
Information Sciences 280 (2014) 205–217
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Achieving security, robust cheating resistance, and
high-efficiency for outsourcing large matrix multiplication
computation to a malicious cloud
http://dx.doi.org/10.1016/j.ins.2014.05.014
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +86 13658371220.
E-mail address: xy-lei@qq.com (X. Lei).
Xinyu Lei a,⇑, Xiaofeng Liao a, Tingwen Huang b, Feno Heriniaina a

a The State Key Lab. of Power Transmission Equipment & System Security and New Technology, College of Computer Science, Chongqing University,
Chongqing, China
b Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 June 2013
Received in revised form 6 May 2014
Accepted 10 May 2014
Available online 16 May 2014

Keywords:
Cloud computing
Matrix multiplication
Secure outsourcing
Monte Carlo verification
Computation outsourcing to the cloud has become a popular application in the age of cloud
computing. This computing paradigm brings in some new security concerns and challenges,
such as input/output privacy and result verifiability. Given that matrix multiplication compu-
tation (MMC) is a ubiquitous scientific and engineering computational task, we are motivated
to design a protocol to enable secure, robust cheating resistant, and efficient outsourcing of
MMC to a malicious cloud in this paper. The main idea to protect the privacy is employing
some transformations on the original MMC problem to get an encrypted MMC problem which
is sent to the cloud; and then transforming the result returned from the cloud to get the
correct result to the original MMC problem. Next, a randomized Monte Carlo verification
algorithm with one-sided error is introduced to successfully handle result verification. We
analytically show that the proposed protocol is correct, secure, and robust cheating resistant.
Extensive theoretical analysis and experimental evaluation also show its high-efficiency and
immediate practicability. Finally, comparisons between the proposed protocol and the
previous protocols are given to demonstrate the improvements of the proposed protocol.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

With the emergence of the cloud computing paradigm in scientific and business applications, it has become increasingly
important to provide service-oriented computing in third-party data management settings [24,23]. Cloud computing is capa-
ble of providing massive computing resources to clients as services while hiding implementation details from clients [1,32].
With this paradigm, the resource-constrained clients can off-load their intensive computational tasks to clouds, which are
equipped with massive computational resources. In contrast to setting up and maintaining their own infrastructures, the
clients can economically share the massive computational power, storage, and even some softwares of the cloud servers.

1.1. Challenges

Although it is quite promising, outsourcing computational problem to the commercial public inevitably brings in new
security concerns and challenges [6,21,22,35]. The first challenge is the client’s input/output data privacy. The outsourced

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.05.014&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.05.014
mailto:xy-lei@qq.com
http://dx.doi.org/10.1016/j.ins.2014.05.014
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

206 X. Lei et al. / Information Sciences 280 (2014) 205–217
computational problems and their results often contain sensitive information, such as the business financial records, VIP cus-
tomers lists, engineering data, or proprietary asset data, etc. To hide these information from the cloud, clients need to
encrypt their data before outsourcing and decrypt the returned result from the cloud after outsourcing. The second challenge
is the verification of the result returned by the cloud. A cloud server might not always provide the accurate result of a given
computational task. As an example of intentional reasons, for the outsourced computational intensive tasks, there are strong
financial incentives for the cloud to be lazy and just return incorrect answers to the client if such answers require less work
and are unlikely to be detected by the client. Besides, some accidental reasons such as possible software bugs or hardware
failures may also result in wrong computational results. Consequently, the outsourcing protocol must be designed in such a
way that it is able to detect whether the returned result is correct. The third challenge is efficiency. On one hand, a key
requirement is that the amount of local work performed by the client must be substantially cheaper than performing the
original computational problem on its own. Otherwise, it does not make sense for the client to resort to the cloud. On the
other hand, it is also desirable to maintain the amount of work performed by the cloud as close as possible to that needed
to compute the original problem by the client itself. Otherwise, the cloud may be unable to complete the task in a reasonable
amount of time, or the cost of the cloud may become prohibitive. To summarize, a protocol for computation outsourcing
should satisfy the following for aspects: correctness, security, verifiability and efficiency.

1.2. Motivations

Matrix multiplication computation (MMC) is a basic computational problem in scientific and engineering fields and has a
number of applications. This can be well illustrated by the following examples. MMC is frequently used in statistics theory.
Take a typical linear regression model y ¼ Xb as an example, the least squared error method yields an solution for b by com-
puting b ¼ ðXT XÞ�1

XT y [29]. Besides, MMC plays an important role in linear algebra and matrix theory [26]. For instance, the
linear discrete dynamical systems are best studied in a matrix formulation xnþ1 ¼ Axn, where the solution is xn ¼ Anx0. The
computation of An allows us to obtain this solution. Moreover, MMC is well rooted in many other scientific and engineering
fields including image encryption [31,38], 3D graphics simulations [13], discriminant analysis [36,27], sliding mode analysis
[16,4], to just list a few. In short, MMC is widely needed for a variety of potential clients. When the restricted computational
resources are possessed by these clients and MMC deals with large matrices, an economical solution is to outsource MMC to
a powerful cloud. Even if the data is in a moderate scale, for clients as battery-limited mobile phones, portable devices, or
embedded smart cards, secure outsourcing of MMC is preferred. Consequently, we are motivated to design a protocol that
enables clients to securely, verifiably, and efficiently outsource MMC to a cloud.

1.3. Contributions

We regard our main contributions as fourfold:

1. We identify a common scientific and engineering computational task, i.e., matrix multiplication computation
outsourcing, and then design a protocol to fulfill it.

2. We show that the proposed protocol can simultaneously achieve goals of correctness, security, robust cheating resistance,
and efficiency.

3. By introducing Monte Carlo verification algorithm, the problem of result verification is well addressed. Additionally, the
superiority of Monte Carlo verification algorithm in designing inexpensive result verification algorithm for secure
outsourcing is well demonstrated.

4. We show by theoretical analysis and experimental evaluation that the proposed protocol is highly efficient, and therefore,
it can be deployed in practical applications immediately.

