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Abstract

Blockchain technology has attracted tremendous in-

terest from both industry and academia. It is typically

used to record a public history of transactions (e.g.,

payment/smart contract data), but storing nonpay-

ment/contract data in transactions has been common.

The ability to store data unrelated to payment/contract

such as illicit data on blockchain may be abused for

malicious purposes. For example, one may use block-

chain to store the data related to child pornography

and copyright violations, which are publicly visible and

immutable. Moreover, an immutable blockchain is not

suitable for all blockchain‐based applications. So far,

numerous redaction mechanisms for the mutable

blockchain have been developed. In this paper, we aim

at conducting a comprehensive survey that reviews and

analyzes the state‐of‐the‐art redaction mechanisms. We

start by giving a general presentation of blockchain and

summarize the typical methods of inserting data in

blockchain. Next, we discuss the challenges of de-

signing the redaction mechanism and propose a list of

evaluation criteria. Then, redaction mechanisms of the

existing mutable blockchains are systemically reviewed

and analyzed based on our evaluation criteria. The

analyses include algorithmic overviews, performance

limitations, and security vulnerabilities. Finally, the

comparisons and analyses provide new insights into

https://orcid.org/0000-0002-4875-1319
https://orcid.org/0000-0003-2240-5263
https://orcid.org/0000-0001-8799-7875
https://orcid.org/0000-0002-9439-4623
https://orcid.org/0000-0002-3372-9207
mailto:xfliao@cqu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22502&domain=pdf&date_stamp=2021-06-16


these mechanisms. This survey will provide developers

and researchers a comprehensive view and facilitate

the design of future mutable blockchains.
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1 | INTRODUCTION

Recently, the blockchain technology has gained intensive research interests from both academia
and industry. It has been adopted by various practical applications, such as copyright dispute
resolutions,1 product traceability,2 electronic voting,3 storage services,4 healthcare services,5

tracking products along supply chain,6 and data management7 in Internet‐of‐Things (IoT).8 A
recent study9 shows that the worldwide spending on blockchain solutions is expected to grow from
1.5 billion dollars annually in 2018 to an estimated 15.9 billion dollars annually by 2023.

Blockchain maintains a distributed ledger of transactions (e.g., payment/smart contract
data10,11) without any trusted central authority. It is typically managed by a peer‐to‐peer (P2P)
network with multiple participating nodes. Blockchain allows each participating node in-
dependently appending new transactions while ensuring that participating nodes agree on a
unified history of transactions. Transactions are stored securely and transparently based on
cryptographic primitives. Immutability is a definitive feature of the traditional blockchain
technology. It guarantees the data integrity (any transaction cannot be modified) and hence
facilitates the data auditing process.

Nevertheless, it is also desirable to develop techniques to support redacting data in block-
chains due to the three reasons. The first reason is that the immutability feature can be abused
for malicious purposes, such as to store and disseminate illicit data/code. For example, Matzutt
et al.12 have found at least 8 files related to sexual content stored in Bitcoin blockchain, two of
them containing 274 links to child pornography, 142 of which refer to darknet services. Erasing
these illicit objects stored in the blockchain may be an important requirement and legally
obliged for law enforcement agencies like Interpol.13 The second reason is that the immutable
blockchain cannot capture all emerging blockchain‐based applications. More and more
blockchain‐based applications call for a certain degree of flexibility for data redaction. Ex-
amples include but not limited to (i) The data stored on blockchain may relate to users' privacy
sensitive data (e.g., healthcare and insurance records).14 The users may want to erase their
sensitive data from the blockchain and update data whenever needed (e.g., an amending
contract service).15 (ii) It is required to delete unnecessary data to save space in IoT‐based
blockchain systems.16‐19 The third reason is that the requirement for redactable blockchain has
also stimulated by regulations. According to the European General Data Protection Regulation
(GDPR),20 data of users have a “right to be forgotten,” that is, any user can erase her/his
personal data and copies. Obviously, the data anonymously appended on blockchain should
also have the right to be rewritten.21 To sum up, redacting data in blockchain under specific
circumstances has evolved to an important requirement.

At present, numerous mechanisms have been developed to provide some degree of flex-
ibility for data redaction on blockchains.22 In this paper, we aim at conducting a comprehensive
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survey for these existing redaction mechanisms. According to the design methodology of these
redaction mechanisms, the state‐of‐the‐art mutable blockchains can be divided to four cate-
gories: (i) consensus‐based, (ii) chameleon hash‐based, (iii) meta‐transaction‐based, and (iv)
pruning‐based, as summarized in Table 1. Then we abstract algorithmic overviews and analyze
security vulnerabilities and performance limitations of the four types of mutable blockchain,
respectively. The related work of this survey includes academic papers, white papers, and
official documents.

First, the general structure and features of blockchain are reviewed. To analyze the threats
of inserting arbitrary data in blockchain, we investigate where and what kind of data can be
inserted. As a consequence, we figure out the challenges to be addressed when designing a
redaction mechanism and propose a list of evaluation criteria to analyze the existing redaction
mechanisms. Next, we give the general procedures of the four categories of mechanisms and
discuss their advantages and disadvantages. For each mechanism, we give a brief overview and
detailed analyses. Especially, the potential vulnerabilities and limitations that may be caused by
the mechanism are analyzed. Then, we comprehensively compare the existing mechanisms
based on the evaluation criteria and analyses. Finally, based on our detailed analyses and
discussions, we present further challenges and research directions. Our survey will provide
developers and researchers a comprehensive view and facilitate the design of the future mu-
table blockchains.

In summary, we have three main contributions in this survey.

(1) We provide an overview of the existing redaction mechanisms. We divide the state‐of‐the‐
art mechanisms into four categories. For mechanisms in each category, we analyze their
security and performance in detail.

(2) We figure out the challenges of redacting data on the blockchain and propose a list of
evaluation criteria to analyze the security and performance of mutable blockchains. The
proposed criteria can be used for evaluating future proposals.

(3) We compare these mutable blockchains comprehensively and give out further research
directions.

The remaining part of this survey is organized as follows. The following Section 2 reviews
the framework and features of blockchain. The content insertion methods and the threats of
malicious data insertion are discussed in Section 3. Next, the design challenges and evaluation
criteria for redaction mechanisms are summarized in Section 4. Then, the reviews of algorithms
and analyses of mechanisms are mainly presented from four categories in Section 5. Section 6

TABLE 1 Summary of redaction mechanisms in this survey

Category Work Key mechanism

Consensus‐based 23‐25 Rely on a rule to agree on a new state of the redacted transaction/block
by voting‐based consensus.

Chameleon Hash‐based 26‐34 The state of the redacted transaction/block remains intact based on the
chameleon hash function.

Meta‐transaction‐based 35,36,16 Generate a new version transaction to replace the previous transaction.

Pruning‐based 17,37 Delete transactions/blocks when a predefined condition (e.g., lifetime) is
satisfied.

ZHANG ET AL. | 5053



focuses on comparisons of performance and security for the representative mutable block-
chains, and discusses the future research directions. Finally, Section 7 concludes this paper.

2 | OVERVIEW OF BLOCKCHAIN PROTOCOL

In this section, a background of the blockchain system is concisely reviewed to introduce the
fundamental structure, key features, and security requirements. Note that the typical Bitcoin
blockchain is taken as an example to present the description.

2.1 | Blockchain background

Blockchain is a distributed ledger recording a growing list of transactions and generated by a
group of nodes who make up a P2P network. These nodes maintain a unified chain history
according to the consensus protocol. In this section, we first introduce the fundamental
component (i.e., nodes and network), and then present the data structure of the transaction and
the block. Finally, the consensus protocol is concisely introduced.

2.1.1 | Node and network

Nodes can be any computing devices connected to the blockchain network. They propagate
transactions and blocks through the P2P network. A node can be a user who exchanges assets
via receiving and sending transactions, and also become a miner who is in charge of generating
new blocks (i.e., mining) subject to a consensus protocol. Moreover, motivated by the block
rewards and transaction fees,38 miners continuously generate the new blocks to maintain the
system. The contribution of a miner to the blockchain is proportional to its possession of
resources, such as computation power, token wealth, and storage space. In the network, miners
collect and verify transactions to maintain the blockchain. Especially, full nodes store complete
blockchain starting from the genesis block, and fully verify all rules of the consensus protocol to
ensure blockchain data integrity. Alternatively, lightweight nodes store the headers of all blocks,
and only verify the authenticity of transactions.

