hash functions using the keyed hash message

authentication code (HMAC), where hi(·) = HMACKi
(·)

mod m, for i ∈ [kB ]. We construct another hash function as

hi+1(·) = HMACKB+1(·). The random oracle is instantiated

as H(·) = SHA1(·) mod 2. An IBF can be viewed as a

two-dimensional array B with two rows and m columns. Let

B[i][j] be the value in the ith row and jth column of the IBF

B. To embed a keyword wi into the IBF B, we set

B[H(hkB+1(hj(wi))⊕ rB)][hj(wi)] = 1,

B[1−H(hkB+1(hj(wi))⊕ rB)][hj(wi)] = 0,
(7)

for all j ∈ [kB ], where rB is a random number associated

with IBF B. To test whether a keyword wi is in the IBF B,

we just need to compute the corresponding hashes and test

whether the positions indicated by these hashes are all 1. If

all positions are 1, then wi is in the IBF, otherwise not.
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0 1 1

1 0 0

0 1 1

1 1 0

0 0 1

1

0

W Chosen

Unchosen1( )h w 2 ( )h w ( )
Bkh w

(a) An simplified example of indis-
tinguishable Bloom filter.
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guishable Bloom filter tree.

Fig. 8. Indistinguishable Bloom filter and indistinguishable Bloom filter tree
examples.

• Indistinguishable Bloom Filter Tree. IBFs can be orga-

nized into a binary tree structure to achieve sublinear search

time. Figure 8(b) shows an example of IBF tree. An IBF tree

is constructed as follows. Suppose that Bv is the father IBF

of two children IBFs: Bl (left child) and Br (right child), then

Bv is constructed as follows: for each i ∈ [m], the value of

Bv’s ith twin is the logical OR of Bl’s ith twin and Br’s ith
twin. That is

Bv [H(hkB+1(i)⊕ rBv
)][i] =

Bl[H(hkB+1(i)⊕ rBl
)][i] ∨Br[H(hkB+1(i)⊕ rBr

)][i].
(8)

By this way, the IBF tree can be constructed from a number

of leaf nodes until there is one root node. As shown in

Figure 8(b), if Bl is an IBF representing set S1 and Br is

an IBF representing set S2, then we have that Bv is an IBF

representing set S1∪S2 while the random numbers, r1, r2, and

r12, for S1, S2, and S1∪S2 are 1, 2, and 5, respectively. More

examples and the illustration about how to build a Bloom filter

tree can be found in [20], [21]. This property enables us to
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perform a binary search from the root IBF in the tree to the

leaf IBF to test whether a keyword is embedded in a leaf IBF

in O(log(n)) time.

The security intuition behind IBF tree-based index is that

the positions of 0-cell and 1-cell are determined by the random

oracle H , so an IBF tree is a completely random data structure

consists of an equal number of 1s and 0s. Moreover, a node-

specific random number rB (see Equation (7)) is adopted while

each IBF node is generated. With this design, even if there are

two points at the same location, their IBF nodes are likely to

be different unless their random numbers are equivalent. This

approach thus prevents the cloud from inferring the projected

values or the closeness of locations in geospatial database

by analyzing their IBF nodes in the IBF tree-based index.

Therefore, intuitively, the IBF tree-based index can achieve

index privacy (the formal index indistinguishability proof is

elaborated in Step 2 of Theorem 3).

D. SkNN Protocol (SecEQP) Design

We next introduce the SecEQP design which employs the

aforementioned prefix-free encoding, operation transforma-

tion, and IBF-tree based security index techniques.

• Index-Building. For each data point in the database, the data

owner computes its projection function output values (ex-

actly the same process as described in Algorithm 1). Then,

the data owner employs the prefix-encoding (according to

the method described in Equation (6)) to generate a set of

codes for each point. The set of codes are grouped by a series

of sets Pi, for i ∈ [L]. Each point’s codes are embedded

into a distinct IBF (in the way as described by Equation

(7)). All IBFs generated by data points now serve as the

leaf nodes to construct a balanced IBF tree (in the way as

described by Equation (8)). Each IBF node in the IBF tree

is associated with a random number as shown in Equation

(7) and Equation (8). The IBF tree along with the random

number for each IBF node in the tree serve as the secure

index, which is outsourced and stored in the cloud.