1.4. Organization

The remainder of this paper proceeds as follows. Section 2 introduces some essential preliminaries. In Section 3, we
describe the proposed protocol with detailed techniques. Sections 4 and 5 give some related analysis and performance
evaluation, followed by Section 6 which overviews the related work. Finally, some conclusions are drawn in Section 7.
2. Preliminaries

2.1. System model, threat model, design goals, and framework

2.1.1. System model
We consider the secure MMC outsourcing system model, as illustrated in Fig. 1. A client with low computational power

intends to outsource the multiplication computation of matrices X and Y, denoted as U ¼ ðX;YÞ, to a cloud service provider,
who has massive computational power and special softwares. In order to protect input privacy, the client encrypts the
original MMC problem U using a secret key K to get a new computational problem, written as UK . Later, the encrypted

X. Lei et al. / Information Sciences 280 (2014) 205–217 207
UK is given to the cloud for a result. Once the cloud receives UK , the computation is carried out with softwares; then the
cloud sends back the result to UK . The cloud also sends back a proof C that tries to prove the returned result is indeed correct
and the cloud does not cheat. On receiving the returned result, the client decrypts the returned result using the secret key K
to get the result to the original MMC problem U. Meanwhile, the client checks whether this result is correct: if yes, accepts it;
if no, just rejects it.

2.1.2. Threat model
The security threats faced by the outsourcing system model primarily come from the behavior of the cloud. Generally,

there are two levels of threat models in outsourcing: semi-honest cloud model and malicious cloud model [20]. In the
semi-honest cloud model, the cloud correctly follow the protocol specification. However, the cloud records all the informa-
tion it can access, and attempts to use this to learn information that should remain private. While in the malicious cloud
model, the cloud can arbitrarily deviate from the protocol specification [20]. The malicious cloud may just return a random
result to the client to save its computing resources, while hoping not to be detected by the client. Therefore, an outsourcing
protocol in the malicious cloud model should be able to handle result verification. In this paper, we assume that the cloud is
malicious. The proposed protocol should be able to resist such a malicious cloud.

2.1.3. Design goals
We identify the following goals that the outsourcing protocol should satisfy.

� Correctness. If both the client and the cloud follow the protocol honestly, the original MMC U can be indeed fulfilled by
the cloud and the client gets a correct result to U.
� Security. The protocol can protect the privacy of the client’s data. On one hand, given the encrypted UK , the cloud cannot

get meaningful knowledge of the client’s original input data U, which is referred to as input privacy. On the other hand, the
correct result to the original MMC problem U is also hidden from the cloud, and this is called as output privacy.
� Robust cheating resistance. The correct result from a faithful cloud server must be verified successfully by the client. No

false result from a cheating cloud server can pass the verification with a non-negligible probability.
� Efficiency. The local computation done by the client should be substantially less than the computation of the original

MMC U on its own. In addition, the amount of computation on computing the encrypted UK should be as close as possible
to that on computing the original U.

2.1.4. Framework
Syntactically, a secure MMC outsourcing protocol should contain five sub-algorithms: (1) the algorithm for key genera-

tion KeyGen, (2) the algorithm for MMC encryption MMCEnc, (3) the algorithm for solving MMCK problem MMCSolve, (4) the
algorithm for MMC decryption MMCDec, and (5) the algorithm for result verification ResultVerify.

One significant difference between this framework and the traditional encryption framework is that in this case both
encryption and decryption processes occur in the client side. This eliminates the expensive public key exchange process
in the traditional encryption framework. Therefore, this framework is able to efficiently provide one-time-pad type of
flexibility. That is to say, KeyGen will be run every time for a new outsourced MMC instance to enhance security. Once we
have this framework, we just need to work out the details of these four sub-algorithms, which will be shown in Section 3.

2.2. Mathematical background

Permutation function is well studied in group theory and combinatorics. In Cauchy’s two-line notation, one lists the pre-
image element in the first row, and for each preimage element lists its image under the permutation below it in the second
row. Then the permutation function can be written as:
1 . . . m

p1 . . . pm

� �
: ð1Þ
Fig. 1. Secure MMC outsourcing system model.

208 X. Lei et al. / Information Sciences 280 (2014) 205–217
We use a permutation function pðiÞ ¼ pi, where i ¼ 1; . . . ;m, to denote (1). Let p�1 denote the inverse function of p. We
denote by p RandPð1; . . . ;mÞ the process of generating a random permutation p of preimage as integers 1; . . . ;m. We write
fk1; . . . ; kmg K to denote fk1; . . . ; kmg are all chosen uniformly at random from the key space K. The Kronecker delta func-
tion dx;y is defined as
dx;y ¼
1; x ¼ y;

0; x – y:

�
ð2Þ
Let Xði; jÞ; xi;j, or xij denote the entry in ith row and jth column in matrix X, where i and j are indexed from 1 to n.

3. Protocol construction

In this section, each part of the framework for secure outsourcing of MMC will be individually solved.

3.1. Secret key generation

Consider a matrix X 2 Rm�n and a matrix Y 2 Rn�s, where necessarily the number of columns in X equals to the number of
rows in Y. The resource-constrained client wants to securely outsource the computation of XY to the cloud. The protocol
starts by invoking Procedure Secret-Key-Generation to set up a secret key K.

Algorithm 1. Procedure Secret-Key-Generation

Input: A security parameter k.
Output: Secret key K : fa1; . . . ;amg; fb1; . . . ; bng; fc1; . . . ; csg;p1;p2;p3.

1: On input a security parameter k, which specifies three key spaces Ka;Kb, and Kc, the client picks three sets of
random numbers: fa1; . . . ;amg Ka; fb1; . . . ; bng Kb, and fc1; . . . ; csg Kc, where 0 R Ka [Kb [Kc.

2: The client invokes Algorithm 2 to generate three random permutations:
p1 RandPð1; . . . ;mÞ;p2 RandPð1; . . . ;nÞ, and p3 RandPð1; . . . ; sÞ.
Algorithm 2. Random Permutation Generation

Output: a permutation p of integers 1; . . . ;m.
1: Set p ¼ Im. (identical permutation)
2: for i ¼ m down to 2
3: Set j to be a random integer with 1 6 j 6 i.
4: Swap p½j� and p½i�.
5: end for

Algorithm 2 is due to Durstenfeld [9], it is usually called Fisher-Yates shuffle [18]. There are several variants of Algorithm
2 to generate a random permutation. However, indeed, the asymptotic time complexity of Algorithm 2 has already been
optimal. This is the reason for this algorithm to be used for random permutation generation in this work.
3.2. MMC encryption

Next, we describe Procedure MMC-Encryption.

