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Abstract—Federated Learning (FL) is a distributed machine
learning technique that allows numerous Internet of Things
(IoT) devices to jointly train a machine learning model using
a centralized server for help. Local data never leaves each IoT
device in FL, so the local data of IoT devices are protected.
In FL, distributed IoT devices usually collect their local data
independently, so the dataset of each IoT device may naturally
form a distinct source domain. In real-world applications, the
model trained over multi-source domains may have poor gen-
eralization performance on unseen target domains. To address
this issue, we propose FedADG to equip federated learning
with domain generalization capability. FedADG employs the
federated adversarial learning approach to measure and align the
distributions among different source domains via matching each
distribution to a reference distribution. The reference distribution
is adaptively generated (by accommodating all source domains) to
minimize the domain shift distance during alignment. Therefore,
the learned feature representation tends to be universal, and
thus, it has good generalization performance over the unseen
target domains while protecting local data privacy. Intensive
experiments on various datasets demonstrate that FedADG has
comparable performance with the state-of-the-art.

Index Terms—Federated learning, Internet of Things, domain
generalization, adversarial learning.

I. INTRODUCTION

Nowadays, the development of the Internet of Things (IoT)
has brought great convenience to people’s lives. The unprece-
dented data generated by IoT devices are used for prediction,
classification, and detection in deep learning [1]. To train a
deep learning model, a straightforward way is to let the IoT
devices upload their local data to a centralized server for
training [2]. However, some devices’ local data (e.g., biometric
health records, financial records, location information) may be
highly privacy-sensitive and their owners are reluctant to share
with any other entities. Fortunately, the proposal of Federated
Learning (FL) [3] provides a privacy-preserving mechanism
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that enables a centralized server to train the model without
requiring devices’ to share their private data. In one iteration
of FL, the server sends the global model to all devices. Then,
each device trains the global model using the local data. Next,
each device sends the model update to the server, which is
used for model update aggregation and new global model
generation. After multiple rounds of iteration, the model can
be well-trained.

In recent years, FL has been intensively studied in both
academia and industry [4]–[6]. In FL, since distributed IoT
devices collect their local data independently, each device’s
dataset may naturally form a distinct domain (a domain is
defined as a set of labeled training data that are sampled from
a specific distribution [7], [8]). For example, when people use a
camera-capable IoT device to collect bird pictures, each device
often collects a different bird species (using different cameras
and different shot angles). Therefore, the data collected by
each IoT device forms an independent domain. Here, the
domain formed by one IoT device’s dataset is called a source
domain, so there are multiple source domains in the FL. In
deep learning, multi-source domains often collaboratively train
a model for the object classification task. In this article, we
aim to develop a solution to learn a classifier (on multiple
source domains) that can be used for “unseen domain” with
good performance.

Most previous FL studies assume that the test dataset is
a subset of device dataset. There is a lack of studies for
another common practical scenario in which the data of
the target dataset (i.e., test dataset) is absent from the FL
training process. It is required to build a model that has high
performance when testing over the related but unseen target
dataset (note that the target dataset forms the target domain).
However, the FL-trained model may have poor performance
on target domains due to the discrepancies between source
domains and target domains.

The above issue can be addressed by Domain Generalization
(DG) [7], [9], [10] technique, but the previous techniques
of domain generalization cannot be directly applied to the
FL setting. Domain generalization aims to train a Machine
Learning (ML) model from one or several different source
domains while ensuring the trained model can be generalized
to target domains. Most conventional solutions achieve domain
generalization in a centralized manner. That is, a centralized
server (with access to all source domain data) is responsible
for the domain generalization task. For example, Jigsaw puzzle
based Generalization (JiGen) [11] requires data decomposed
from multi-source domains to be mixed to train a classifier.
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Besides, MixStyle [12] needs to mix features from different
source instances to synthesize new domains. However, access-
ing sources domain by the centralized server is prohibitive
in FL to meet the security requirements. Therefore, these
conventional techniques cannot be easily applied to domain
generalization in FL. There are two proposed schemes (i.e.,
COPA [13] and FedDG [14]) that study domain generalization
problems in FL. COPA is the abbreviation of Collaborative
OPtimization and Aggregation, while FedDG is the abbre-
viation of Federated Domain Generalization. Both of them
suffer from some limitations. For COPA, it requires each
IoT device to share its local data size. Moreover, it leaks
the global information (i.e., domain variation) to each device
for batch normalization (BN) layer parameters tuning. In a
nutshell, COPA sacrifices security for domain generalization.
For FedDG, it allows each device’s local data information (i.e.,
image amplitude spectrum) to be shared with other entities.
However, the shared image amplitude spectrum contains class-
relevant information, which can be used for training a classifier
[15]. It leaks sensitive information about the device’s local
data. In summary, both COPA and FedDG sacrifice security
for domain generalization. Different from the two schemes,
our solution aims to achieve domain generalization without
the above information leakage.

In this paper, we propose the Federated Adversarial Domain
Generalization (FedADG) scheme to address the domain gen-
eralization problem in FL for IoT devices. FedADG design has
two key insights as described below. First, FedADG exploits
the idea to learning the domain-invariant feature representation
by aligning each distribution of source domain data to a refer-
ence distribution in a distributed manner. In the alignment, we
employ an Adversarial Learning Network (ALN) to measure
the distance between distributions in FL setting. Furthermore,
we propose the Federated ALN (FedALN) technique to train
ALN in FL setting. In this way, FedADG can learn the domain-
invariant features while eliminating the requirement for a
centralized server to access IoT devices’ local data. Second,
FedADG uses the idea of adaptively learning a dynamic
distribution (by accommodating all source domains) as the
reference distribution. This approach can minimize the domain
shift distance during alignment.