With respect to the access control of the blockchain network, there are two main categories:
permissionless and permissioned blockchain. In the permissionless setting, anyone are allowed
to flexibly join and leave blockchain network without any authorization. Moreover, each node
does not have any trusted assumptions, and generates transactions and blocks using a valid
pseudonym. But in a permissioned blockchain, nodes need to be authorized and even reveal
identity. A minority of nodes are usually elected to verify transactions and generate blocks.

2.1.2 | Transaction

A transaction mainly consists of inputs and outputs39 which have defined the origin (from the
sender) and destination (to the recipient) of the transaction, respectively. Each transaction
references one or more previously unspent transaction outputs. Specifically, each transaction
may have one or more inputs, and each input is a reference to an output of the previous
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transaction. Moreover, each output can only ever be referenced at one time. If an output has
been spent repeatedly, the subsequent transaction referring to this output is in conflict and
invalid. The conflict transactions can be easily detected according to the timestamps.

The input script is composed of a previous transaction hash TxID, an output index n, a field
ScriptSig, the length of ScriptSig, and a sequence number. The output script contains an amount
of Bitcoin, a field ScriptPubKey, and the length of ScriptPubKey. As shown in Table 2, the script
structures of four typical transactions are presented, containing data and operands. For example,
the field ScriptSig of the P2PKH transaction contains a signature and the public key of the sender.
The signature is computed by the private key of the sender, and verified to check transaction
integrity and ownership by the public key. The public key is encoded as a field ScriptPubKey of
the output script in an unspent transaction which the sender received previously. It is also
encoded as an address in Bitcoin blockchain, providing the anonymity of the sender so that the
sender and recipient can transact online without revealing their true identities. Moreover, the
field ScriptSig of transaction 1Tx should be verified by the field ScriptPubKey of transaction 0Tx ,
that is, the sender of transaction 1Tx is able to spend the unspent output Out 0[ ] of 0Tx only
when the sender possesses the private key that can match the public key. As a result, transactions
appended on the blockchain are connected to digital signature. As shown in Figure 1,
0 1 3Tx Tx Tx→ → can be regarded as a signature chain. The signature chains make that the

history of all transactions can be tracked in the blockchain system. Moreover, they are usually
verified to check the ownership and integrity of transactions.

A transaction will undergo five processes in the network40 before it is appended to the
blockchain. As shown in Figure 2, the transaction is first generated by users (or miners). Then it
will be propagated and verified in the P2P network. The detailed processes are presented as
follows.

• Generation. A sender generates and signs a transaction that is paid to a recipient.
• Transaction propagation. The transaction is propagated in the P2P network and then received
by all nodes.

• Validation. After nodes receive transactions, they verify transactions according to the con-
sensus protocol. If a transaction is valid, it is temporarily stored in the mempools of nodes.
Then the valid transactions are integrated into a Merkle tree to generate a new block.
Otherwise, the invalid transactions are discarded.

TABLE 2 Script structures of four typical transactions

ScriptPubKey ScriptSig

P2PKH OP_DUP OP_HASH160 PubKeyHash〈 〉

OP_EQUALVERIFY OP_CHECKSIG
Signature PubKey〈 〉〈 〉

P2SH OP_HASH160 ScriptHash〈 〉 OP_EQUAL Signatures RedeemScript{ }〈 〉

ScriptPubKey Witness

P2WPKH 0 PubKeyHash Byte HASH20 ( 160)〈 〉 Signature PubKey〈 〉〈 〉

P2WSH 0 RedeemScript Byte HASH32 ( 256)〈 〉 Signatures RedeemScript{ }〈 〉

Note: The P2SH and P2WSH can be the M‐of‐N multisignature transaction.

Abbreviations: Signatures〈 〉, including M signatures; RedeemScript{ }, containing N PubKeys; P2PKH, Pay‐to‐PubkeyHash;
P2SH, Pay‐to‐ScriptHash; P2WPKH, Pay‐to‐Witness‐PubkeyHash; P2WSH, Pay‐to‐Witness‐ScriptHash.
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• Block propagation. After the new block containing a set of the valid transactions is found, it is
also propagated in the P2P network. Nodes verify the new block. If the new block is valid,
nodes update their own replica of the chain and mine on this chain. The propagation is
subject to unexpected network delays, which will affect blockchain security. The long net-
work delays will increase the occurrence of forks and lead to hashing power wasted and
miner's losses.

• Confirmation. Once a transaction is contained by a block, it has one confirmation. After
nodes receive the block, they verify the block according to the consensus protocol. If it is

FIGURE 2 The processes of transactions in blockchain. The valid transactions are propagated in the
network twice and appended to the blockchain finally [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 1 An example showing the references and verification between typical P2PKH and P2SH
transactions. Transaction 1Tx 's input is a reference to the output Out 0[ ] of transaction 0Tx . The public key
pubkey of the transaction 1Tx 's can verify 1Tx 's signature and its hash value should match the transaction 0Tx 's
ScriptPubkey. Bitcoins are payed to transaction 3Tx along with the chain of 0 1( 2) 3Tx Tx Tx Tx→ → [Color
figure can be viewed at wileyonlinelibrary.com]
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valid, nodes will attach it to the blockchain and mine on this chain. As soon as another new
block is mined on the same chain, the transaction has two confirmations, and so on. The
confirmations of the transaction are more, the probability of being discarded is lower. Be-
sides, the confirmation time is affected by the block‐size41 and network connectivity.42

Finally, once the transaction is validated and appended on a block, it has one confirmation.
The number of transaction confirmations creases with the subsequent blocks being mined. The
more the confirmations are, the lower the probability of the transaction being discarded is.

2.1.3 | Block

A block is generated to record transactions by miners. The generation of the block is
subjected to the consensus protocol. For example, the block of the typical Bitcoin is defined
by the Nakamoto consensus protocol43 (also called as proof‐of‐work). In the Bitcoin protocol,
the block encloses a block header and a set of valid transactions. As shown in Figure 3, the
valid transactions recorded in the block are integrated into a Merkle Tree (MT). The MT root
is included in the block header, denoted as , which also contains a hash PrevHash of the
previous block header, a nonce, and other essential information. The hash PrevHash is stored
as the reference to the previous block. Therefore, the blockchain can be regarded as a
sequence of blocks connected by a hash chain in chronological order. Secondly, the hash of
each block header should satisfy a proof‐of work (PoW) puzzle defined by the consensus
protocol, that is,

SHA SHA Target256( 256( )) , ≤ (1)

where parameter Target ∈ defines the difficulty level of the puzzle. It is adjusted per 2016
blocks to maintain the time interval of generation at 10 min on average. The time interval
also shows the trade‐off between security and throughput44,45 in Bitcoin blockchain. Miners
race to compute the eligible hash for a new block by varying the nonce. Obviously, the
probability of mining the new block is proportional to the hashing power the miner owning.
In addition, miners always mine on the longest chain that has taken the most hashing
power to build.

FIGURE 3 The blocks of the Bitcoin blockchain [Color figure can be viewed at wileyonlinelibrary.com]
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2.1.4 | Consensus protocol

It is the key technology that ensures all honest nodes of blockchain agree on a unified transaction
history or the same state of data without any trusted central authority. It usually specifies the
mechanisms of message verifying and decision making for each node. Currently, a variety of
consensus protocols are proposed based on different network sources, such as PoW, proof‐of‐
stake (PoS), proof‐of‐activity (PoA), Byzantine fault tolerant (BFT), and hybrid BFT algorithms.
Specifically, in PoW protocols, each node independently solves the PoW puzzle to generate
blocks. The valid transactions can be listed on the block and the valid block can be confirmed in
the main chain finally. Moreover, the honest nodes always mine on the main chain. The main
chain is selected according to the rule of protocol. For example, a longest chain is selected as the
main chain in the Bitcoin blockchain protocol. However, this type of PoW protocol and its
variants46,47 always have high computation cost and low throughput. In PoS protocols,48,49 blocks
are generated by the stake holders. Moreover, the chance to propose a block for a PoS miner is
proportional to its stake value. The PoA protocol50 is a hybrid PoW–PoS, where blocks are
generated by the stake holders who are related with a pseudo‐random sequence such that their
chance to be in this sequence is proportional to the volume of stakes owned. In BFT‐based
protocols,51‐54 every consensus participant can propose the new block including a common set of
transactions which are agreed on by a group of participants. This type of consensus protocols can
achieve much high transaction throughput, but incur the exploding communication overhead.
No matter which kind of the consensus protocols, the goal is to ensure that a majority of honest
nodes can agree on a unified view of the blockchain history.