Algorithm 3. Procedure MMC-Encryption

Input: The original MMC problem U and the secret key K: fa1; . . . ;amg; fb1; . . . ; bng; fc1; . . . ; csg;p1;p2;p3.
Output: UK ¼ ðX0;Y0Þ.

1: The client generates matrices P1;P2;P2, where P1ði; jÞ ¼ aidp1ðiÞ;j;P2ði; jÞ ¼ bidp2ðiÞ;j;P3ði; jÞ ¼ cidp3ðiÞ;j.

2: The client computes X0 ¼ P1XP�1
2 and Y0 ¼ P2YP�1

3 . According to Theorems 1 and 2, the client can use (4) and (9) to
efficiently (via time Oðn2Þ) compute X0 and Y0.

3: Later, the encrypted MMC problem UK ¼ ðX0;Y0Þ will be outsourced to the cloud.

X. Lei et al. / Information Sciences 280 (2014) 205–217 209
Lemma 1. In Procedure MMC-Encryption, matrices P1;P2, and P3 are invertible. More precisely,
P�1
1 ði; jÞ ¼ ðajÞ�1dp�1

1
ðiÞ; j;

P�1
2 ði; jÞ ¼ ðbjÞ

�1dp�1
2
ðiÞ; j;

P�1
3 ði; jÞ ¼ ðcjÞ

�1dp�1
3 ðiÞ; j

:

8>>><
>>>:

ð3Þ
Proof. Since 0 R Ka, the determinant of P1 satisfies detðP1Þ – 0. Hence, P1 is invertible. Likewise, P2 and P3 are invertible.
Hereafter, the proof is straightforward and therefore is omitted. h
Theorem 1. In Procedure MMC-Encryption, if X0 ¼ P1XP�1
2 , then it holds that
X0ði; jÞ ¼ ðai=bjÞXðp1ðiÞ;p2ðjÞÞ: ð4Þ
Proof. Let
X ¼

x1;1 . . . x1;n

..

. . .
. ..

.

xm;1 . . . xm;n

2
664

3
775: ð5Þ
Since P1ði; jÞ ¼ aidp1ðiÞ;j, this leads to
P1X ¼

a1xp1ð1Þ;1 . . . a1xp1ð1Þ;n

..

. . .
. ..

.

aixp1ðiÞ;1 . . . aixp1ðiÞ;n

..

. . .
. ..

.

amxp1ðmÞ;1 . . . amxp1ðmÞ;n

2
666666664

3
777777775
: ð6Þ
By Lemma 1, we have P�1
2 ði; jÞ ¼ ðbjÞ

�1dp�1
2 ðiÞ;j

. Then, one can obtain
P1XP�1
2 ¼

a1
b1

xp1ð1Þ;p2ð1Þ . . . a1
bj

xp1ð1Þ;p2ðjÞ . . . a1
bn

xp1ð1Þ;p2ðnÞ

..

. . .
. ..

. . .
. ..

.

ai
b1

xp1ðiÞ;p2ð1Þ . . . ai
bj

xp1ðiÞ;p2ðjÞ . . . ai
bn

xp1ðiÞ;p2ðnÞ

..

. . .
. ..

. . .
. ..

.

am
b1

xp1ðmÞ;p2ð1Þ . . . am
bj

xp1ðmÞ;p2ðjÞ . . . am
bn

xp1ðmÞ;p2ðnÞ

2
66666666664

3
77777777775
: ð7Þ
This can be finally rewritten as
P1XP�1
2 ¼ X0ði; jÞ ¼ ðai=bjÞXðp1ðiÞ;p2ðjÞÞ: ð8Þ
The proof is completed. h

Analogously, the following theorem is obtained.

Theorem 2. In Procedure MMC-Encryption, if Y0 ¼ P02YP�1
3 , then it follows that
Y0ði; jÞ ¼ ðbi=cjÞYðp2ðiÞ;p3ðjÞÞ: ð9Þ
3.3. MMC in the cloud

See Procedure UK -in-the-Cloud.

Algorithm 4. Procedure UK -in-the-Cloud

Input: UK ¼ ðX0;Y0Þ.
Output: Z0 ¼ X0Y0.

1: On input the encrypted MMC problem UK ¼ ðX0;Y0Þ, the cloud then invokes any matrix multiplication algorithm to
compute Z0 ¼ X0Y0.

2: The cloud then sends matrix Z0 back to the client.

210 X. Lei et al. / Information Sciences 280 (2014) 205–217
3.4. MMC decryption

See Procedure MMC-Decryption.

Algorithm 5. Procedure MMC-Decryption

Input: Z0 and the secret key K.
Output: Z.

1: On receiving the returned matrix Z0 from the cloud, the client compute Z ¼ P�1
1 Z0P3. According to Theorem 3, the

client can use (10) to efficiently (via time Oðn2Þ) compute Z.

3.5. Result verification

Generally, handling result verification is not an easy task. However, this problem is well addressed by using the idea of
Freivalds’ algorithm [10,28]. Technique details are elaborated in Procedure Result-Verification. We defer the detailed anal-
ysis of it in Section 4.

Algorithm 6. Procedure Result-Verification

Input: The decrypted but unchecked result Z.
Output: Accepts Z as the correct result; or rejects it.

1: for i ¼ 1 : l
2: The client generates an s� 1 random 0=1 vector r.
3: The client computes P ¼ X� ðYrÞ � Z� r.

4: if P – ð0; . . . ;0ÞT
5: Output ‘‘verification fails’’; aborts.
6: end if
7: end for
8: The client accepts Z as a correct result if it passes the above check, or else, it will be rejected.