Compared with using a pre-selected fix reference distribu-
tion, our approach reduces the distortion of extracted feature
representation. Therefore, the key information of the original
source domain data can be largely preserved, resulting in high
generalization performance. Besides, FedADG takes the label
information (encoding in a one-hot vector) as input during
alignment. Hence, FedADG supports the class-wise alignment
of the source domain data, which can further improve its
performance on target domains. Furthermore, compared with
using the fixed reference distribution, using the dynamically
generated reference distribution approach can get more dis-
criminative features after alignment. The discriminative fea-
tures are helpful to improve the performance of FedADG.

The high performance of FedADG can be explained via
visualization, so FedADG gains some explainability to some
extent. The more explainability a FedADG scheme has, the
deeper understanding that users achieve. An explainable ma-

chine learning model can help users in two folds. First, it
can help users to tune model parameters efficiently, making
it easier for further model optimization. Second, it is more
trustworthy to be used in sensitive and critical areas, where
its value can be enormous. Note that most previous domain
generalization solutions lack explainability.

We summarize our contributions as follows.
1) We propose the FedALN technique to learn the domain-

invariant features in FL while eliminating the require-
ment for a centralized server to access IoT devices’ local
data.

2) We propose FedADG which employs the adaptively gen-
erated reference distribution and class-wise alignment
technique in FedADG to ensure its high performance.

3) The explainability of FedADG’s high performance
brings in two immediate benefits. First, it is easier
for users to tune parameters and have further model
optimization. Second, it is more trustworthy to be used
in practice.

The remainder of the paper is organized as follows. Sec. II
introduces some preliminary knowledge. Sec. III introduces
some related works of this paper. Sec. IV presents the FedADG
scheme and its training process in detail. Sec. V analyzes the
principle of FedADG. Sec. VI demonstrates the experimental
results, and the efficiency and effects of FedADG scheme are
analyzed. Sec. VII concludes this paper.

II. PRELIMINARIES

A. Federated Learning
Federated learning [3], [16] is a distributed machine learning

method that learns a global model across multiple devices
without revealing the device’s local dataset. In FL, each IoT
device is referred to as a client. Fig.1 illustrates the framework
of FL, which includes K clients and a centralized server.
Learning a global model on FL requires multiple iterations
of training on both the server and the client. In one iteration
of FL, the server sends the initialized global model to all
clients. Then, each client trains the global model on their
local dataset. Next, each client’s model updates are sent to
the centralized server and used for aggregation to generate
a new global model. After multiple rounds of iterations, the
global deep learning model can be well trained.

Client 1 Client 2 Client K
...

Server

Fig. 1. The federated learning framework.

B. Generative Adversarial Network
Generative Adversarial Network (GAN) is first proposed

in [17]. GAN endows the generative model with the abil-
ity to generate given distribution outputs via an adversarial
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procedure. GAN has two components: a generator (G) and a
discriminator (D). For generator model, the generator takes
random noise samples z from a given prior distribution as
input. Then, the generator model is trained to output fake
samples that are similar to the real training samples. For
discriminator model, the discriminator takes the samples out-
put by the generator model and the real training samples as
input. Next, the discriminator learns to distinguish whether an
input is fake (generated) or true (from real training samples).
The generator and discriminator perform multiple rounds of
adversarial training. The training objective can be expressed
as

argmin
G

max
D

V (D,G) =Ex∼pr(x)[logD(x)]+

Ez∼pg(z)[log (1−D(G(z)))], (1)

where pr(x) and pg(z) denote the distribution of the real
training sample and the prior distribution used in generator,
respectively. Compared with the classic GAN, FedADG intro-
duces several new components to achieve our purposes in the
FL setting.

III. RELATED WORK

Federated Learning. Federated learning [3], [16] is a dis-
tributed approach that leaves training data distributed on
multiple clients and learns a global model by aggregating
the locally-uploaded parameters on a server. In FL, local data
never leaves each client, so local data privacy is protected. To
improve the performance of the FL-trained model, researchers
have proposed many optimized schemes, such as Federated
learning with the Proximal term (FedProx) [18], Federated
Normalized averaging algorithm (FedNova) [19], and MOdel-
cONtrastive learning (MOON) [20]. Recently, FL has been
used to enable numerous intelligent IoT applications [21].
For instance, IoT devices mitigate single points of failure and
network scaling issues by integrating FL and consensus-based
approaches [22]. Intrusion detection plays an important role in
ensuring the security of data in the IoT. Researchers use some
techniques to achieve success in intrusion detection, such as
lightweight neural networks [23] and novel clustering methods
[24]. An intrusion detection system based on federated transfer
learning can secure patients’ sensitive data on medical devices
and applications [25]. Besides, FL combined with deep neural
network architecture can detect zero-day botnet attacks on IoT
devices [6]. In the real world, most previous FL studies assume
that the test dataset is a subset of client dataset. Different from
the previous papers, this paper mainly focuses on enabling FL
to train a model that has good performance on unseen target
domains.
Domain Generalization. The requirement of learning a model
from multiple seen source domains for unseen domains moti-
vates the research of domain generalization [7]. Most previous
solutions [11], [26], [27] consider the domain generalization
problem in a centralized setting. In these papers, a centralized
server has access to data from all source domains and it
is responsible for training an ML model that has domain
generalization capability. However, these solutions expose the
source domain data to the server. This is not allowed in FL,

so these solutions cannot be directly used in FL setting. To
sum up, we summarize the comparison between the previous
solutions and FedADG, as shown in Table I.
Domain Adaptation. A similar concept is Unsupervised Do-
main Adaptation (UDA), which aims to learn an ML model
from one or multi-source domain(s) that performs well on
a different (but related) target domain [29]. UDA techniques
assume the availability of unlabeled target domain data. Even
if Peng et al. [30] propose a privacy-preserving approach, but
its test dataset participates in the training process, which is pro-
hibited in domain generalization. Therefore, UDA techniques
cannot be directly used in this paper.