2.2 | Key features

Based on the above background of blockchain, some fundamental features are highlighted
below.

• Anonymity: Users transact by using pseudonyms that are generated by their secret keys
instead of the real identity or physical address. Thus, the real identities of traders are
unexposed.

• Traceability: The references between transactions provide tracks of all transactions in the
blockchain. That is, it is easy to determine where the transaction comes from and flows into.

• Immutability: The signatures ensure the correctness and integrity of transactions and the MT
structure provides an efficient integrity check. The hash chain prevents blocks from mal-
iciously tampering with.

An example of the traceability shown in Figure 1, the recipient of 3Tx can trace his Bitcoin
along with the chain 0 1( 2) 3Tx Tx Tx Tx→ → back to 0Tx . Besides, another example of the
immutability is shown in Figure 4. Assume that the transaction iTx framed in red is modified
on the nth block. Then hash values of this branch from iTx to the MT root become different
from those replicated by other nodes. The header hash of modified block also is different from
the one stored in the n( + 1)th block. Therefore, the modification is invalid and hard to be
approved unless there are nodes possessing more than 51% hashing power to accept the
modification and re‐generate an alternative chain from the n( + 1)th block. In summary, the
traditional blockchain ensures the data immutability.
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2.3 | Security properties

A well‐developed blockchain system should satisfy three security properties that are defined in
Reference [55].

• Chain growth. The chain of honest nodes grows at least as fast as the number of blocks they
produce, whatever strategy the adversary employs.

• Chain quality. The ratio of adversarial block contribution in a sufficiently long and
continuous part of an honest node's chain is bounded. Furthermore, in a sufficient
quality chain, the amount of hashing power controlled by the adversary controls is
bounded.

• Common prefix. A blockchain guarantees the common prefix property if the result of cutting
off k blocks from the end of an honest node's chain is a prefix of another honest node's chain.
It states that the honest nodes should possess a large common prefix, and two subchains have
a common prefix before exceeding k blocks.

The security properties ensure the agreement and validity of blockchain with a high prob-
ability. The agreement property requires that honest nodes eventually agree on a single chain,
and the validity requires that a majority of blocks originate from the honest nodes.

3 | ANALYSIS OF DATA INSERTION

In this section, we elaborate the mainstream methods of inserting data in blockchain, the type
of inserting data, and potential impacts of insertion in detail.

3.1 | Data insertion methods

The data insertion methods in Bitcoin blockchain are explicitly introduced below.

FIGURE 4 An example of blockchain immutability. If one of the transactions is edited, the MT root will be
different. As a consequence, the header hash of the block n is not equal to the field of PrevHash recorded in the
block n + 1. This edit is easily detected and cannot be approved by miners [Color figure can be viewed at
wileyonlinelibrary.com]
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• Input script. A coinbase transaction, the first transaction created by miner in a new block,
claims the block reward for generating the block. Its sole input provides up to 100 B (bytes)
for storing arbitrary data. For example, the genesis block of Bitcoin contains a text in its
coinbase transaction. Besides, the field RedeemScript of P2SH input script is also a convenient
method of storing text. This method can store up to 1.5 kB data.12 Moreover, the transaction
storing data by the above two methods is still spendable.

• Output script. Users may encode the semantic data, such as a sentence and an image, as her/
his address, called as a fake address. It is indistinguishable from the random binary hash and
can receive transactions. Unfortunately, the Bitcoins the fake address receiving are un-
spendable and stored in UTXO database permanently. Because it is infeasible to find a
private key corresponding to the semantic data by solving the elliptic curve discrete loga-
rithm problem (ECDLP). The user cannot sign a new transaction to spend these Bitcoins. For
example, the image and tribute text of Nelson Mandela are encoded as multiple fake ad-
dresses in Bitcoin blockchain.56 Encoding data as fake address is an efficiently method. The
web‐based service CryptoGraffiti 57 can store up to 50 KiB data via multiple P2PKH output
scripts within a single transaction. For big files/images, they can be stored in multiple output
scripts in a fragmented manner.

• OP_RETURN. A special field OP_RETURN of the transaction can store 80 B arbitrary
data.58,59 At first, it is designed to avoid UTXO database bloat caused by the increasing
transactions that are permanently unspendable. But now, it is often used to store the se-
mantic data. Obviously, this method for data insertion has no impact on the transaction,
which is still spendable.

No matter which method is used to insert data, the sender must spend some spendable
Bitcoin to ensure the transaction can be appended on blockchain. We give some examples of
the above‐mentioned methods in Table 3. It also illustrates that the method inserting data in
the output script is more efficient and popular.

3.2 | Arbitrary data insertion

Generally, arbitrary data can be inserted in the blockchain, including words, characters,
images, texts, codes, web links, emails, and so on. This is because there is no general way to

TABLE 3 Data insertion methods, efficiency and examples

Method Efficiency Examples

Coinbase Poor Genesis block

P2SH input script High P2SH Injectors60

P2X output script (Fake address) High Apertus.io61

CryptoGraffiti57

Satoshi Uploader56

Eternity Wall62

OP_RETURN Poor Blockstore63

Note: P2X: includes P2PK, P2PKH, P2MS, P2SH, P2WPK, P2WPKH and so on.
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distinguish legal hash values from arbitrary binary data. Moreover, miners generally do not
care about the decoded content of script data, because they can program to verify transactions
and blocks.

After decoding, the content of these data may be legitimate, such as the identifiable voting
flags,64 the digital notary document,65 and the right management data.66 For example, the
assets metadata and notary document are stored in the field OP_RETURN by the service
Blockstore.63 The service Eternity Wall62 helps someone to write Valentine's day messages into
blockchain. On the other hand, the data may be improper and even illicit for malicious pur-
poses, such as the individual privacy data67 that refers to people's real ID, the healthcare
records that contain personal disease and genetic information, the illicit materials that involve
child pornographies, the music metadata that is copyright infringement, the political points
that may cause troubles, and malicious codes that are harmful and even steal users' Bitcoins.
For instance, a malicious code that demonstrates a potential cross‐site scripting (XSS) attack is
found in the output script of the transaction included in block 251768 of Bitcoin.56 Matzutt
et al.12 have also found the data related to child pornography and links to darknet services in
Bitcoin blockchain.

3.3 | The threats of malicious data insertion

With the growing number of services used to insert data in the blockchain, the vulnerabilities
caused by the abused ability of data insertion are becoming apparent. Therefore, the potential
threats are discussed from the following aspects.

• For nodes. The illegal/harmful data are propagated and locally replicated by
participating nodes, which will cause troubles to participants, such as violation of laws.
The honest nodes become the assistors of online crime based on blockchain. What's
worse, honest nodes may bear the blame for possession of illicit data on their local
devices.

• For victim. The victim can be a user or even a nonuser of the blockchain. The illegal/harmful
data can put victim at risk, such as disseminating victim's sensitive information using
blockchain. The information is publicly visible. Moreover, the immutability of blockchain
violates victim's right to erase personal data and its copies.

• For blockchain. The blockchain system may be disrupted with the increasing illegal/
harmful data inserted in the blockchain. As the chain grows, the probability that these
data in block are discarded from the blockchain system is diminished. To avoid locally
replicating these data, fewer and fewer nodes store the complete blockchain. If there are
not enough full nodes in the blockchain, its security and decentralization will be
affected.

In summary, the threats of abusing the ability of data insertion cannot be under-
estimated. The current blockchain ecosystem can not provide perfect accountability for the
stored data. It is infeasible to ask all miners to check the content of all data before they
append transactions to the blockchain. Moreover, the way that the consensus protocol
increases the cost of storing data in the blockchain also cannot prevent data from being
intentionally inserted. Therefore, it is eager to find a scalable solution to cope with
these data.
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4 | THE DESIGN CHALLENGES AND EVALUATION
CRITERIA FOR MUTABLE BLOCKCHAINS

To analyze and compare the existing redaction mechanisms in detail, the challenges of re-
dacting data in blockchains are summarized, and some evaluation criteria for redaction me-
chanisms are proposed in this section.

4.1 | The challenges of redacting data in blockchain

Intuitively, redaction is in conflict with the immutability of blockchain. Therefore, redaction
should be carried out under strict constrains. At first, the redaction mechanism should control
who can edit data under which circumstances. Then, redaction should not have an impact on
system's security and consistency (As discussed in Section 4.2). The redaction mechanism should
also focus on how to verify the redacted transactions/blocks. Specifically, the challenges of
redacting data in blockchain can be described as follows.