Theorem 3. In Procedure Result-Verification, if Z ¼ P�1
1 Z0P3, then it holds that
Zði; jÞ ¼ ðcp�1
3 ðjÞ

=ap�1
1 ðiÞ
ÞZ0 p�1

1 ðiÞ;p�1
3 ðjÞ

� �
: ð10Þ
Proof. The detailed proof is similar to Theorem 1. We now briefly describe the proof. By Lemma 1, we have
P�1

1 ði; jÞ ¼ ðajÞ�1dp�1
1 ðiÞ;j

. Together with P3ði; jÞ ¼ cidp3ðiÞ;j, then (10) can be deduced from Z ¼ P�1
1 Z0P3. h

3.6. The completed protocol

We now present the completed protocol that contains five sub-algorithms (KeyGen, MMCEnc, MMCSolve, MMCDec,

ResultVerify) as follows:

� KeyGenð1kÞ: On input a security parameter k, the client invokes Procedure Secret-Key-Generation to get a secret key
K : fa1; . . . ;amg; fb1; . . . ; bng; fc1; . . . ; csg;p1;p2;p3.
� MMCEncðU; KÞ: On input the original MMC problem U and the secret key K, the client invokes Procedure MMC-Encryption

to encrypt U into an encrypted MMC UK to protect input privacy.
� MMCSolveðUKÞ: On input the encrypted MMC problem UK , the cloud invokes Procedure UK -in-the-Cloud to get a result Z0

to UK . Then, the cloud returns Z0 and an empty proof C to the client.
� MMCDecðZ0;KÞ: On input the returned result Z0 and the secret key K, the client invokes Procedure MMC-Decryption to get

the unchecked result Z to the original MMC problem U.
� ResultVerifyðZ;CÞ: On input the decrypted but unchecked result Z and the empty proof C, the client invokes Procedure

Result-Verification to check its correctness. If they pass the check, then accepts it as the correct result; otherwise, just
rejects it.

X. Lei et al. / Information Sciences 280 (2014) 205–217 211
3.7. A numerical example

A numerical example is presented to illustrate the encryption and decryption processes. Suppose that the client intends to

outsource a MMC problem U ¼ ðX;YÞ, where X ¼ 1 1 1
1 1 1

� �
and Y ¼

2 2 2 2
2 2 2 2
2 2 2 2

2
4

3
5. The client generates the secret key to

be: fa1;a2g ¼ f2;3g, fb1; b2; b3g ¼ f4;5;6g, fc1; c2; c3; c4g ¼ f7;8;9;10g;p1 ¼ ½2;1�;p2 ¼ ½2;1;3�;p3 ¼ ½1;3;4;2�. Then one

has P1 ¼
0 2
3 0

� �
;P�1

1 ¼
0 1=3

1=2 0

� �
, P2 ¼

0 4 0
5 0 0
0 0 6

2
4

3
5, P�1

2 ¼
0 1=5 0

1=4 0 0
0 0 1=6

2
4

3
5, P3 ¼

7 0 0 0
0 0 8 0
0 0 0 9
0 10 0 0

2
664

3
775, and

P�1
3 ¼

1=7 0 0 0
0 0 0 1=10
0 1=8 0 0
0 0 1=9 0

2
664

3
775. The client then computes the encrypted MMC problem UK ¼ ðX0;Y0Þ, where X0 ¼ P1XP�1

2

¼ 1=2 2=5 1=3
3=4 3=5 1=2

� �
and Y0 ¼ P2YP�1

3 ¼
8=7 1 8=9 4=5

10=7 5=4 10=9 1
12=7 3=2 4=3 6=5

2
4

3
5. On input the encrypted MMC problem UK ¼ ðX0;Y0Þ,

the cloud computes Z0 ¼ X0Y0 ¼ 12=7 3=2 4=3 6=5
18=7 9=4 2 9=5

� �
and then sends it back to the client. On input the returned result

Z0, the client recovers the result to the original MMC problem by computing Z ¼ P�1
1 Z0P3 ¼

6 6 6 6
6 6 6 6

� �
. It can be easily

verified that Z ¼ XY.
The above example can help the readers to gain an insightful understanding of the proposed protocol.

4. Correctness, security, and verifiability analysis

4.1. Correctness guarantee

Theorem 4. The proposed protocol is correct.
Proof. It suffices to show that if both the client and the cloud follow the protocol honestly, then the result Z0 returned by a
honest cloud server will always be decrypted successfully and the corresponding result Z is always correct. Observe that X0

and Y0 are given by X0 ¼ P1XP�1
2 ;Y0 ¼ P2YP�1

3 . Note that an honest cloud server computes Z0 ¼ X0Y0 ¼ P1XYP�1
3 , then by

Z ¼ P�1
1 Z0P3, we have Z ¼ XY. This implies the proposed protocol is correct. h
4.2. Security guarantee

4.2.1. Input privacy
The proposed protocol can protect input privacy if given the encrypted UK , the cloud cannot recover the client’s input data

in U. We first consider the case given the encrypted matrix X0, the cloud attempts to recover the original matrix X. The ori-
ginal matrix X is encrypted by the following two phases:

1: The position of each entry in the original matrix X is rearranged under two random permutations, i.e.,
Tði; jÞ ¼ Xðp1ðiÞ;p2ðjÞÞ.

2: Each entry in matrix T is further masked by multiplying a factor, i.e., X0ði; jÞ ¼ ðai=bjÞTði; jÞ.

In Phase 1, the key space consists of all random permutations of p1;p2, meaning that there are m! � n! cases of permuta-
tions. Each case occurs exactly with probability 1

m!�n!
. This implies that even if the cloud has the correct matrix T, the expected

time of brute-force attack on the key space to recover the original matrix X is m!�n!
2 , which is definitely a non-polynomially-

bounded quantity. In Phase 2, each entry in matrix T is further masked, the expected time of brute-force attack on the key

space to guess fa1; . . . ;amg and fb1; . . . ; bng is jKa jm �jKb jn

2 . A choice of large key spaces Ka and Kb will thwart this attack. Further
consider that a new different secret key is generated in each run of the protocol, so the cloud cannot recover X from X0 by
trivial means. Likewise, the cloud cannot recover Y from Y0. Accordingly, the proposed protocol is believed to reach an appli-
cable secure level in practice and hence input privacy is protected.

4.2.2. Output privacy
The proposed protocol can protect output privacy if given the returned result Z0, the cloud cannot recover the correct

result Z to the original MMC problem U. Based on (10), we have that the protection of output privacy can be analyzed in
the same way with that of input privacy. It is omitted accordingly.