IV. PROBLEM STATEMENT AND FEDADG SCHEME

In this section, we first have the problem statement. Then,
we introduce the FedADG scheme. For ease of reading, we
summarize the frequently used notations in Table II.

A. Problem Statement

In this paper, we aim to develop a solution to learning a
ML model with non-shared data from multi-source domains.
Suppose that there are K source domains S = {Sk}Kk=1 ,
and a sample-label pair from source domain k is denoted
by (xki ,yki), where xki ∈ Rd×1 and yki ∈ Rm×1. The
ML model trained over the K source domains should have
high performance on the unseen target domains. Besides, the
proposed solution should follow the same security principle
as the traditional FL: only model parameters (e.g., updated
gradients) can be sent to the server, and no information about
local data can be shared directly. In this paper, each IoT device
can also be called a client.

B. FedADG Components

Fig. 2 shows the FedADG scheme. It can be seen from the
figure that each client’s local model mainly consists of four
components, which are described as follows.
Feature Extractor. Feature extractor can extract latent fea-
tures from the raw data of each client. Besides, the extracted
features can be applied to the classification task.
Discriminator. Given features extracted from raw data (from
a source domain) and features generated by distribution gen-
erator, the discriminator is used to distinguish the extracted
features and the generated features. During training, the dis-
criminator gains the ability to distinguish the above two types
of features. Besides, a Random Projection (RP) layer is pre-
pended to the discriminator. The RP layer is used to stabilize
the training of ALN.
Distribution Generator. On input random noise samples and
one-hot vector (used for label encoding), distribution generator
generates features, which follow a certain distribution (i.e., the
reference distribution). Note that the above three components
constitute the Adversarial Learning Network (ALN).
Classifier. Given features as the input, the classifier outputs
the predicted label.
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TABLE I
THE COMPARISON BETWEEN THE PREVIOUS SOLUTIONS AND FEDADG.

Properties
Papers

DANN [28]

FedAvg [3] FedDG [14] COPA [13] FedADG
JiGen [11]

Epi-FCR [26]
RSC [27]

MixStyle [12]
Data storage mode Centralized Distributed
Support strong privacy protection? × ✓ × × ✓
Support domain generalization? ✓ × ✓ ✓ ✓
Support distributed domain generalization? × × ✓ ✓ ✓

Trained Model

…

Server

Client 1

Domain 1

Classifier

Distribution
Generator Discriminator

One-hot

Random
Noise

ALN
Feature 

Extractor

Random Projection Layer

Client K

Domain K

Classifier

Distribution
Generator Discriminator

One-hot

Random
Noise

ALN
Feature 

Extractor

Random Projection Layer

Unseen 
Domain

Fig. 2. Illustration of the proposed FedADG scheme. FedADG first aligns each distribution of source domain data to the generated reference distribution
through ALN on each client. Meanwhile, via minimizing the loss function of distribution generator, the generated reference distribution is moving close to the
“center” of all source domain distributions. Note that the above alignment process is performed in a class-wise manner by using a one-hot vector (encoding
the data label). Besides, FedADG uses the loss function of the classifier to assist the learning of the feature extractor. After training, in FedALN, the reference
distribution and all the distributions of source domains features are aligned to learn a domain-invariant representation for domain generalization.

TABLE II
NOTATIONS.

Notation Description
K number of clients
S source domain
n number of source domain data
(x, y) data and its label
z random noise
h feature of source domain data
p(h) feature distribution
F (·) feature extractor
G(·) distribution generator
D(·) discriminator
C(·) classifier

C. FedADG Loss Function

FedADG loss function consists of adversarial loss function
and classification loss function.
Adversarial Loss Function. The adversarial loss function
includes three loss functions: Ladv d, Ladv f , and Ladv g .
They are elaborated on below.
Ladv d. The loss function Ladv d is used to update the pa-
rameters in discriminator. During adversarial learning, features
extracted by feature extractor F (·) are regarded as negative
samples, while features generated by distribution generator
G(·) are regarded as positive samples. Given the two types
of features with the same one-hot vector (encoding a label y),
the discriminator D(·) outputs the probability that they are
positive samples. Besides, the output of the D(·) is used to

calculate Ladv d to measure the difference between the two
types of samples. Ladv d is defined as

Ladv d = −Eh∼p(h)[(1−D(h|y))2]−
Eh′∼p(h′)[D(h′|y)2], (2)

where h = F (x) and p(h) is the F (·) generated distribution
over input data x. Likewise, h′ = G(z) and p(h′) is the G(·)
generated distribution over input data z. The random noise z
is drawn from [0, 1) uniformly.