• It is hard to efficiently redact data in an immutable blockchain that is maintained by in-
dependently distributed nodes. The redacted transactions/blocks cannot be approved by nodes.

• Redaction breaks the consistency, which will undermine security guarantees provided by
immutability blockchain and cause unexpected vulnerabilities, such as the double‐spending
attacks and forks.

• Redaction may be carried out at the expense of network resources, such as computation
power, bandwidth, and storage. Moreover, it may be incompatible with the popular block-
chain protocols, such as Bitcoin and Ethereum.

4.2 | The evaluation criteria for redaction mechanisms

The state‐of‐the‐art mechanisms and frameworks for redacting data in blockchain have been
proposed by utilizing various techniques.68 To comprehensively analyze and compare them,
some evaluation criteria are defined in this section.

(1) Validity. According to the requirements discussed in Section 2.3, the validity requests that
the redacted transaction/block should satisfy the policy defined by the consensus protocol.
If the redacted transaction/block is approved in the network, it will be accepted as an
honest redaction by nodes.

(2) Consistency. It requests that all honest nodes always maintain a consistent view of the
chain and the redaction should not damage the validity and connectivity of related
transactions/blocks in the past and future. Otherwise, the consistency is damaged as well
as the traceability. For example, assume that a honest redaction operation edits the
transaction 0Tx as 0*Tx in Figure 1. The hash of the redacted transaction 0*Tx is different
from the one spent by transaction 1Tx and 2Tx . Analogously, the hash of new block
containing the redacted transaction 0*Tx is also different from the one referenced in the
next block. As a result, the future transaction 1Tx and 2Tx become invalid, and there are
two versions of the same height block concurrently. Thus, although the redaction is
honest, it breaks the consistency.
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(3) Security properties. Redaction mechanisms should not affect the security properties of the
blockchain discussed in Section 2.3, including the chain growth, chain quality, and
common prefix, which are defined by Garay et al.55 and Kiayias et al.45,69 These security
properties are fundamental security requirements for a “health” blockchain system (also
called as a robust transaction ledger).

(4) Double‐spending attack. In blockchain system, nodes may earn profit by repeatedly
spending the same transaction, that is, double‐spending. However, as the definition of
the transaction in Section 2.1, a valid transaction cannot be maliciously spent more than
one time. If a transaction is referenced multiple times, these related transactions are
in conflict. Therefore, the blockchain system is required to detect and resist the
double‐spending attack.70 Similarly, the mutable blockchains should can resist
the double‐spending attack. Specifically, a malicious node may try to spend the funds of
a spent transaction again by utilizing the redaction mechanism. For example, assume
that the transaction 0Tx in Figure 1 has been redacted as 0*Tx . When the new trans-
action created to spend 0*Tx is confirmed, the funds of the transaction 0Tx are spent
again. Therefore, a sound redaction mechanism should not increase any chances of
double‐spending attacks.

(5) Tamper attack. The attacker may tamper with data by redacting requests. This attack can
affect the trust of the blockchain system. Therefore, a sound mechanism should ensure
that honest nodes can detect and disapprove the malicious redaction. Analogously, it will
be analyzed whether mechanisms increase the chances of attackers' tampering with data
in the blockchain system.

(6) Denial of service attack. The malicious nodes may try to flood the network with superfluous
redaction requests in an attempt to overload the blockchain system with redacted transactions/
blocks confirmation. Then, legitimate requests will be prevented from being executed.

(7) Consensus delay. The consensus delay emerges when different honest nodes
hold with a different set of redacted transactions/blocks and they cannot fast
agree on the final state of the block/chain. It is usually related to the redaction
verification and approval processes. The long time delay will result in more forks and
vulnerabilities.

(8) Bandwidth consumption. Generally, the redacted transaction/block is asked to be broad-
cast in the P2P network. The bandwidth consumption hence is defined as the additional
consumption of broadcasting a revision.

(9) Additional PoW. It is defined as the hashing power consumption of redacting transaction/
block once. In the redaction mechanisms, the redacted block may be asked to resolve the
PoW puzzle again. If the hashing power consumption of the revision is high, miners may
prefer to ignore this redaction request.

(10) Efficiency. The efficiency is measured by the time taken to accept/approve the revision.
(11) Compatibility. It mainly discusses whether mechanisms are compatible with the popular Bitcoin

protocol or not. If the mechanism can work with the set of instructions provided by Bitcoin
scripts, it is compatible with the Bitcoin protocol.

(12) Functionality. It requires that the redaction mechanisms should support dynamic data
operations such as modification, deletion, and insertion. Besides, the dynamic nodes
should also be considered because the joining and leaving of nodes may have an impact
on the execution of mechanisms.
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5 | REDACTABLE BLOCKCHAIN MECHANISMS

In this section, we comprehensively review the redaction mechanisms of the state‐of‐the‐art
mutable blockchains from four categories, that is, consensus‐based, chameleon hash‐based,
mate‐transaction‐based, and pruning‐based. Then, we analyze these mechanisms based on our
criteria. Note that the redaction operations include edit/modification and removal/deletion.

5.1 | Consensus‐based redaction mechanisms (CRMs)

CRMs rely on common rules to agree on the final state of the redacted transactions/blocks.
Their general procedure is abstracted in Algorithm 1. Redaction is usually performed by on‐
chain voting on a new state of the redacted block. If nodes are eventually in agreement on the
new state, the redaction is approved by honest nodes. We review and analyze three consensus‐
based redaction mechanisms as follows in detail.

5.1.1 | Hard fork

It is used to modify the history data, correct important security risks in code, add new
functionality, roll back transactions, and reverse the effects of hacking. In 2016, Ethereum has
used a hard fork to roll back transactions and restored millions of funds that are stolen via “The
DAO” attack. As shown in Figure 5, a fork emerges when two or more versions of the same
height block concurrently, meaning that alternative chains emerge. Generally, the accidental
forks following the same consensus rules can be resolved because the attackers' chain is hard to
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be longer than the honest one (i.e., 51% attack). However, the hard fork following new con-
sensus rules results in a permanent chain that is run independently of the old version. It is also
usually used to split in blockchain cryptocurrency. For instance, Bitcoin Gold and Bitcoin Cash
hard forked from Bitcoin in 2017.

Analysis: Hard fork does not exactly erase the transaction history. Both the new and old
versions of the blockchain can still be maintained by their own nodes. That is, the old version is
still publicly visible. Moreover, the hard fork would take massive computing power and
bandwidth to regenerate the chain by resolving PoW puzzles of the subsequent blocks. The cost
of editing history data by using the hard fork is much high. Therefore, it is not suitable for
frequent rewriting/erasing data in the blockchain system.

5.1.2 | Consensus‐based voting (CV) chain

It is proposed to redact data in the permissionless blockchain by Deuber et al.23 in 2019. To
maintain the connectivity between the redacted block and the next block, CV chain extends the
structure of block header to accommodate a new field to record an old state, that is, the block
state (hash) before performing redaction. Moreover, blocks are linked by two hash chains in the
CV chain. One is the current state (i.e., the current PrevHash after redacting), the other is the
old state. The next block always holds the link to the previous block by referencing the old
state. For multiple redactions, the old state consists of all states of all revisions. In addition, CV
chain ensures the consistency, that is, honest nodes keep a unified view of the redaction, by a
publicly verifying and then voting rule. The redacted block/transaction and the redaction
request transaction are broadcast in the P2P network. As the general procedure shown in
Algorithm 1, miners verify them according the consensus rules. Then, each miner who finds
the new next block can vote for a valid revision by recording the redacted block hash in her/his
block during the voting period. After the voting period (such as 1024 continuous blocks), the
revision is eventually approved if the edited block gets enough votes. Finally, honest node
updates their replicas by replacing the block with the edited block.