• Token-Generation. Given the query point q, the data user

computes projection function values and employs the prefix-

encoding to generate a set of codes for each point (according

to the method described in Equation (6)). The set of codes

are grouped by a series of sets Qi, for i ∈ [L]. The

set of codes serve as a series of keywords. Note that

the keywords in Qi1 are put before keywords in Qi2 if

i1 < i2. For a keyword wi, the data user computes kB
locations hj(wi), for j ∈ [kB ]. For each location hj(wi), the

data user computes hash hKB+1(hj(wi)). The search token

twi
of keyword wi is a kB-pair of hashes and locations:

{hKB+1(hj(wi), hj(wi)}, for j ∈ [kB ]. The data user

generates search tokens in the above way for all keywords

in Qi (i ∈ [L]) and sends these search tokens to the cloud

for results. Because these hash functions are one-way, it is

hard for the cloud to deduce the useful information of the

query point by viewing these search tokens.

• Query-processing. On receipt of a search token twi
for

keyword wi from the data user, the cloud performs the

query processing, which is described as follows. Let

twi
[j] denote the jth ordered pair in twi

, i.e., twi
[j] =

{hKB+1(hj(wi), hj(wi))}. Let twi
[j].f and twi

[j].s be the

first and second hash in twi
[j], respectively. For an IBF B

that the cloud checks against twi
, if there exist j ∈ [kB ]

such that B[H(twi
[j].f ⊕ rB)][twi

[j].s] = 0, then twi
does

not match any of the items embedded in the IBF. If the

cloud determines that twi
does not match the IBF B, the

query processing terminates. Otherwise, the cloud processes

twi
against the left and right children of the IBF B. The

search begins from the root IBF until the cloud reaches the

leaf IBF and get the corresponding encrypted data item. The

cloud searches from the first keyword-generated tokens to

the last keyword-generated tokens and stops until at least

k distinct IBF leaf nodes are found. Last, the cloud returns

the corresponding encrypted data item to the data user for

further processing.

E. Security Analysis

In this section, we first describe the adopted security model

and related notations. Then, we define leakage functions and

perform security proof for SecEQP.

• Secure Model and Notations. We adopt the widely used

adaptive indistinguishability under chosen-keyword attack

(IND-CKA) secure model [17]. Let D = {d1, · · · , dn} denote

the set of data items. Let I and T denote the index and search

token, respectively. Suppose that SecEQP employes a CPA-

secure encryption scheme [15] to encrypt each data items.

• Leakage Functions. Before we carry out the formal security

proof, we introduce two leakage functions. (1) L1(I,D): Given

the index I and dataset D, this function outputs the size of

each IBF m, the number of data items n in D, the data

item identifiers ID = (id1, · · · , idn), and the size of each

encrypted data item. (2) L2(I,D, qi): This function takes as

input the index I, the set of data items D, and a query qi. It

outputs two types of information: the search pattern, which is

the information about whether the same search was performed

before or not, and the access pattern, which is the information

about which data item identifiers that match query qi.

Theorem 3: SecEQP scheme is adaptive IND-CKA

(L1,L2)-secure in the random oracle model.

Proof: In the proof, we first describe a simulator S that can

simulate a view A∗v = (I∗,T∗, c∗) with the help of information

accessible in the leakage functions L1 and L2. Next, we show

that a probabilistic polynomial-time (PPT) adversary cannot

distinguish between the simulated view A∗v = (I∗,T∗, c∗) and

the real adversary view Av = (I,T, c).

• Step (1): Simulate c
∗ (which captures the requirement for

data privacy). To simulate the encrypted data items D =
{d1, · · · , dn}, the simulator first learns the value n and the

size of each encrypted data item from the leakage function

L1. Then, the simulator generates the simulated ciphertext

with randomly selected plaintext and the known CPA-secure

encryption algorithm. The simulator needs to ensure that the

simulated ciphertext has the same size as the real ciphertext.
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Because the CPA-secure encryption algorithm achieves cipher-

text indistinguishability, a PPT adversary cannot distinguish

the simulated ciphertext with the real ciphertext.