A random projection layer is pre-pended to the discriminator
(as shown in Fig. 2). The random projection function is used to
linearly transform data from d1 dimensions to d2 dimensions
[31], where d1 > d2. It can be represented as d1 × d2 matrix
R. Let an n × d1 matrix h represent a d1-dimensional data
set. Each row in h represents d1-dimensional data and n is
the number of data. Let h̄ denote the projected data set and
we have h̄ = h × R. In this work, the random projection
layer helps stabilize the ALN training as well as reduce
computation.
Ladv f . For Ladv f , it is used by the discriminator to evaluate
the possibility that h is the positive sample. In adversarial
learning, given a fixed D(·), Ladv f is used to update the
parameters in the feature extractor. During the training of the
feature extractor, the negative samples h extracted by F (·) are
used to deceive the discriminator (in a successful deception,
discriminator treats h as positive samples). Thus, Ladv f is
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given by

Ladv f = Eh∼p(h)[(1−D(h|y))2]. (3)

Ladv g . For Ladv g , it is used by discriminator to evaluate
the possibility that h′ is the positive sample. In adversarial
learning, given a fixed D(·), Ladv g is used to update the
parameters in the distribution generator. Specifically, Ladv g

is given by

Ladv g = Eh′∼p(h′)[(1−D(h′|y))2]. (4)

In the definitions of Ladv d, Ladv f , and Ladv g , we borrow
the idea from [32] to use the least-squared term instead of the
log-likelihood term. This approach helps to address the non-
convergence problem during training.
Classification Loss Function. Let Lerr be the loss on the
classifier’s predictions. It is used to measure the error between
the label C(h) (h = F (x)) predicted by the classifier C(·)
and the real label y of the data. Lerr is the standard cross-
entropy loss [33] in FedADG. During training, Lerr controls
the update of both feature extractor and classifier. To prevent
overfitting, label smoothing regularization [34] is adopted in
computing Lerr to reduce the weight of the positive samples
in Lerr.
Complete Loss Function. The complete loss function of
FedADG is

LFedADG = Ladv d + Ladv g + λ0Ladv f + λ1Lerr, (5)

where Ladv d, Ladv g , and Ladv f are given in Eq. (2)-(4),
respectively. Both λ0 and λ1 are adjustable weight hyper-
parameters, where 0 < λ0 < 1, 0 < λ1 < 1, and λ0+λ1 = 1.
During training, the objective of FedADG is to minimize
LFedADG.

D. FedADG Training Algorithm

The detailed FedADG training is presented in Algorithm
1. The FedADG training process includes two phases: server
execution and client update.
Server Execution Phase. The server is used to aggregate
the model parameters uploaded by the clients. To begin the
training, in Step s1, the server initializes the parameters
w = {wf , wc, wg} of three network components (i.e., feature
extractor F (·), classifier C(·), and distribution generator G(·))
and distributes them to all clients. During the training process,
in Step s2 and Step s3, the server receives and aggregates
model parameters from all clients to obtain new parameters.
Then, the server sends the aggregated parameters to the
clients. After multiple rounds of server-client interaction, the
model can be well-trained. Note that the ML model (that is
constructed as the series connection of feature extractor and
classifier) is applied to target domains.
Client Update Phase. In the training process, the client
uses the local discriminator and receives the parameters w
of other components from the server to train on the local data.
Specifically, as shown in Step c2 and Step c3, Lerr is used
to control the training of classifier C(·) and feature extractor
F (·). Then, the parameters of F (·) and C(·) are updated to
minimize the loss λ0Ladv f + λ1Lerr. The parameters of the

Algorithm 1 FedADG Training Algorithm
Input: source domains S = {Sk|k = 1, ...,K}, one-hot
vector y, model parameters of F (·), C(·), and G(·) w =
{wf , wc, wg}, parameter of D(·) wd, etc.
Output: Feature extractor F (·) and Classifier C(·)

Server executes:
Step s1: Initialize w1

for round t = 1, 2, . . . , T do
for each client k = 1, 2, . . . ,K in parallel do

Step s2: wk
t+1 ← ClientUpdate(k,wt)

end for
Step s3: wt+1 ← 1

K

∑K
k=1 w

k
t+1

end for

ClientUpdate(k,w): // Execute on client k
Receive w = {wf , wc, wg} from server
for epoch i = 1, 2, . . . , E0 do

Step c2: Sample one mini-batch Sx from Sk

Step c3: Update wf and wc on Sx to minimize Lerr

end for
for epoch j = 1, 2, . . . , E1 do

Step c4: Sample one mini-batch Sx from Sk

Step c5: Update wf and wc on Sx to minimize
λ0Ladv f + λ1Lerr

Step c6: Use random number generator to generate one
mini-batch random numbers Sz

Step c7: Update wd on Sx and Sz to minimize Ladv d

Step c8: Update wg on Sz and y to minimize Ladv g

end for
Step c9: Upload the trained w to server

discriminator D(·) are updated to minimize the loss Ladv d. In
Step c8, the output of D(·) for the given positive samples with
y is used to update the parameters of G(·) to minimize the loss
Ladv g . After the local training is completed, the client uploads
the parameters w of F (·), C(·), and G(·) to the server.

V. FEDADG ANALYSIS

In this section, we first analyze how to learn domain-
invariant features in FedADG. Then, we explain how FedADG
achieves high performance on target domains.