Analysis: In the CV chain, the ingenious structure of two hash chains and the voting‐based
mechanism ensure the connectivity and validity of redacted blocks so the consistency is guaranteed.
Moreover, the on‐chain voting mechanism provides the public verification to ensure accountability
and antidouble‐spending attack, and so on. It can also resist the DoS attack because of the cost of the
transaction fee of the redaction request. Besides, the redacting privilege is decentralized to a group of
nodes who find the next block. However, the voting period should be enough long to ensure the
honest redaction can be approved eventually, which will cause nonscalable and poor efficiency. For
example, it is asked there are more than 50% of 1024 consecutive blocks voting for the redacted block.
That is, an honest redaction will take 7 days on average to be approved. Multiple/frequent redacting

FIGURE 5 An example of hard fork. Hard fork results from a group of nodes following the new rules. It can
lead to a permanent chain with the new versions [Color figure can be viewed at wileyonlinelibrary.com]
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blocks will result in longer time consensus delays and even more forks. Finally, the CV chain is
obviously incompatible with the typical Bitcoin protocol due to the change of block structure.

5.1.3 | Reparo

Reparo, proposed by Thyagarajan et al. in 2020,24 performs redactions in a repair layer on top of any
blockchain system (permissioned and permissionless). Redaction is requested by a repair message
that indicates the block hash, the object, and the chain state. Then the repair message is off‐chain
deliberated by verifying the state changes in the repair layer. The final deliberation results as a repair
witness will be voted on‐chain by miners. The voting method is the same as that of the CV chain, that
is, the witness getting enough votes during the voting period will be approved. To ensure the block/
transaction consistency, Reparo stores the old version and the approved repair message in their
databases, respectively. These databases are also broadcast and maintained by nodes in the P2P
network. In addition, the repair message also spends coins to be recorded in the blockchain.

Analysis: Reparo is instantiated in typical Ethereum, Bitcoin, and Cardano so it has better
compatibility. It also maintains consistency by recording the old state stored in associated da-
tabases instead of the block header. Although Reparo does not change the typical data structure
of the blockchain, it will consume more additional bandwidth, storage, and computation to
maintain databases. Besides, Reparo adopts the same processes of the CV chain such as on‐chain
voting and public verification. It can also ensure system security and has the similar performance
defects, such as the long voting period, the consensus delay, and poor efficiency.

Besides, Marsalek et al.25 have designed a correctable blockchain architecture which is also
composed of two hash chains, that is, the standard chain and the correction chain. The standard
chain stores the original information and the correction chain consisting of correction blocks is
used to store the correction information. Analogously, the consensus‐enforced voting mechanism is
also used to make a decentralized decision on requested data corrections. After the end of the
voting period, a correction block containing the successful correction information is used to replace
the redacted block with the same height in the standard chain. Obviously, this mechanism of
Marsalek et al. also suffers from these issues such as long voting period and poor efficiency.

In summary, consensus‐based redaction mechanisms do not rely on any trust assumption and are
applied to the permissionless blockchain. They ensure the validity, consistency, and security of the
system by the voting‐based consensus. Moreover, they can resist the DoS attack because each re-
daction request spends coins in the form of a transaction fee. However, the redaction usually carries
out at the expense of additional bandwidth and computation (or other resource). Nodes have to
resolve the PoW puzzle (assuming the data of Bitcoin blockchain is redacted) of the redacted block
and broadcast the request transaction and the redacted block/transaction. A long time of voting
period can ensure the security of the system, but may result in consensus delay. Especially, the time
of consensus delay will become much longer when multiple redactions are concurrently requested.
Therefore, this type of redaction mechanism usually has poor efficiency and scalability.

5.2 | Chameleon hash‐based redaction mechanisms

This type of mechanism redacts blockchain data without hard forking based on a trapdoor
collision‐resistant hash function, that is, the chameleon hash (CH) function71 defined as
Table 4. The CH function ensures that (i) Anyone possessing the public key can compute the
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CH value; (ii) It is infeasible to find two different inputs mapped to the same output without the
trapdoor key except with negligible probability; (iii) The parties possessing the trapdoor key can
easily find collisions for every input.

The general procedure of CH‐based redaction mechanisms (CH‐RMs) is outlined in Algorithm
2. Based on the CH function and its variants, CH‐RMs ensure that the redacted transaction/block
hash remains intact. First, the transactions/blocks are generated based on the CH function. Then,
nodes owning the trapdoor key can easily get an additional randomness r′ by computing collisions
for any redacted data. Apparently, CH‐RMs do not require to solve the PoW puzzle again, but the
key management is critical to system security. Hence, this type of mechanism usually focuses on
controlling redaction based on variously malleable cryptographic primitives. Here, several typical
redaction mechanisms are introduced in detail.

5.2.1 | Standard chameleon hash‐based (SCH) chain

It is proposed based on the SCH function by Ateniese et al.26 in 2017. SCH chain adds a lock to
each hash chain between blocks, which makes the immutable blockchain become a redactable
one with the trapdoor key. In the block generation party of Algorithm 2, the inner SHA‐256
function of the double hash of Equation (1) is replaced with the SCH function, that is,

TABLE 4 Algorithms of CH function

(1 )κCHKey : The probabilistic key pair generation algorithm CHKey takes as input a security parameter κ ∈
and outputs the public and trapdoor key pk sk( , ).

pk m( , )CHash : The probabilistic hashing algorithm CHash takes as input the public key pk and a message
m ∈ , and outputs a randomness r and hash h.

pk m h r( , , ( , ))CHVer : The deterministic verification algorithm CHVer takes as input the public key pk , a
message m ∈ , hash h and randomness r , and outputs a bit b {0, 1}∈ indicating if the hash h is valid.

sk m h r m( , ( , , ), ′)CHCol : The probabilistic collision algorithm CHCol takes as input the trapdoor key sk,
message m, hash h, randomness r and an additional message m′, and outputs randomness r′ such
that pk m h r( , ′, ( , ′)) = 1CHVer .
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SHA pk r Target256( ( , ; )) ,CHash ≤ (2)

where pk is the public key and r is the randomness defined in Table 4. Moreover, the block
structure of the SCH chain is also extended to add a field to record the randomness as shown in
Figure 6. The holders of the trapdoor key can efficiently compute the additional randomness r′
for the redacted block i by running the collision algorithm CHCol. The randomness r′ ensures
that the redacted block header hash keeps the same as the one before redacting. Therefore, the
hash chain remains intact. In addition, SCH chain supports modifying/deleting data on more
blocks, denoted as redaction in block‐level.

Analysis: In the SCH chain, the block hash after any redaction operations is unchanged so
the block consistency is maintained. However, redaction damages the validity of transactions
listed in the block and even other related transactions. The transaction consistency and security
properties will be breached when blocks are removed from the blockchain. For example, the
chain quality will become bad because of the removal of many honest blocks. What is worse,
the adversary can easily launch double‐spending and tampering attacks because the traceable
transaction history is erased. The attackers also can launch the DoS attack by flooding the
network with many edited blocks to be verified in this system. Besides, this mechanism suffers
from the key management problem. Once the trapdoor key is exposed, the ability to redact data
may be abused. Therefore, SCH chain may need a central authority and rely on a secure
multiparty computation (MPC) scheme to ensure system security. On the other hand, the SCH
function suffers from a key exposure problem, that is, any user can find other collision or even
recover the trapdoor key once the collision is public. At present, the construction of a key
exposure‐free chameleon hash function for mutable blockchain is an ongoing research.

5.2.2 | Attribute‐controlled policy‐based chameleon hash (APCH) chain

It is designed to control who is able to redact data in a fine‐grained way by Derler et al.27 in
2019. Based on an enhanced CH function72 and a ciphertext‐policy attribute‐based encryption
(CP‐ABE) scheme,73 the authors have proposed a policy‐based chameleon hash (PCH) function
associated with the attributes of participants to control the redaction privilege. In the APCH
chain, transactions are specified as modifiable and nonmodifiable. The PCH hash values of

FIGURE 6 The block‐level redaction structure of Standard chameleon hash based chain. After a transaction
is edited in block i, the MT root will change. Miner finds an additional r by running the algorithm CHCol for
block i so that the header hash of edited block i is still equal to the hash PrevHash stored in block i + 1. MT,
merkle tree [Color figure can be viewed at wileyonlinelibrary.com]
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modifiable transactions are taken as inputs to integrate into the Merkle tree with nonmodifi-
able transactions, as shown in Figure 7. The redaction is performed in the transaction‐level
(Tx‐level). As shown in Figure 8, the set of attributes structures an access tree, where each leaf
node describes an attribute and each non‐leaf node represents a threshold gate.

For the k‐of‐n ( k n1 <≤ ) threshold gate composed of n attributions, it can be constructed
as an AND gate if the threshold value k n= and it can be an OR gate if k = 1. The participant
can get the right trapdoor key if her/his attributes can satisfy the strategy specified by the access
structure. Finally, the participant owning trapdoor key can easily compute the randomness r′
for the redacted transaction by computing the collision (shown in Table 4).