• Step (2): Simulate I∗ (which captures the requirement for

index privacy). To simulate the IBF tree T , the simulator S
constructs an identically structured IBF tree first. Then, for

each node v in T , the simulator S sets up an IBF Bv with the

same size as in the IBF in the index I. Note that the simulator

S can learn the IBF size from the leakage function L1. In

the ith twin of Bv , the simulator S stores either 0 at Bv[0][i]
and 1 at Bv[1][i], or vice versa. For each twin, how to assign

0-cell and 1-cell is decided by fairly tossing a coin. Next, for

each IBF node, the simulator S generates a random number to

associate with it. Finally, the simulator S outputs the IBF tree

T and its associated random number as the simulated index

I∗ to the adversary. The simulated index I∗ has exactly the

same structure with the real index I. The IBF nodes in either

I∗ or I have the same size and equally distributed 0-cell and

1-cell. Hence, a PPT adversary cannot distinguish between the

simulated index I∗ and the real index I.

• Step (3): Simulate T
∗ (which captures the requirement for

token privacy). Suppose that the simulator S receives a query

qi. From the leakage function L2, the simulator S knows

whether this query has been searched before or not. If it has

been searched before, the simulator S outputs the previous

searched token tqi to the adversary. Otherwise, the simulator

S generates a new search token tqi as follows. The search

token for a query is the set of kB-pair of hashes and locations.

Because the simulator S can learn access pattern from the

leakage function L2, the simulator S knows which leaf IBF

node in the index matches the search token tqi . For the leaf

IBF node that matches the search token tqi , the simulator S
can program the bit output by the random oracle H(·) to

select kB-pair of hashes and locations and ensure that the

selected kB-pair of hashes and locations match the leaf IBF

node v. For the leaf IBF node that does not match the search

token tqi , the simulator S is able to ensure that the simulated

search token does not match the IBF node by programming

the bit output by the random oracle. By this way, the simulator

S can output the generated kB-pair of hashes and locations

as the simulated search token T
∗. Since the search token

is kB-pair of hashes and locations which are produced by

the random hash functions, the simulated search token T
∗

is indistinguishable from the real search token T by a PPT

adversary.

In summary, the simulated view A∗v = (I∗,T∗, c∗) and

the real view Av = (I,T, c) are indistinguishable by a PPT

adversary. Therefore, SecEQP scheme is adaptive IND-CKA

(L1,L2)-secure in the random oracle model. �

V. PERFORMANCE EVALUATION

In this section, we first introduce parameter settings,

datasets, performance metrics, and implementation. Then, we

evaluate the performance of SecEQP and compare it with other

two schemes (Elmehdwi et al. [5] and Yao et al. [7]) with

the strong security assurance. Last, we describe a strategy

to improve the result accuracy to meet a variety of location

service demands.

A. Parameters Settings

Table IV summarizes the default parameter settings in

the experiment. Among these parameters, the choices of

(d1, · · · , dL) are not straightforward, because they affect the

size of the feasible region. If they are set to be too small, too

few or even no points are inside the feasible region. if they are

set to be too large, then too many points are inside the fea-

sible region, this would make the post-processing inefficient.

Accordingly, we design a parameter training algorithm (run by

the data owner) for choosing appropriate (d1, · · · , dL). The

design rationale of the parameters training algorithm is that it

uses the knowledge of the dataset to adjust (d1, · · · , dL) to

be appropriate values to ensure that an appropriate number of

points can be returned in the search. We skip the details of

the parameters training algorithm due to space limitations.

B. Datasets, Metrics, and Implementation

• Datasets. (1) NY is a real-world dataset contains 1 million

spatial data in the state of New York (NY) from Open-

StreetMap Project [22], which collects geographical data from

volunteered mobile device carriers. (2) CA is a real-world

dataset contains 1 million spatial data in California (CA) from

OpenStreetMap Project. (3) UF is a synthetic dataset contains

1 million spatial data generated from uniform (UF) distribu-

tion. More specifically, each data is denoted as (XUF , YUF ),
where XUF ∼ U [0, 109] and YUF ∼ U [0, 109].
• Metrics. Three metrics are used: (1) query latency, (2)

query result accuracy, and (3) query cost. The query latency

is defined as the time for the cloud to respond to an SkNN

query. The result accuracy of an SkNN query can be reflected

by Overall Approximation Ratio (OAR) [23], which is defined

as 1
k

∑k
i=1

‖oi,q‖
‖o∗

i
,q‖ , where q is the query point, oi is the ith

nearest point in the search results and o∗i is the ground truth

(i.e., the actual ith nearest point in the dataset). Theoretically,

the high result accuracy means OAR should be close to 1. The

query cost consists of the communication cost and the size of

the secure index maintained in the cloud.