A. How to Learn Domain-Invariant Features

Under the FL settings, FedADG aligns the distributions of
all source domain data to learn the domain-invariant features.
In the previous domain generalization techniques, the cen-
tralized server can access each client’s local data. Thus, it
can learn a domain-invariant feature via directly minimizing
the discrepancy between the source domains (e.g., using the
Maximum Mean Discrepancy (MMD) distance metric [35]).
However, in FL, the server can not access each client’s local
data, making it hard to learn the domain-invariant features.
In our proposed Adversarial Learning Network (ALN), the
distribution generator is shared among clients, indicating that
the reference distribution is identical for all clients. Thus, once
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(a) (b)
Fig. 3. T-SNE visualization of FedADG features before training (fixed distribution v.s. adaptively generated distribution). The red asterisk marker represents
the features of reference distribution. Each marker (except the asterisk) represents a distinct source domain. Each color (except red) represents a distinct
class label. Each feature is projected into two-dimensional space. (a) Source domain features and fixed distribution features. (b) Source domain features and
generated distribution features.

the discriminator is hard to distinguish between the feature
extracted from feature extractor and the feature generated from
distribution generator, the generated features are considered
to be invariant across multi-source domains. Note that ALN
can be trained in a federated manner (i.e., FedALN), which
eliminates the requirement for centralized training.

B. How to Achieve High Performance

There are two candidate approaches to obtain the reference
distribution in FedADG: pre-selected fixed distribution and
adaptively generated distribution. Using the adaptively gen-
erated distribution can increase the performance of FedADG
due to the following three reasons.
Less Distortion During Alignment. As shown in Fig. 3, we
employ t-SNE [36] to visualize the source domain features
and the reference distribution features before training the
model. Gaussian distribution is used as the fixed distribution.
It can be observed that the adaptively generated distribution
would locate close to the “center” of the distributions from
all the source domain features. Hence, the distances between
the adaptively generated distribution and the distributions (of
source domain data) are smaller than the distances between
the fixed reference distribution and the source domain distri-
butions. Thus, using the adaptively generated distribution can
reduce the distortion of extracted feature representation during
alignment. Less distortion means that the key information of
the original source domain data can be largely preserved,
resulting in the high generalization performance of FedADG.
Class-Wise Alignment. FedADG uses the label information
(encoded in a one-hot vector) in the adversarial training. Thus,
the distribution generator generates features for each class in
training. It means that the distributions of source domains data
are aligned in a class-wise manner. This fine-grained class-
wise alignment approach can further improve the performance
of FedADG.
More Discriminative Features. Fig. 4 shows the source
domain features and the reference distribution features after
training the model. The distances between different class

clusters in Fig. 4b are more evident than that in Fig. 4a. It
indicates that FedADG is capable of learning more discrim-
inative features among different classes for different source
domains. Therefore, FedADG has good domain generalization
performance.

VI. EXPERIMENTS

In this section, we conduct experiments to evaluate the
performance of FedADG under FL setting for IoT devices
with domain generalization. We first compare FedADG with
some recent centralized domain generalization solutions on
three different datasets. Then, we have an ablation study of
the FedADG scheme. Afterward, we investigate the in-domain
performance of FedADG. Last, we study the impact of the
different reference distributions.

A. Experimental Settings

Implementation. We conduct our experiments using Pytorch
1.7.1 deep learning framework and Python 3.6.5 on Ubuntu
16.04. We use four Linux terminals to simulate the deployment
of FedADG in IoT devices. Our server uses Geforce RTX
2080ti GPU with 24G RAM for computing. Following most
of the previous studies on FL [1], [6], we simulate the
computation of IoT devices (i.e., clients) on the Linux server
and then measure FedADG performance. Since the learning
process is exactly the same, the performance metrics measured
are accurate in our experiments.
Datasets. All experiments are based on three widely used
datasets in DG, i.e., VLCS (Pascal [37], LabelMe [38],
Caltech-101 [39], and SUN [40]), PACS [41] (Photo, Art
painting, Cartoon, and Sketch), and Office-Home [42] (Real-
World, Clipart, Product, and Art). All of them have four sub-
datasets, which form distinct domains. For each dataset, we
utilize the leave-one-domain-out validation strategy. That is,
we let one domain serve as the target domain and use the rest
domains as source domains. Like [10], each domain is divided
into a training set (70%) and a validation set (30%) randomly.
The well-trained model is tested on the target domain data.
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Less Discriminative

(a)

More Discriminative

(b)
Fig. 4. T-SNE visualization of FedADG features after training (fixed distribution v.s. adaptively generated distribution). There are three source domains (A,
C, S) data of the PACS dataset. In the legend, Ai represents the class label i of source domain A. The meanings of different colors and markers are the same
as Fig. 3. (a) Source domain features and fixed distribution features. (b) Source domain features and generated distribution features.

TABLE III
PARAMETERS SETTING IN EXPERIMENTS ON DIFFERENT DATASETS.

datasets (→) VLCS PACS Office-Home

λ0 0.85

λ1 0.15

lrf 0.01 0.001 0.05

lrg 0.007 0.0007 0.007

lrd 0.007 0.0007 0.001

Besides, we follow the protocol of [41] to perform experiments
on PACS. For Office-Home, we use the same protocol as
[43]. Since Office-Home and PACS have related domain types,
conducting experiments on these two datasets can check the
scalability of FedADG when the number of categories varies
from 7 to 65. The three used datasets are standard ones used
for studying domain generation. Thus, we can compare our
experimental results with prior solutions.
Network Architecture. We test the performance of FedADG
by using three pre-trained network architectures as the fea-
ture extractor. The three network architectures are the main
structure of AlexNet [44], ResNet18 [45], or ResNet50 [45]
without including their last layers. Besides, the classifier
consists of the last layer of these pre-trained network structures
and an additional output layer. For distribution generator and
discriminator, both of them have two fully connected layers.
The two layers of distribution generator and the first layer of
discriminator have the same size as the hidden representation.
The size of the second layer in discriminator is set to one.
Model Training. When updating the components’ parameters
in FedADG, each client uses Stochastic Gradient Descent
(SGD) to calculate the model gradient. The Rectified Linear
Unit (ReLU) is used as an activation function. We use the
data augmentation protocol from JiGen [11] to improve model
performance. The source domain local epoch E0 (for classi-
fication) is 3, E1 (for feature alignment) is 7, and batch size
is 16. The global model with the highest accuracy across all
source domains is used to test accuracy on the unseen target
domain.