212 X. Lei et al. / Information Sciences 280 (2014) 205–217
4.3. Verifiability guarantee

Theorem 5. The proposed protocol satisfies robust cheating resistance.
Proof. The correctness of the decrypted result Z is checked from Step 1 to Step 7 in Procedure Result-Verification. The ran-
dom check process from Step 2 to Step 6 is repeated l times. We now define the following two parameters to facilitate our
proof. Let Prob1 be the probability of non-detection of a false returned result in one round of a random check process. Let
Probf denote the probability of check failure, i.e., the probability of non-detection of a false returned result in whole l times
random check processes.

The proof consists of two steps. First, we show that the result from a faithful cloud server must be verified successfully by
the client. From Theorem 4, if the cloud is faithful, we have Z ¼ XY. So
P ¼ X� ðYrÞ � Z� r ¼ ð0; . . . ;0ÞT; ð11Þ
regardless of what vector r is. Therefore, the verification failure step (Step 5 in Procedure Result-Verification) will never be
executed. This means that a correct result Z must be verified successfully by the client.

Next, we show that no false result from a cheating cloud server can pass the verification with a non-negligible probability.
In other words, we attempt to prove that Probf is a negligible quantity. Let
D ¼ X� Y � Z;P ¼ D� r ¼ ðp1; . . . ;pmÞ
T
; ð12Þ
if the cheating cloud return a false Z0, then this leads to Z – XY. Accordingly, we have D – 0, so at least one element of D is
non-zero. Suppose that the element dij – 0. By the definition of matrix–vector multiplication,
pi ¼
Xs

k¼1

dikrk ¼ di1r1 þ � � � þ dijrj þ � � � þ disrs ¼ dijrj þ y; ð13Þ
where y ¼
Ps

k¼1dikrk � dijrj. Then, Total Probability Theorem yields
Pr½pi ¼ 0� ¼ Pr½pi ¼ 0jy ¼ 0�Pr½y ¼ 0� þ Pr½pi ¼ 0jy – 0�Pr½y – 0�: ð14Þ
Note from (13) that
Pr½pi ¼ 0jy ¼ 0� ¼ Pr½rj ¼ 0� ¼ 1=2;
Pr½pi ¼ 0jy – 0� 6 Pr½rj ¼ 1� ¼ 1=2:

�
ð15Þ
Substituting (15) into (14) results in
Pr½pi ¼ 0� 6 ð1=2ÞPr½y ¼ 0� þ ð1=2ÞPr½y – 0�: ð16Þ
Putting Pr½y – 0� ¼ 1� Pr½y ¼ 0� into (16) leads to
Pr½pi ¼ 0� 6 1=2: ð17Þ
Based on (17) Prob1 satisfies
Prob1 ¼ Pr½P ¼ ð0; . . . ;0ÞT� 6 Pr½pi ¼ 0� 6 1
2
: ð18Þ
Observe that the random check process is repeated l times, Probf can be estimated by
Probf 6 Probl
1 6

1

2l
; ð19Þ
which demonstrates that Probf is a negligible quantity in terms of l. This completes the proof. h

It can be deduced from the proof of Theorem 5 that the proposed protocol can handle result verification with check failure
(non-detection of false result) probability at most 2�l. The size of l is a tradeoff between the probability of cheating failure
and efficiency. While a conservative choice of high cheating resistance should probably require l to be around 80 bits, for a
fast check a reasonable choice of 20 bits is also acceptable.

4.4. Further discussions on result verification

Let us introduce the notion of Monte Carlo verification algorithm, which is formally defined below.

Definition 1. (Monte Carlo Verification Algorithm [28]) The classification and definition of Monte Carlo verification
algorithm is summarized in Table 1. The detailed verbal description of case 1 is as follows: for a randomized verification
algorithm Vrfy and any decrypted but unchecked result Res, if

Table 1
Classification and definition of Monte Carlo verification algorithm.

Cases Satisfied conditions Definitions

Case 1 Pr½Vrfy accepts Resj Res is correct� ¼ 1, True-biased Monte Carlo verification
Pr½Vrfy accepts ResjRes is false� 6 d. algorithm with one-sided error d

Case 2 Pr½Vrfy accepts ResjRes is correct�P �, False-biased Monte Carlo verification
Pr½Vrfy accepts ResjRes is false� ¼ 0. algorithm with one-sided error �

Case 3 Pr½Vrfy accepts ResjRes is correct�P �, Monte Carlo verification algorithm
Pr½Vrfy accepts ResjRes is false� 6 d. with two-sided errors ðd; �Þ

Table 2
Theoret

Clien

KeyG

Oðm

X. Lei et al. / Information Sciences 280 (2014) 205–217 213
Pr½Vrfy accepts ResjRes is correct� ¼ 1;
Pr½Vrfy accepts ResjRes is false� 6 d; ð20Þ
then we define Vrfy as a true-biased Monte Carlo verification algorithm with one-sided error d. The detailed verbal descrip-
tion of case 2 and case 3 can be analogously obtained.

Based on Definition 1 and the proof of Theorem 5, we immediately have the following theorem.

Theorem 6. One round of random check process, i.e., from Step 2 to Step 6 in Procedure Result-Verification, is a true-biased Monte
Carlo verification algorithm with one-sided error 1

2.
For a Monte Carlo verification algorithm with one-sided error, the failure probability can be reduced (and the success
probability amplified) by running the algorithm multiple times. Indeed, this mechanism has been exploited in our Procedure
Result-Verification. According to the above analysis, case 2 and case 3 of Monte Carlo verification algorithms (see Table 1)
can also be used in designing practical result verification algorithms for secure outsourcing. One may see in what follows
that Monte Carlo verification algorithm offers superiority in handling result verification, which is usually a difficult task
in secure outsourcing.

5. Performance evaluation

5.1. Theoretical results

Client side overhead. The client side overhead is generated by running four sub-algorithms: KeyGen, MMCEnc, MMCDec,

and ResultVerify. The time cost for KeyGen is Oðmþ nþ sÞ. In MMCEnc, applying (4) and (9) to efficiently compute X0 and Y0, it
only takes time Oðmnþ nsÞ. Likewise, the time consumed by MMCDec is OðmsÞ. As to ResultVerify, it only takes time OðmsÞ.