• Implementation. The SecEQP implementations are

achieved by C++. We carry out the experiments on a cluster

node (serves as the cloud) equipped with 128 GB RAM

and two 2.5Ghz 10-core Intel Xeon E5-2670v2 CPU. In our

experiments, unless otherwise stated, when we vary the value

of one parameter in concern, we keep all other parameters at

their default values, which are displayed in Table IV.

C. Experiment Results

We first evaluate the performance of SecEQP in terms

of query latency, result accuracy, and query cost. Then we

compare SecEQP with other two schemes (Elmehdwi et al.

[5] and Yao et al. [7]) with the strong security assurance.

• Query Latency. The query latency as a function of n (i.e.,

the number of points in a dataset) and k (i.e., the number of

nearest points required in a query) is shown in Figure 9 and
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Fig. 9. SecEQP query latency
by varying the parameter n.

Fig. 10. SecEQP query la-
tency by varying the parame-
ter k.

Fig. 11. SecEQP OAR by
varying the parameter v.

Fig. 12. SecEQP OAR by
varying the parameter t.

Fig. 13. SecEQP OAR by
varying the parameter k.

TABLE III
COMPARE SECEQP WITH OTHER SCHEMES (NA: NOT APPLICABLE).

Scheme

Query latency Query cost

Accuracy (OAR)k = 1 k = 50 Communication volume Index size

n = 104 n = 105 n = 106 n = 104 n = 105 n = 106 (token size + data items size) n = 104 n = 105 n = 106

SecEQP 9 ms 21 ms 31 ms 12 ms 32 ms 47 ms 6.93 KB + data item size 0.44 GB 3.13 GB 15.8 GB ≈1.3

Yao et al. [7] 5 ms 9 ms 12 ms Na Na Na 8 byte + data items size 14.8 MB 17.4 MB 20.3 MB 1

Elmehdwi et al. [5] 0.15 sec 1.44 sec 14.3 sec 0.12 min 1.18 min 11.78 min 16 byte + data items size Na Na Na 1

TABLE IV
PARAMETER SETTINGS.

Notations Meanings Default Values

n the number of points 100,000

k the number of nearest points required in a query 50

m the number of twins in the root node of IBF tree 10Ltn
kB the number of hash functions in an IBF 7

v the number of AND-composition 6

t the number of OR-composition 6

L the number of interval lengths 5

Figure 10. It can be observed that the query latency grows

sublinear with n and a slightly faster than linear with k. While

k = 50, the query latency for a dataset contains 1 million

points with is less than 50 msec.

• Result Accuracy. Let n′ be the total number of inserted

items in the root node of the IBF. Figure 11 and 12 exhibit

OAR as a function of v and t, respectively. The OAR is

monotonically decreasing with increasing v and t. Hence,

increasing v and t can improve the result accuracy. As shown

in Figure 11, if v = 6 and t = 6, the average OAR is about

1.3. This means that the average distance between the queried

point and returned results is 1.3 times longer than the ground

truth. Note that a strategy is developed to further improve

the result accuracy (i.e., OAR can be improved to be 1.1) in

Section V-D.

• Query Cost. For the query cost, we consider the com-

munication volume and the size of the secure index which

helps to accelerate the query processing in the cloud. The

communication volume consists of the transmission of the

search token and the encrypted data items. Since the size of

encrypted data items is independent of the adopted SecEQP

scheme, we only consider the communication volume of the

search token. Table III shows the token size in an SkNN query

for different schemes. The token size of SecEQP is computed

based on the parameter settings in Table IV. It is shown that all

of the schemes have a constant token size for an SkNN query.

The search token only takes 6.93 KB, indicating a very small

communication volume. For index size, SecEQP employs the

existing IBF tree compression algorithms [19] to compress the

index size. The index size varies with dataset sizes. While the

dataset contains 104, 105, and 106 points, the index will take

0.44 GB, 3.13 GB, and 15.8 GB, respectively.

• Comparison with other schemes. We compare SecEQP

with two schemes with strong security assurance. The ex-

periment results for query latency are average over the three

datasets. The results are summarized in Table III. We have five

observations.