Parameter Settings. In all experiments, the parameters of
feature extractor are initialized with pre-trained weights using
ImageNet [46]. The hyper-parameters of the feature extractor
and the initial learning rates of different components on
different datasets are detailed in Table III. Notice that the
hyper-parameters λ0 (0 < λ0 < 1) and λ0 (0 < λ1 < 1) train
the feature extractor together, and λ0 + λ1 = 1. In particular,
lrf is the learning rate of the feature extractor and classifier,
the learning rate of distribution generator and discriminator are
lrg and lrd, respectively. In our experiments, unless otherwise
stated, the hyper-parameters and learning rates are set as the
above default configuration.

B. Performance Evaluation

In this section, we compare FedADG with several recent
domain generalization solutions on VLCS, PACS, and Office-
Home datasets. These solutions are briefly introduced as
follows.

1) DANN [28], a neural network that can both accurately
classify source data and have features that are invariant
across multiple source domains. DANN is the abbrevi-
ation of Domain-Adversarial Neural Network.

2) JiGen [11], a supervised framework for learning to gen-
eralize across visual domains by solving jigsaw puzzles.

3) Epi-FCR [26], a scheme to learn domain shift us-
ing episodic training. Epi-FCR is the abbreviation of
Episodic-Feature and Classifier Regularisation.

4) MTSSL [47], a method for enabling models to learn
transferable features through a self-supervised task of
Gabor filter bank response prediction. MTSSL is the
abbreviation of Multi-Task Self-Supervised Learning.

5) EISNet [48], a network that uses self-supervised learning
and metric learning to improve classifier performance on
target domains. EISNet is the abbreviation of Extrinsic
and Intrinsic Supervision Network.

6) L2A-OT [49], a method to learn domain-invariant fea-
tures by augmenting the source domain with syn-
thetic data. L2A-OT is the abbreviation of Learning to
Augment by Optimal Transport.
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TABLE IV
THE AVERAGE CLASSIFICATION ACCURACY USING LEAVE-ONE-DOMAIN-OUT VALIDATION ON VLCS DATASET.

Paradigm Backbone Method Sun Pascal Labelme Caltech Avg.

Centralized w/o
privacy concern

AlexNet MTSSL [47] 58.88 62.59 64.99 89.15 67.67
AlexNet DANN [28] 63.60 66.40 64.00 92.60 72.40
AlexNet Epi-FCR [26] 65.90 67.10 64.30 94.10 72.85
AlexNet JiGen [11] 64.30 70.62 60.90 96.93 73.19
AlexNet RSC [27] 68.32 73.93 61.86 97.61 75.43

Distributed
AlexNet FedAvg [3] 46.65 48.77 52.32 71.43 54.79
AlexNet FedADG (ours) 71.81 73.40 61.07 93.44 75.09

Centralized w/o
privacy concern

ResNet18 JiGen [11] 71.40 70.93 62.06 96.17 75.14

ResNet18 RSC [27] 72.10 73.81 62.51 96.21 76.16

Distributed
ResNet18 FedAvg [3] 62.78 65.12 57.48 90.63 69.00
ResNet18 FedADG (ours) 74.95 73.20 61.20 95.78 76.28

7) DSON [50], a scheme that combines batch normalization
and instance normalization to enhance generalization
performance on target domains. DSON is the abbrevia-
tion of Domain Specific Optimized Normalization.

8) Mixstyle [12], a method for mixing features across
source domains to synthesize new source domains to
optimize model generalization.

9) RSC [27], a method to discard dominant features of
training data to optimize the generalization ability of a
model. RSC is the abbreviation of Representation Self-
Challenging.

All prior solutions require centralized data access, whereas
FedADG is used for domain generalization in a distributed
way. We also compare it with a recent state-of-the-art DG
method: FedDG [14], which does not centralize the dataset
and is also trained in the FL setting. Besides, FedAvg [3] is
used as a baseline. We do not compare COPA [13] because
of the following reasons. First, it sacrifices security (refer to
Section I for more details). Second, the project codes are not
publicly available. We also do not compare FL optimization
methods (e.g., FedProx, FedNova, and MOON) since these
papers do not focus on the domain generation problem. These
optimization methods differ from FedADG in the following
aspects. First, the source domain data in FedADG are from
different IoT devices with domain discrepancy, instead of
different subsets from the same dataset [13]. Second, the
discrepancy between the test datasets and training datasets in
FedADG also makes it more complex than those in federated
optimization methods. Moreover, FedADG requires building a
model that has high performance when testing over the related
but unseen target dataset rather than seen dataset. Note that
all solutions used in the comparison are constructed using the
same pre-trained network as FedADG. For each test, we run 5
trails and report the average results which are shown in Table
IV, Table V, and Table VI. In the three tables, each column
containing experimental results (except Avg. column) shows
the results when one domain is chosen as the target domain.
We highlight the best results in bold font.
VLCS. Table IV shows the domain generalization accuracy

on VLCS. We use two pre-trained networks, AlexNet and
ResNet18, as the backbone to compare FedADG with some
recent domain generalization solutions. Table IV shows that
FedADG outperforms most of the compared centralized so-
lutions. The performance is comparable to the recent RSC
solution. Besides, FedADG has good performance in both
small and large backbone networks.
PACS. Table V shows the domain generalization accuracy on
PACS. We use the same backbone network as in VLCS. In
Table V, we find that the performance of FedADG is better
than most of the compared centralized solutions. Furthermore,
the performance of FedADG is obviously improved compared
to FedDG, which is also a distributed DG method. Besides,
we observe that FedDG does not improve performance like
FedADG (as the backbone size increases from AlexNet to
ResNet18).