Cloud side overhead. For the cloud, its only computation overhead is generated by running MMCSolve. Suppose that the
schoolbook matrix multiplication is used in the cloud side, the time consumed by MMCSolve is OðmnsÞ.

Table 2 summarizes the theoretical performance of the proposed protocol. The overall time cost is Oðmnþ nsþmsÞ for the
client and OðmnsÞ for the cloud. From the perspective of efficiency, the proposed protocol is feasible due to there exists a gap
between Oðmnþ nsþmsÞ and OðmnsÞ. Therefore, as long as ðm;n; sÞ become sufficiently large, the proposed protocol is able
to allow the client to outsource MMC to the cloud and gain substantial computational savings. This claim will be further val-
idated by our experiments in the next subsection.

5.2. Experimental results

Theoretical analysis of the protocol has shown that outsourcing indeed benefits the client. We proceed to implement the
protocol to assess its practical efficiency in this subsection. Both client and cloud server computations in our experiments are
conducted on the same workstation. If we implement the protocol for both client side and cloud side on the same worksta-
tion and measure their running time, then the ratio of time (see the definition of cloud efficiency in the next paragraph) can
reflect the asymmetric amount of computation performed in both sides. However, if we implement the protocol on two dif-
ferent workstations with one in client side and the other in cloud side, then the cloud efficiency will be case-specific, depend-
ing on the asymmetric computing speed owned by the two different workstations. Consequently, one-workstation-based
ical performance of the proposed protocol.

t side Cloud side

en MMCEnc MMCDec ResultVerify Sending cost MMCSolve Sending cost

þ nþ sÞ Oðmnþ nsÞ OðmsÞ OðmsÞ UK ¼ ðX0;Y0Þ OðmnsÞ Z0

Table 3
Notations.

Notations Means

toriginal The time for the client to compute the original MMC locally
tcloud The time for the cloud to compute the outsourced MMC
tclient1 The time for the client to generate the secret key and encrypt the original MMC
tclient2 The time for the client to decrypt and verify the returned result
tclient tclient ¼ tclient1 þ tclient2

214 X. Lei et al. / Information Sciences 280 (2014) 205–217
experiment is employed. Additionally, we ignore the communication latency between the client and the cloud for this appli-
cation since the computation dominates the running time as shown in our experiments.

Our goal is to find the performance gain for the client by outsourcing. Thus, the main performance indicator is a ratio of
the time that is needed if the computation is done locally over the time that is needed by the client’s computation if out-
sourcing is chosen. With clear definition of parameters in Table 3, the performance gain of the client can be shown by
toriginal
tclient

; we refer to this as client speedup. This value theoretically should be a considerable positive number greater than 1,
which means there is a considerable performance gain. We also consider another metric, i.e., the cloud efficiency, using
toriginal
tcloud

. Ideally, the MMC encryption should not increase the time to solve the original MMC. It is desirable that the cloud effi-
ciency is close to 1.

The implementation is done using Matlab2012a on a workstation equipped with Intel (R) Core (TM) 3.20 GHz CPU and
4 GB RAM. The schoolbook matrix multiplication algorithm is used by the cloud. We set m : n : s ¼ 4 : 5 : 6;
Ka ¼ f1; . . . ;mg;Kb ¼ f1; . . . ;ng, and Kc ¼ f1; . . . ; sg. All of matrix instances in experiments are generated with each entry
randomly located in ð0;1Þ. Three groups of experiments are conducted with l ¼ 20; l ¼ 50, and l ¼ 80, which correspond
to efficiency priority, tradeoff, and cheating resistance priority cases.

The main performance is shown in Table 4. It can be observed that client speedup is monotonically increasing with matrix
dimensions. Outsourcing MMC is able to gain more than 14 times client speedup if ðm;n; sÞ are sufficiently large. It is shown
from Table 4 that tclient2 > tclient1, which indicates that handling result decryption and verification is more costly. Besides, the
cloud efficiency stays close to 1, which is very satisfactory. The comparison of client speedup as a function of n is depicted in
Fig. 2. It is shown that client speedup in the case of efficiency priority (l ¼ 20) is much larger than that in the case of cheating
resistance priority (l ¼ 80), which is expected. Note that, in our experiments, matrix dimensions are no more than 3600. A
matrix with dimensions no more than 3600 is not an unreasonably large matrix. Many real world applications, e.g., MMC
from scientific computing, could easily lead to large matrices with considerably more than 3600 dimensions.

6. Related work and comparisons

Secure outsourcing, since its proposal, has stimulated considerable research efforts both from theoretical cryptographers
and security engineers. With the advent of cloud and mobile computing age, the theoretical cryptographers’ interest in
Table 4
Performance of the proposed protocol (time is in ‘‘seconds’’).

Benchmark Original MMC Encrypted MMCK Client speedup Cloud efficiency

No. ðm;n; sÞ toriginal tcloud tclient1 tclient2 tclient toriginal=tclient toriginal=tcloud

l ¼ 20 with check failure Probf 6
1

220: Low cheating resistance and high client speedup

1 ð200;250;300Þ 0.3364 0.3389 0.0393 0.1164 0.1558 2:1597� 0.9927
2 ð400;500;600Þ 2.6455 2.6606 0.1392 0.5419 0.6811 3:8840� 0.9943
3 ð800;1000;1200Þ 26.1812 26.5996 0.9490 2.2146 3.1636 8:2757� 0.9843
4 ð1600;2000;2400Þ 236.8153 239.2615 8.2997 11.4307 19.7304 12:0026� 0.9898
5 ð2400;3000;3600Þ 826.1342 833.2995 28.8096 29.9363 58.7460 14:0628� 0.9914

l ¼ 50 with check failure Probf 6
1

250: Tradeoff between cheating resistance and client speedup

1 ð200;250;300Þ 0.3340 0.3353 0.0512 0.2674 0.3186 1:0483� 0.9959
2 ð400;500;600Þ 2.6595 2.6938 0.1507 1.2681 1.4187 1:8746� 0.9873
3 ð800;1000;1200Þ 26.2342 27.3243 0.9739 5.0258 5.9997 4:3726� 0.9601
4 ð1600;2000;2400Þ 239.8311 242.0428 8.3302 22.6239 30.9541 7:7480� 0.9909
5 ð2400;3000;3600Þ 825.9332 831.2559 28.8230 56.6145 85.4375 9:6671� 0.9936