Analysis: The PCH function elegantly provides a fine‐grained redaction control based on the
trapdoor key access‐control. It is suitable for the permissioned blockchain where participants are
asked to join the system with authorized attributes. Moreover, the CP‐ABE is IND‐CCA2 secure
and the PCH function is strongly indistinguishable and collision‐resistant, which ensures system
security, that is, attackers are hard to recover the trapdoor key to launch the double‐spending
attack and the tampering attack. The APCH chain supports redaction in Tx‐level, which will not
affect the security properties of the system. Nevertheless, the signature becomes invalid after
redaction. The validity and the consistency of those redacted transactions that cannot be re‐
signed because the sender is offline will be damaged. On the other hand, the PCH function may
face the potential risk of collusion attacks. Participants may collude with each other to get a
union of attributes that may satisfy the strategy. Besides, the update and sharing of the access tree
are not considered in the APCH chain. In terms of compatibility, the PCH function can be served
as a layer on top of blockchains so it is compatible with typical blockchains.

FIGURE 7 The Tx‐level redaction structure based on CH function and its variants. Assume that a transaction of
block i is edited. Then miner finds an additional r by running the algorithm CHCol for the transaction so that the
edited transaction hash is unchanged [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 The structure of access tree. It is structured by a set of attributes. An OR gate is composed of
attributes S S,1 2, and S3. An AND gate is composed of attributes Si and Si+1
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5.2.3 | Redactable consortium blockchain (RCB) for IIoT

It is proposed to ensure the validity of redacted transaction by Huang et al.28 in 2019. RCB focuses
on resigning the redacted transaction when the sender is off‐line in a consortium blockchain. It
enhances the SCH function by being associated with the identities of the participants (denoted as
TCH function). Then, the participant with the correct identity can effectively compute the additional
randomness with the help of all holders who have trapdoor keys. Following the hash‐and‐sign
paradigm, transactions are hashed by the TCH function and then signed by an accountable‐and‐
sanitizable chameleon signature (ASCS) algorithm, as shown in Figure 9. The participant with the
correct identity can compute the same signature to validate the redacted transaction. Therefore, the
signature chain between transactions can be maintained. Analogously, RCB also uses the TCH
function to hash the modified transactions before they are integrated into the Merkle tree.

Analysis: RCB is managed by a group of equally‐powerful participants who join the system with
the authorized identities. This group of trusted participants is in charge of verifying the edited
transaction/block and then reaching consensus on the final state of the edited chain. Thus, the
redaction ability cannot be abused maliciously. Moreover, the ASCS algorithm ensures the validity
of the edited transaction so the consistency is guaranteed. However, there are some limitations in
RCB. First, it is obvious that the redaction ability is in centralized control by minimal trusted
parties. Second, the process of computing the collision needs the co‐operation of all trapdoor keys
holders, which will increase bandwidth cost and reduce redaction efficiency and flexibility. Third,
RCB still suffers from key management problem which affects system security. Finally, the ASCS
algorithm cannot be compatible with the typical blockchain, and the computing‐limited and
storage‐limited IIoT devices cannot efficiently perform complex cryptographic primitives.

5.2.4 | Self‐redactable blockchain (SRB) for IoT

SRB is designed to redact data without any co‐operation in the blockchain system by Huang
et al.29 in 2020. It also enhances CH function by associating with identities and a cycle time,
denoted as RCH function. Based on the RCH function, it designs a revocable chameleon
signature (RCS) scheme. Analogously, transactions are generated based on the RCH function
and the RCS scheme. SRB allows periodically redacting data in the blockchain by the parti-
cipant who owns the correct identity and trapdoor key during the cycle time. Any redaction
consists of one private redaction with a trapdoor key and n( − 1) public redactions if there are n
transactions appended after the redacted transaction. The public redaction that the signature is
generated to authenticate transactions can be freely conducted by anyone.

Analysis: SRB is also built to maintain the signature of the edited transaction when the
sender of the modified transaction is off‐line. The security and performance of SRB are similar
to those of RCB via analogical reasoning. Besides, SRB is also not adopted for IoT devices
because it introduces the complex cryptographic primitives.

Besides, some CH‐based work have been designed for other applications. Zhang et al30 have
designed an industrial data management scheme based on a dual‐blockchain architecture which is
also constructed by the chameleon hash function. This scheme is analogous to the SCH chain. The
trapdoor key used to compute the collision for the modified data is also shared based on the verifiable
secret sharing technology. Zhang et al.31 have also proposed a rechain scheme to rewrite blockchain
history which is maintained by the edge nodes in IoT. This scheme based on threshold trapdoor
chameleon hash function can efficiently save space of edge devices and overcome the general issues
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in IoT such as resource‐constraint. At the same time, Zhang et al. have also constrainted the rewrite
operations by the chronological order of historical transactions. Samelin et al.34 have proposed a
policy‐based sanitizable signature scheme that can ensure the validity of the redacted transaction.
Based on the access structures defined over attributes, the redaction operations are controlled and
accountable in the blockchain system. Wu et al.32 have proposed a key‐exposure free chameleon hash
functions based on the lattice, which is the first work to construct the quantum‐resistant chameleon
hash function. Moreover, they have focused on solving the redaction‐misuse problem which may
happen in the generic framework of redactable blockchains.

In summary, CH‐based redaction mechanisms (CH‐RMs) aim to implement data redaction
in specific and exceptional circumstances. The main techniques which are used by the above‐
mentioned schemes are summarized in Table 5. These schemes maintain the consistency by
computing a hash collision for the edited block/transaction and ensure the security based on the
common cryptographic hardness assumptions, such as DLP and CDHP. In detail, the collision is
computed to keep the redacted block/transaction hash or the signature of the redacted transaction
unchanged. Moreover, CH‐RMs do not require to resolve the PoW puzzle again for the new state of
the redacted block. Redaction can be efficiently made on one or more blocks. The redaction privilege
is in centralized control by a group of authorized participants owning trapdoor keys. Hence, the risk
of the redaction ability abused is reduced. However, the key management and key exposure are the
problems to be solved in CH‐RMs. Some schemes overcome these problems by increasing the
complexity of the function, which will cause high consumption of network resources.33

5.3 | Meta‐transaction‐based redaction mechanisms

This type of redaction mechanism is controlled by fiat and mate‐transaction (mate‐Tx) that is a
special type transaction issued to trigger redaction. As shown in Algorithm 3, mate‐Tx‐based
redaction mechanisms (MTxRMs) avoid introducing heavy cryptographic primitives and the
long voting period. Three MTxRMs are reviewed and analyzed below in detail.

FIGURE 9 The signature chain of RCB. The SHA256 and elliptic curve digital signature algorithm (ECDSA‐
Secp256k1) of Bitcoin protocol are replaced with TCH and ASCS in RCB, respectively. The transaction still can
structure a chain via the signature verification. ASCS, accountable‐and‐sanitizable chameleon signature [Color figure
can be viewed at wileyonlinelibrary.com]
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Algorithm 3: MTxRMs general procedure

Input: Chain 

Output: Redacted chain 

/* Request */

1. Generate a mate‐transaction to trigger redaction;

/* Redacting */

2. Verify the mate‐transaction according to the predefined policy;

3. Perform the redaction;

/* Update */

4. Update the view of the chain  to chain  ;

5.3.1 | μchain

It is proposed to withdraw coins from spent transactions by Puddu et al.35 in 2017. μchain
makes blockchain data redactable by issuing new meta‐Txs, that is, a mutant transaction and a
extending transaction. At first, μchain divides all transactions, including currency transactions
and smart contract deployment transactions, into immutable and mutable transactions. There
is a mutable transaction specified as active in each round and redacted subject to a policy
established by the sender. The policy specifies the redacted objects, the redactor, and the time
window. Then, the redactor generates the mutant and extending transactions to trigger and
implement redaction. After the extending transaction is approved via an efficient off‐chain
voting procedure, the mutant transaction replaces the active transaction. Besides, μchain en-
crypts the mutable transaction to hide alternative transaction history. The secret key is shared
by a dynamic proactive secret sharing (DPSS) scheme,74 which satisfies the perfect security
with a threshold of t < − ϵ

n

3
corrupted parties (for n parties and any constant ϵ > 0).