The accuracy of FedADG is slightly worse than the re-
cent solution L2A-OT. Specifically, FedADG significantly
improves the performance in the Sketch domain.
Office-Home. We also evaluate FedADG on the Office-Home
dataset and the results are shown in Table VI. ResNet18 and
ResNet50 are applied as the backbone. In Table VI, we observe
that FedADG is better than other solutions.
Compared with Traditional Centralized Method. Table IV,
Table V, and Table VI present the domain generalization
accuracy of FedADG and prior traditional centralized ma-
chine learning solutions without FL. These traditional ML
approaches are described in Section VI-B. In these tables, the
paradigm of these traditional ML solutions is represented as
“centralized w/o privacy concerns”. That is, these solutions
require the centralized server to access source domain data
and expose sensitive local information. In Table IV and Table
V, we find that the performance of FedADG is comparable to
the traditional ML methods. In particular, the generalization
accuracy of the AlexNet-based FedADG on PACS is over 1%
higher than the centralized approaches (e.g., MTSSL, Epi-
FCR, JiGen). Besides, Table VI shows that FedADG performs
significantly better than other traditional ML methods on
Office-Home dataset. In summary, our proposed FedADG
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TABLE V
THE AVERAGE CLASSIFICATION ACCURACY USING LEAVE-ONE-DOMAIN-OUT VALIDATION ON PACS DATASET.

Paradigm Backbone Method Sketch Artpaint Cartoon Photo Avg.

Centralized w/o
privacy concern

AlexNet DANN [28] 57.00 63.20 67.50 88.10 68.95
AlexNet MTSSL [47] 63.91 61.67 67.41 84.31 69.32
AlexNet Epi-FCR [26] 65.00 64.70 72.30 86.10 72.03
AlexNet JiGen [11] 65.18 67.63 71.71 89.00 73.38

Distributed
AlexNet FedAvg [3] 60.52 65.97 62.93 86.95 69.09
AlexNet FedDG [14] 67.63 66.50 63.51 89.26 71.73
AlexNet FedADG (ours) 69.15 71.68 70.14 87.01 74.50

Centralized w/o
privacy concern

ResNet18 Epi-FCR [26] 73.00 82.10 77.00 93.90 81.50
ResNet18 JiGen [11] 71.35 79.42 75.25 96.03 80.51
ResNet18 EISNet [48] 74.33 81.89 76.44 95.93 82.15
ResNet18 L2A-OT [49] 73.60 83.30 78.20 96.20 82.81

Distributed
ResNet18 FedAvg [3] 70.51 77.18 73.97 89.86 77.88
ResNet18 FedDG [14] 61.53 64.08 72.70 89.26 71.89
ResNet18 FedADG (ours) 78.56 81.39 75.39 93.64 82.25

TABLE VI
THE AVERAGE CLASSIFICATION ACCURACY USING LEAVE-ONE-DOMAIN-OUT VALIDATION ON OFFICE-HOME DATASET.

Paradigm Backbone Method Real Clipart Product Art Avg.

Centralized w/o
privacy concern

ResNet18 JiGen [11] 72.79 47.51 71.47 53.04 61.20
ResNet18 DSON [50] 74.68 45.70 71.84 59.37 62.90
ResNet18 RSC [27] 74.54 47.90 71.63 58.42 63.12

Distributed
ResNet18 FedAvg [3] 71.31 52.11 67.60 48.00 59.76
ResNet18 FedADG (ours) 74.98 53.98 70.83 58.13 64.48

Centralized w/o
privacy concern

ResNet50 Mixstyle [12] 69.20 53.20 68.20 51.10 60.43

ResNet50 RSC [27] 75.10 51.40 74.80 60.70 65.50

Distributed
ResNet50 FedAvg [3] 71.83 54.06 69.14 53.07 62.03
ResNet50 FedADG (ours) 76.48 56.09 74.87 60.27 66.93

TABLE VII
THE AVERAGE IN-DOMAIN CLASSIFICATION ACCURACY USING LEAVE-ONE-DOMAIN-OUT VALIDATION ON PACS DATASET.

Paradigm PACS Backbone Sketch Artpaint Cartoon Photo Avg.

Distributed

FedAvg (in) AlexNet 99.98 99.98 99.97 99.98 99.98
FedADG (in) AlexNet 98.13 98.06 97.96 98.03 98.05
FedAvg (in) ResNet18 99.12 98.08 98.38 95.83 97.85

FedADG (in) ResNet18 99.83 98.47 94.08 99.73 98.03

can achieve good domain generalization capability while still
protecting data privacy.