l ¼ 80 with check failure Probf 6
1

280: High cheating resistance and low client speedup

1 ð200;250;300Þ 0.3302 0.3395 0.0442 0.4131 0.4573 0:7221� 0.9726
2 ð400;500;600Þ 2.5496 2.5970 0.1433 1.9590 2.1023 1:2128� 0.9818
3 ð800;1000;1200Þ 26.4048 27.1520 0.9285 8.0222 8.9508 2:9500� 0.9725
4 ð1600;2000;2400Þ 236.5965 237.5374 8.3211 34.0214 42.3424 5:5877� 0.9960
5 ð2400;3000;3600Þ 827.0486 837.0930 29.7640 82.8537 112.6177 7:3439� 0.9880

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

20

dimension n

cl
ie

nt
 s

pe
ed

up

efficiency priority(l=20)
tradeoff(l=50)
cheating resistance priority(l=80)

Fig. 2. Comparison of client speedup ðm : n : s ¼ 4 : 5 : 6Þ.

X. Lei et al. / Information Sciences 280 (2014) 205–217 215
secure outsourcing is persistently increasing, especially after Gentry’s first FHE scheme [12] by using an ideal lattice. They
often focus on designing a generic protocol that covers all problems, e.g., [11,8]. The generic protocol always involves in
applying a FHE scheme, which is a cryptographic primitive that seems to be far from practical. Hence, the generic protocol
is currently quite complicated and inefficient. As to security engineers, they often identify some specific problems and design
different techniques to mask the original problem to protect input/output privacy. Their protocol always lack formal security
treatment and do not handle the important case of result verification, but these protocols are always quite efficient and can
be deployed immediately.
6.1. Works for specific applications

Over the past few decades, many protocols have been designed for secure outsourcing of some specific applications. For
example, Atallah et al. [3] proposes a number of protocols for secure outsourcing scientific computations, such as solving a
linear system of equations, sorting, etc. They employ a lot of problem transformation techniques to construct the protocols,
but the common drawbacks of their protocols are twofold: they lack detailed efficiency analysis and evaluation, and they do
not tackle the issue of result verification. Until recently, two secure matrix multiplication outsourcing protocols were intro-
duced in [5,2]. The former is built upon the assumptions of two non-colluding servers, making it vulnerable to colluding
attacks. While the later achieves provable security using Shamir’s secret sharing [30] technique. But this theoretically elegant
protocol only works over finite field Zp and it suffers from large amount of communication overhead. A comprehensive com-
parative study on these three protocols is shown in Table 5. After Gentry’s breakthrough work on FHE scheme, the research
direction is currently shifting to design secure outsourcing protocol in the malicious cloud model rather than in the fully
trusted cloud model. Hence, handling result verification becomes a must. Following this trend, several protocols that can
handle result verification are proposed, among which there are the secure outsourcing of linear programming [33], the
secure outsourcing of linear equations [34], and the secure outsourcing of matrix inversion [19], etc. Recently, the works
in [33,34] are further improved in [7] by employing some special linear transformations and a pseudorandom number
generator. The work in [19] sheds some insight on constructing secure MMC outsourcing protocol, but matrix inversion out-
sourcing and matrix multiplication outsourcing are different in several aspects. Consider, for example, there is only one input
in matrix inversion computation, whereas there are two inputs in matrix multiplication computation. Besides, the input of
matrix inversion must be a square matrix, and the inputs of matrix multiplication may be two non-square matrices. Frankly,
our system model and framework are inherited from these works.
Table 5
Comparisons with other protocols.

Properties Our protocol Protocol [5] Protocol [2]

The underlying technique Permutation Homomorphic encryption Secret sharing
Algebraic structure of matrix element Infinite field R Infinite field R Finite field Zp

Dimensions of two matrices Multiplicable matrices Square matrices Square matrices
Number of remote servers One Two One or two
Require two servers non-colluding No Yes No
Handle result verifiability Yes Yes Yes
Provide experimental evaluation Yes No No
Achieve provable security No Yes Yes

216 X. Lei et al. / Information Sciences 280 (2014) 205–217
6.2. Functionally related work

There are three kinds of existing work that are conceptually and functionally related to secure outsourcing. The first one is
secure multi-parity computation (SMC), initially introduced by Yao [37]. SMC does not consider the asymmetry between the
resources possessed by cloud and client, and therefore, it cannot be applied to secure outsourcing directly. The second one is
about delegating computation and cheating detection, e.g., [14]. Yet, the traditional work on cheating detection allows the
server to access the original data, which is prohibited in the proposed secure outsourcing paradigm. The third one is server-
aided computations, such as [25,15,17]. One limitation of these protocols is that they are mainly concerned with outsourcing
of cryptographic computations like signature and modular exponentiation. The other limitation is that these protocols do not
handle result verification.

7. Conclusions

In retrospect, we have designed a protocol for outsourcing of MMC to a malicious cloud. We have shown that the
proposed protocol simultaneously fulfills goals of correctness, security (input/output privacy), robust cheating resistance,
and high-efficiency. With MMC already well rooted in scientific and engineering fields, the proposed protocol can be
deployed individually or serve as a primitive building block, based on which some higher level secure outsourcing protocols
are constructed. We also introduced a Monte Carlo verification algorithm. Its superiority in designing inexpensive result
verification algorithm for secure outsourcing is well demonstrated. Directions to launch further research include:
(1) establishing formal security framework for MMC outsourcing problem; (2) exploring an encryption scheme that can
further reduce the computational overhead at the client side; (3) adding result verification for some early protocols, which
do not handle result verification, as a counter offensive to malicious cloud.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61170249), the Natural Science
Foundation Project of CQCSTC (2009BA2024), in part by the program for Changjiang scholars, in part by Specialized Research
Fund for priority areas for the Doctoral Program of Higher Education and in part by the Research Fund of Preferential
Development Domain for the Doctoral Program of Ministry of Education of China under Grant 201101911130005. This
publication was made possible by NPRP Grant 4-1162-1-181 from the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the responsibility of the authors.