First, while k = 1 (i.e., 1NN), Yao et al. [7] has the shortest

query latency over three database sizes (104, 105, 106), ranges

from 5 ms to 12 ms, whereas SecEQP has a comparable query

latency (i.e., from 9 ms to 31 ms). Second, while k = 50,

SecEQP has the shortest query latency, ranges from 12 ms to

47 ms, which is not significantly increased with k, whereas

Elmehdwi et al. [5] do (e.g., 14.3 sec→11.78 min). Note that

Yao et al. [7] does not support the use scenarios while k > 1.

Third, the average OAR for both Yao et al. [7] and Elmehdwi

et al. [5] is 1, whereas SecEQP is about 1.3. Forth, all of three

schemes do not create large tokens. The token size ranges from

8 bytes (Yao et al. [7]) to 6.9 KB (SecEQP). Fifth, SecEQP’s

index is the largest one compared with other schemes. In a

dataset contains 106 points, SecEQP’s index takes 15.8 GB,

whereas Yao et al. [7] and Elmehdwi et al. [5] use 20.3 MB

and 0 MB, respectively. There are two causes. First, Elmehdwi

et al. [5] does not employ the index mechanism for the query

acceleration. Second, SecEQP supports the use scenarios while

k > 1; however, Yao et al. [7] does not.

D. Improve Result Accuracy

In this section, we first illustrate the top nearest accuracy

property and then describe how to use it to develop an effective

strategy to improve the result accuracy.

• Top Nearest Accuracy Property. It is observed in the

experiments that the closer the point, the less probability it is

missed in the searching. We call this top nearest accuracy prop-

erty. Theoretically, this property is caused by the successive

inclusion property as exhibited in Formula (3). The following

example is helpful for understanding. Suppose that the query
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processing stops after searching FR(f5(q)). For the points in

FR(f1(q)), they are searched for 5 times; ... ; for the points in

FR(f5(q)), they are searched for only 1 time. This repeated

filtering process leads to top nearest accuracy property.

• Improve Accuracy Strategy. The top nearest accuracy

property indicates a strategy to improve the result accuracy

of SecEQP scheme. The strategy is that if we want to get

kNN, we can query k′NN, where k′ > k, and figure out

the top-k nearest points as the query results. To evaluate this

strategy, we conduct an experiment as follows. We query kNN,

where k = 50, · · · , 100, and select the top 50 nearest points

as the final query results for 50NN. The experiment results

are plotted in Figure 13. We observe that the result accuracy

is improved by increasing k. If we let k = 100, the average

OAR is less than 1.1, which demonstrates that this strategy is

effective in improving the result accuracy.

VI. RELATED WORK

• Location Obfuscation Approach. Schemes based on location

obfuscation [24], and data transformation [2], [25] do not use

strong standard encryption algorithm. Therefore, they suffer

from weak privacy.

• Private Information Retrieval Approach. The Private Infor-

mation Retrieval (PIR)-based solutions [4] mainly consider

protecting query privacy but not data privacy. Besides, PIR-

based solutions suffer from long query latency for large-scale

dataset.

• Fully Homomorphic Encryption Approach. Fully homomor-

phic encryption (FHE) [14] enables cloud to perform kNN

computation directly over the encrypted data. However, current

FHE solutions still lack efficiency.

• Property-preserving Encryption Approach. Distance-

recoverable encryption (DRE)-based schemes [2], [3] and

Order-preserving encryption (OPE)-based SkNN schemes [2],

[6] achieve weak security, as analyzed in [9].

• Voronoi Diagram Approach. Voronoi-based scheme [7]

requires each data user to download and maintain a copy of the

large-size index locally for query processing, which seriously

impedes its real-world applications.

VII. CONCLUSIONS

In this paper, we proposed a novel SecEQP scheme which

supports practical SkNN query processing over encrypted

geospatial data in cloud computing. The key novelty of our

scheme is in applying projection function composition to en-

code two-dimensional data to test the proximity of two points

by only equality checking operations. We formulated the

related theory and explained it via various illustrative graphic

examples. We implemented and evaluated SecEQP scheme

on both real-world and synthetic datasets. It is shown that

SecEQP scheme can achieve strong security, high-efficiency,

and high result accuracy. We hope that our study will invite

more research in the current era of big data meeting security.
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