C. Ablation Study

An ablation study investigates the performance of FedADG
by removing a certain component to understand the contribu-
tion of the component to the overall FedADG scheme. We
perform ablation experiments on VLCS and PACS datasets
using AlexNet. Specifically, we focus on the distribution gen-
erator and discriminator, along with the data label (encoding

as a one-hot vector) in these two components. When we re-
move the one-hot vectors from both distribution generator and
discriminator, the remained FedADG is denoted as “FedADG
w/o one-hot”. We use “FedADG w/o RP” to denote FedADG
without the Random Projection (RP) layer. “FedADG w/o
G&D” represents FedADG without distribution generator and
discriminator. Fig. 5 shows the ablation study results. The
results analysis is performed as follows.

FedADG w/o one-hot. As shown in Fig. 5, FedADG has
higher accuracy in each target domain than FedADG w/o one-
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Fig. 5. Ablation study on VLCS and PACS datasets. “FedADG w/o one-
hot” means to remove the one-hot vector from FedADG. “FedADG w/o RP”
represents the model by removing the random projection layer from FedADG.
Besides, “FedADG w/o G&D” represents the model by removing distribution
generator and discriminator from FedADG.

hot. These results demonstrate that the class-wise alignment
can increase the generalization performance of FedADG.
FedADG w/o RP. Fig. 5 shows that the accuracy of FedADG
w/o RP is less than FedADG. The function of random pro-
jection is to decrease the dimension of features. The low-
dimension features stabilize the training of ALN and help to
do feature alignment. Thus, the random projection layer can
improve the performance of FedADG on target domains.
FedADG w/o G&D. Fig. 5 shows that the accuracy of
FedADG w/o G&D is less than FedADG. In terms of average
accuracy, FedADG is over 3% higher than FedADG w/o G&D
because the latter lacks of domain generalization design.

D. In-domain Performance Evaluation

The previous experimental results are tested on out-of-
domain data. We also measure the performance of FedADG on
in-domain data. We consider the commonly used experimental
setting: both the training and testing data come from the same
domain. AlexNet and ResNet18 are applied as the backbone
and PACS dataset is used in experiments. Table VII compares
the in-domain performance of FedADG and FedAvg. In Table
VII, “FedAvg (in)” and “FedADG (in)” represent the in-
domain performances of FedAvg and FedADG, respectively.

The results show that the in-domain performance of
FedADG is comparable to that of FedAvg. It indicates that
FedADG can be used on both source domains and the unseen
target domain. In practice, the clients can train both FedAvg
(used for in-domain data) and FedADG (used for out-domain
data).

E. Impact of Different Reference Distributions

As we have discussed in Section IV-B, the reference dis-
tribution helps to align the feature distributions of all source
domain data, which in turn improves the accuracy of classifica-
tion on target domains. In general, most existing works adopt
fixed reference distribution without considering the distortion
it may cause to the source domain distribution. In this part,
we investigate how the adaptively generated distribution can
outperform the fixed settings such as Gaussian distribution
(N ), Uniform distribution (U), and Laplace distribution [35].

TABLE VIII
EXPERIMENTAL RESULTS WHEN USING DIFFERENT REFERENCE

DISTRIBUTIONS IN FEDADG ON PACS DATASET.

Unseen domain (→) Sketch Artpaint Cartoon Photo Avg.

fixed reference distribution

N ∼ (0, I) 49.45 53.32 53.54 75.69 58.00
U ∼ [−1, 1] 38.23 57.71 55.33 81.26 58.13

Laplace(1/
√
2) 44.29 54.69 55.84 84.31 59.78

adaptively generated distribution

FedADG (ours) 69.15 68.99 70.14 87.01 73.82

The experimental results of different reference distributions
using AlexNet on PACS are shown in Table VIII.

In Table VIII, the parameter of the Laplace distribution we
compared in the experiment is 1/

√
2, which is proved by Li

et al. [35] to have the best effect on target domains. Moreover,
we find that the accuracy of the Laplace distribution with
the parameter of 1/

√
2 is higher than the other two fixed

distributions in the table. By observing all experimental results
in Table VIII, we notice that the average accuracy of the adap-
tively generated reference distribution can be 10% higher than
the accuracy of the fixed reference distributions. Especially
in the target domains of Cartoon and Sketch, the accuracy
of using the adaptively generated distribution in FedADG is
about 20% higher than the accuracy of the fixed reference
distribution. The remarkable result of FedADG supports the
effectiveness of using adaptively generated distribution. It
proves that the generated adaptive reference distribution can
promote the performance of the model for target domains.

VII. CONCLUSION

In this paper, we propose the FedADG scheme under the
federated learning setting for IoT devices with domain gener-
alization. The main idea of FedADG is to learn the domain-
invariant feature representation in FL while eliminating the
requirement for a centralized server to access IoT devices’
local data. First, we propose the federated adversarial learn-
ing approach to measure and align the distributions among
different source domains via matching each distribution to
the reference distribution. Specifically, we use the federated
adversarial learning technique to adaptively learn a dynamic
distribution (by accommodating all source domains) as the
reference distribution. Therefore, the learned feature repre-
sentation tends to be universal. Then, our proposed FedADG
uses the adaptively generated reference distributions and class-
wise alignment technique. It ensures that FedADG has good
generalization performance over the unseen target domains
while protecting local data privacy. Furthermore, we analyze
the explainability of FedADG, which helps researchers to
optimize the model and make the model more trustworthy.
Finally, the effectiveness of FedADG has been demonstrated
by intensive simulations. Thus, FedADG significantly boosts
FL performance for IoT devices. There are two directions to
launch further research. First, we aim to handle the scenario in
which the unseen target domain contains more classes than the
seen source domain. Second, we plan to find an optimization
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method to automatically balance the classification training
epoch and the alignment training epoch to obtain a better
federated generalization performance.
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