Analysis: μchain allows that the redacted transaction has an impact on the past and future
transactions so it breaches the consistency. Moreover, the block inserted the mutant and

TABLE 5 Summary of chameleon‐hash‐based redaction mechanisms

Schemes
Identity‐
based

Attribute‐
based

Secret sharing‐
based

Free key‐
exposure Assumptions

26 × × ✓ ✓ DLP

27 × ✓ × ✓ DLP

29 ✓ × × ✓ CDHP

28 ✓ × × ✓ CDHP

30 × × ✓ ✓ DLP

33 × × ✓ ✓ DLP

31 ✓ × ✓ ✓ CDHP

32 × × ✓ ✓ SIS

34 × ✓ ✓ ✓ SXDH

Abbreviations: CDHP, computational Diffie‐Hellman problem; DLP, discrete logarithm problem; SIS, small integer solution
problem; SXDH, standard symmetric external Diffie‐Hellman assumption.
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extending transactions cannot be confirmed in the network. In terms of security, μchain satisfies
the security properties and resists the double‐spending, tampering, and DoS attacks. In terms of
performance, it has to consume more computation and bandwidth for transaction encryption and
keys management. Concretely, encrypting transactions undermines the transparency of the
blockchain and limits the verification enforcement of currency transactions, so it also reduces the
auditability of the data written in the blockchain. In the μchain, a malicious user can establish a
policy to prevent the transaction from redaction. Furthermore, the replacement of μchain ac-
tually is performed by changing the view of transactions. That is, participants can read the old
version with the decryption key or change the view back to the old version.

5.3.2 | MOF‐BC

It is proposed to provide flexible memory management for IoT devices by Dorri et al. in 2019.16

MOF‐BC supports to removal or summarize specific transactions of blockchain over a period in
large scale networks by issuing a remove transaction. The removal transaction records the hash
of the deleted transaction and the hash of the previous transaction to ensure the transaction
consistency. Then it is signed by the redactor to verify her/his eligible redacting privilege. After
that, miners authorized by a Certificate Authority (CA) verify the removal transactions over a
period. If the removal transaction appended to the blockchain, the removal operation will be
executed at the IoT devices. Moreover, MOF‐BC rewards users to encourage them to remove
their transactions. Analogously, a summary transaction is created to summarize users' trans-
actions, an example of summarizing transactions of Figure 1 shown in Figure 10. MOF‐BC
summarizes transactions tracing the signature chains of transactions. To ensure the consistency
and validity, it stores some important information about the summarized transactions, such as
the MT root, the time‐stamps, and the order.

Analysis: The MOF‐BC focuses on removing history data. The removal/summary transac-
tion stores the information about removed/summaried transactions to ensur the consistency
and validity. However, the MOF‐BC depending on the verification of CA is vulnerable and also
suffers from the key management problem. It also cannot resist the double‐spending and DoS
attacks. The malicious user can spend the funds of the spent transaction that has been re-
moved/summarized. Besides, removal/summary transactions are associated with the same

FIGURE 10 An example of summarizing transactions. The transactions 0, 1, 2Tx Tx Tx , and 3Tx can be
summarized as the transaction *Tx . The input and output of *Tx are the input of 0Tx and the output of 3Tx ,
respectively [Color figure can be viewed at wileyonlinelibrary.com]
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private key. If the private key is exposure, anyone can request to remove/summarize any
transactions.

5.3.3 | Functionality‐preserving local erasure (FPLE)

It is proposed by Florian et al.36 in 2019. FPLE focuses on the erasure of the improper data
stored in transaction outputs from the local storage of nodes. According to the analysis of
Section 3.1, the transaction outputs containing arbitrary data are very unlikely to be spent in
the foreseeable future and overwritten in the local UTXO database. To safely erase these data,
FPLE modifies the field ScriptPubKey of the transaction output and designs an erasure database
to store the information before modification. The erasure database can help to check that the
relevant inputs have not been edited. It can also verify the subsequent transactions that re-
ference (spend) the edited transaction. After check and verification, the original transaction
will be replaced with the edited transaction and physically erased.

Analysis: Instead of changing the protocol to carry out blockchain redaction, FPLE focuses
on erasing data locally and checking the sequence transactions after the transactions have been
redacted. It can ensure the security properties and consistency of the system. However, the
erasure database source must be trusted and ensure that it stores the original data of the edited
transaction. That is, to ensure the credibility of the erasure database source, the erasure da-
tabase may be maintained by a trusted third party or a minority of trusted nodes. The de-
centralization and security of the Bitcoin system may be affected. Besides, it relies on the strong
assumption that nodes honestly perform the local erasure.

In summary, the mate‐Tx‐based redaction mechanisms also suffer from key management
and trusted source of the database. They still rely on the help of trusted parties. For example,
once attackers get the keys, they can efficiently redact transactions for malicious purposes.
Besides, editing the local data synchronously when data is edited on the chain is a useful
research topic.

5.4 | Pruning‐based redaction mechanisms (PRMs)

In addition to the above emerging redaction mechanisms, the PRMs are designed for specific
application scenarios. The general procedure of PRMs is outlined in Algorithm 4. It also avoids
heavy cryptographic primitives. In this section, two mechanisms are presented.

Algorithm 4: PRMs general procedure

Input: Chain 

Output: Redacted chain ′

/* Request */

1. Request to prune transactions/blocks if a condition is satisfied;

/* Redacting */

2. Prune transactions/blocks according to the predefined policy;

/* Update */

3. Update the chain  to chain ′ ;
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5.4.1 | LiTiChain

It aims at saving the storage of edge nodes in the IoT ecosystem and is proposed by Pyoung
et al. in 2019.17 In the IoT ecosystem, edge nodes have limited storage and computing power so
that they are likely to run out of memory and can not run the full blockchain. Therefore, the
LiTiChain overcomes these problems by deleting expired blocks. In the LiTichain, edge nodes
reach a distributed consensus based on the practical byzantine fault tolerance algorithm,51

where the corruption tolerance threshold t satisfies n t3 + 1≥ for n nodes. Then, each trans-
action/block of the LiTichain is maintained during a lifetime, that is, the time from the creation
to the preset endtime. If the lifetime of a transaction/block expires, it can be deleted from the
chain. For this special case that the expired block contains unexpired transactions, LiTichain
renews these unexpired transactions by appending them to a new block. After that, LiTichain
structures a graph according to the endtime ordering of blocks, where the child block always
has earlier endtime than that of its parent block. Each block header contains two references
hash to ensure the block consistency. One is the hash PrevHash of the previous block and the
other is the hash ParentBlockHash of the parent block in the endtime ordering graph. When
some blocks are deleted, the rest blocks can still connect with each other.

Analysis: The deletion of the outdated blocks and transactions reduces the percentage of
honest blocks in the chain. Obviously, the chain quality and common prefix are also undermined.
Besides, the LiTiChain cannot maintain transaction consistency. It cannot ensure the deletion of
transactions does not affect the past and future transactions. The deletion without consistency
will result in security vulnerabilities. For example, malicious nodes easily launch the double‐
spending and forge transactions that are legitimately deleted from the chain. It also cannot resist
the DoS attack. What is worse, LiTiChain does not record the hash of the deleted blocks/
transactions, which causes that the traceability and integrity of the chain cannot be guaranteed.

5.4.2 | CoinPrune

It is proposed based on a snapshot technique by Matzutt et al. in 2020.37 CoinPrune also aims at
reducing blockchain size to optimize the storage and bandwidth requirements. Specifically,
CoinPrune creates a snapshot for constant intervals (e.g., every 10,000 blocks). The snapshot
consists of the block headers and serialized UTXOs set of pruned blocks. Then, it is publicly
announced to be reaffirmed during a time window. If the reaffirmations are more than the
preset threshold, the snapshot is valid and accepted. Otherwise, it is invalid and pruning is
delayed. The new joining nodes only need to require the reaffirmed snapshot and a few full
blocks to synchronize with the system.

Analysis: CoinPrune can reduce disk space and synchronization time, but frequent pruning
causes an expensive overhead. Although it does not actually delete the data from the block-
chain, it provides a solution for some nodes to avoid storing improper data in local devices.
However, the nodes running the blockchain based on the snapshot are similar to the light-
weight nodes. CoinPrune also needs full nodes to store full blockchain. The consistency and
security are guaranteed by these full nodes. Moreover, this way will result in the centralization
if the full nodes account for a very low percentage of the network. Even so, pruning is a feasible
solution and an active field of research.

In summary, PRMs implicitly assume that the pruned data are independent of the remaining or
future transactions. Otherwise, the validity of the remaining or future transactions is hard to be

ZHANG ET AL. | 5075



guaranteed. Besides, PRMs perform redaction for flexible memory management at the expense of
system security, so they are suitable for applications with weak security requirements.

5.5 | Other emerging work

In addition to the above‐mentioned four categories of redactable blockchains, some emerging
work that may be not classified is also reviewed concisely in this section.

Grigoriev et al.75 have designed a redactable private blockchain based on the RSA assump-
tion. The idea, where the one‐way function values of the original data and the redacted data are
the same, is the same as that of the type of chameleon hash‐based redaction blockchain. This
mechanism has achieved the fundamental security requirements including chain growth, chain
quality, and common prefix. However, it also suffers from the issue that it is lacking in a rule to
select a central authority from nodes. Bilzhause et al.76 have considered the signature verification
of the redacted transaction based on the sanitizable signature scheme in redactable blockchains.
They allow any semitrusted entity to modify the signed data in a controlled way and preserve the
authenticity of the subsequently modified content. Chen et al.77 have introduced a method to
compress the size of transactions in the Bitcoin blockchain by replacing hash pointers with index
pointers. Unfortunately, this method may destroy the authenticity and traceability of transactions
appended on the blockchain. Arthur et al.78 have discussed the pros and cons of a fraction of
recent work on redactable blockchains. Then they have given some recommendations for or-
ganizations contemplating enterprise‐level applications of this technology. However, they have
not discussed and analyzed the performance of redactable blockchains at technique level.

6 | COMPARISONS AND DISCUSSIONS

In this section, we present a comprehensive comparison for some aforementioned mechanisms
in terms of framework, security, and performance. After that, we discuss future research
directions of the mutable blockchain.

6.1 | Comparisons

Based on the evaluation criteria defined in Section 4.2 and the detailed analyses of Section 5, we
compare some typical mutable blockchains in terms of the security and performance. The
comparisons are shown in Table 6.

From the comparisons, we find that there are a few mechanisms that are suitable for
permissionless blockchains and support redaction at the block‐level. Most redaction mechan-
isms are designed with the security assumption such as cryptographic hardness assumptions.
Besides, most redaction mechanisms can ensure the validity of the edited transaction/block
except for the SCH chain,26 the APCH chain,27 and the LiTiChain.17

In terms of security, most mechanisms can satisfy the security properties and have
the capability of antiattacks except for those mechanisms supporting the removal operation
(e.g., SCH chain,26 MOF‐BC,16 and LiTiChain17). Removing blocks/transactions from the
blockchain system will cause vulnerabilities in terms of agreement and validity. Moreover, the
edited block/transaction is broadcast and publicly verified in the network to reduce the risk of
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double‐spending in most mechanisms. However, the key management is a problem to be solved
in most mechanisms (e.g., RCB28 and μchain35). Their capability of antitampering attack de-
pends on the security of keys. Besides, some mechanisms resist the DoS attack by the cost of a
transaction fee for every redaction request (e.g., CV chain23 and Reparo24).

In terms of performance, CH‐based mechanisms can implement data redaction with high
efficiency and do not suffer from consensus delay. They compute the hash collision for the edited
transaction/block in milliseconds and broadcast the edited it in the network in seconds (at least
12 s79). However, the mechanisms based on voting consensus redact data in the blockchain at the
expense of high computation and bandwidth consumption. Moreover, they are poor efficient
because they require enough time to vote on the edited block. For example, the voting period of the
CV chain23 is preset as the 1024 consecutive blocks, that is, about 7 days on average (Assume that
there is one block generated per 10 min on average). During the long voting period, miners cannot
fast agree on the state of the chain so that consensus delay emerges. Besides, in the mate‐Tx‐based
mechanisms, the redaction is accomplished until the transaction generated to redact data is ap-
pended to the blockchain. This process may take at least 10 min so the redaction efficiency ofmate‐
Tx‐based mechanisms is medium. On the other hand, to ensure system security, more network
resource consumption is ineluctable. From Table 5, most mechanisms have to broadcast the edited
transaction/or block for verification, and some mechanisms also need to resolve the PoW puzzle.

In terms of compatibility, most redaction mechanisms are almost incompatible with the
Bitcoin protocol. This is because some mechanisms need to change the data structure of the
block/transaction, such as the CV chain23 and the SCH chain.26 Some mechanisms need to
change the cryptographic primitives of the Bitcoin protocol, such as RCB28 and SRB.29

Besides, we compare the state‐of‐the‐art redaction mechanisms in terms of functionality.
The results are summarized in Table 7. From the summary, it is obvious that this type of
consensus‐based redactable blockchains is Comprehensive. It can support dynamic data op-
erations and dynamic nodes. Especially, the redaction can be performed normally in the
consensus‐based mechanism, even though a fraction of nodes leave the P2P network. However,
if the departure of nodes occur in the CH‐based and Meta‐Tx‐based mechanisms, the redaction
cannot be ensured and even the system will stop working.

6.2 | Future research directions

At present, the research progress on designing mutable blockchain is still in its infancy.
Designing the redaction mechanism for various applications is still interesting research
directions. Future research on the redaction mechanism can focus on the below aspects.

TABLE 7 Summary about the functionality of redaction mechanisms

Dynamic data operations Dynamic nodes

Proposals Insertion Modification Deletion Joining Leaving

Consensus‐based ✓ ✓ ✓ ✓ ✓

CH‐based ✓ ✓ ✓ ✓ ×

Meta‐Tx‐based × ✓ ✓ ✓ ×

Pruning‐based × × ✓ ✓ ✓

Abbreviations: ✓, support; ×, nonsupport.
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(1) Consistency. How to preserve the consistency of the redacted chain is an important topic for
designing redaction mechanisms. The existing works ensure it by storing the state (hash) of
the transaction/block before redacting. However, this method still has some vulnerabilities
with the removal operation. It is hard for the recipient of the removed transaction to be
verified whether she/he can spend this transaction. Moreover, the consistency of the
transaction chain may be violated. Transactions referring to the removed transactions may
be invalid.

(2) Security. The other security requirement of mutable blockchains is preventing the redaction
ability from maliciously abusing. Legitimate redaction may be requested for malicious
purposes. Many mechanisms consider the redacted chain (i.e., the chain includes the
redacted block/transaction) as the preferred one to mine the next block. Consider a sce-
nario where attackers want to double‐spending by forks. If attackers draw the contributions
of honest nodes by legitimate redaction requests, the fork chain is possible to be longer than
the honest chain.

(3) Consensus delay. The consensus delay directly affects the agreement of the blockchain
system. The longer time delay will cause more forks and vulnerabilities. In most existing
works, it still is a problem to be solved. For example, the attackers can launch a DoS attack
by frequently requesting different and legal edits for the same block. Many legitimately
redacted blocks that are approved by the policy of mechanism are held by many miners.
Therefore, delays are increased and more forks emerge.

(4) Consumption. Most existing works carry out redaction at the expense of consuming
network resources. Many blockchain‐based applications cannot provide such network
resources, such as the blockchain‐based IoT/IIoT system.30,31,80 According to the real
requirements of applications, the mechanisms are designed to get a trade‐off between
security, redaction, and network resources consumption.

(5) Application. It is also an interesting topic to design redaction mechanisms for various
blockchain‐based applications.81‐84 For example, the redactable blockchains supporting
removal are used to optimize the memory of edge devices in the IoT system.19,85 The
chameleon hash‐based redactable blockchain is used to implement fine‐grained access
control with the attribute update86 and also used to manage users' identities and authen-
ticate users in the mobile networks.87 In these applications, some focus on strong security
while some require efficiency and functionality. Therefore, future research on redactable
blockchains should consider the requirements of the practical applications.

7 | CONCLUSION

This paper has conducted a survey on mutable blockchains. The purpose of making blockchain
redactable is to edit the objectionable data that may harm others and even break the law. We
first analyze the impact of data insertion on the blockchain, including the inserted data type,
the position where the data is inserted, and the harm caused by inserting data. Next, we
summarize the challenges of designing the redaction mechanism and propose a list evaluation
criteria. Then, we comprehensively review and analyze the state‐of‐the‐art redaction me-
chanisms which are presented from four categories. Moreover, we compare these mechanisms
with respect to security, limitations, and performance in detail. Our algorithm outlines, security
analyses, and performance comparisons on these mutable blockchains in this survey can help
researchers and developers to design mechanisms in the future.
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