References

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
et al, A view of cloud computing, Commun. ACM 53 (4) (2010) 50–58.

[2] M.J. Atallah, K.B. Frikken, Securely outsourcing linear algebra computations, in: Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, ACM, 2010, pp. 48–59.

[3] M.J. Atallah, K.N. Pantazopoulos, J.R. Rice, E.E. Spafford, Secure outsourcing of scientific computations, Adv. Comput. 54 (2002) 215–272.
[4] Michael Basin, Pablo Rodriguez-Ramirez, Sliding mode filter design for nonlinear polynomial systems with unmeasured states, Inform. Sci. 204 (2012)

82–91.
[5] David Benjamin, Mikhail J Atallah, Private and cheating-free outsourcing of algebraic computations, in: Sixth Annual Conference on Privacy, Security

and Trust, 2008 (PST’08), IEEE, 2008, pp. 240–245.
[6] Glenn Brunette, Rich Mogull, Security guidance for critical areas of focus in cloud computing v2. 1. Cloud Security Alliance, 2009, pp. 1–76.
[7] Fei Chen, Tao Xiang, Yuanyuan Yang, Privacy-preserving and verifiable protocols for scientific computation outsourcing to the cloud, J. Parallel Distrib.

Comput. 74 (3) (2014) 2141–2151.
[8] K.M. Chung, Y. Kalai, S. Vadhan, Improved delegation of computation using fully homomorphic encryption, Advances in Cryptology–CRYPTO 2010,

2010, pp. 483–501.
[9] Richard Durstenfeld, Algorithm 235: random permutation, Commun. ACM 7 (7) (1964) 420–421.

[10] Rusins Freivalds, Probabilistic machines can use less running time, Inform. Process. 77 (1977) 839–842.
[11] R. Gennaro, C. Gentry, B. Parno, Non-interactive verifiable computing: outsourcing computation to untrusted workers, Advances in Cryptology–

CRYPTO 2010, 2010, pp. 465–482.
[12] C. Gentry, A fully homomorphic encryption scheme, PhD thesis, Stanford University, 2009.
[13] Sarah F.F. Gibson, Brian Mirtich, A survey of deformable modeling in computer graphics, Technical Report TR-97-19, 1997.
[14] S. Goldwasser, Y.T. Kalai, G.N. Rothblum, Delegating computation: interactive proofs for muggles, in: Proceedings of the 40th Annual ACM Symposium

on Theory of Computing, ACM, 2008, pp. 113–122.
[15] S. Hohenberger, A. Lysyanskaya, How to securely outsource cryptographic computations, Theory Cryptogr. 3378 (2005) 264–282.
[16] Tinggang Jia, Yugang Niu, Yuanyuan Zou, Sliding mode control for stochastic systems subject to packet losses, Inform. Sci. 217 (2012) 117–126.
[17] S. Kawamura, A. Shimbo, Fast server-aided secret computation protocols for modular exponentiation, IEEE J. Select. Areas Commun. 11 (5) (1993) 778–

784.
[18] Donald Ervin Knuth, The Art of Computer Programming, addison-Wesley, 2006.
[19] Xinyu Lei, Xiaofeng Liao, Tingwen Huang, Huaqing Li, Chunqiang Hu, Outsourcing large matrix inversion computation to a public cloud, IEEE Trans.

Cloud Comput. 1 (1) (2013) 78–87.
[20] Yehuda Lindell, Benny Pinkas, Secure multiparty computation for privacy-preserving data mining, J. Privacy Confident. 1 (1) (2009) 59–98.
[21] Hongbo Liu, Ajith Abraham, Václav Snášel, Seán McLoone, Swarm scheduling approaches for work-flow applications with security constraints in

distributed data-intensive computing environments, Inform. Sci. 192 (2012) 228–243.
[22] Qin Liu, Guojun Wang, Jie Wu, Time-based proxy re-encryption scheme for secure data sharing in a cloud environment, Inform. Sci. 258 (2014) 355–

370.
[23] Jaime Lloret, Miguel Garcia, Jesus Tomas, Joel JPC Rodrigues, Architecture and protocol for intercloud communication, Inform. Sci. 258 (2014) 434–451.

http://refhub.elsevier.com/S0020-0255(14)00552-0/h0035
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0035
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0040
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0040
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0040
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0045
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0050
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0050
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0055
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0055
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0055
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0060
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0060
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0065
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0070
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0075
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0075
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0075
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0080
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0085
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0090
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0090
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0095
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0095
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0100
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0100
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0105
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0110
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0110
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0115
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0115
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0120

X. Lei et al. / Information Sciences 280 (2014) 205–217 217
[24] Gregorio Martinez, Sherali Zeadally, Han-Chieh Chao, Editorial: cloud computing service and architecture models, Inform. Sci.: An Int. J. 258 (2014)
353–354.

[25] T. Matsumoto, K. Kato, H. Imai, Speeding up secret computations with insecure auxiliary devices, in: Advances in Cryptology–CRYPTO 88, Springer,
1990, pp. 497–506.

[26] Carl Meyer, Matrix Analysis and Applied Linear Algebra Book and Solutions Manual, vol. 2, Society for Industrial and Applied Mathematics, 2000.
[27] Mehdi Mohammadi, Bijan Raahemi, Ahmad Akbari, Babak Nassersharif, Hossein Moeinzadeh, Improving linear discriminant analysis with artificial

immune system-based evolutionary algorithms, Inform. Sci. 189 (2012) 219–232.
[28] Rajeev Motwani, Prabhakar Raghavan, Randomized Algorithms, Cambridge university press, 1995.
[29] George AF. Seber, Alan J. Lee, Linear Regression Analysis, vol. 936, Wiley, 2012.
[30] A. Shamir, How to share a secret, Commun. ACM 22 (11) (1979) 612–613.
[31] Ran Tao, Xiang-Yi Meng, Yue Wang, Image encryption with multiorders of fractional fourier transforms, IEEE Trans. Inform. Forensics Sec. 5 (4) (2010)

734–738.
[32] Juan Vera-del Campo, Josep Pegueroles, Juan Hernández-Serrano, Miguel Soriano, Doccloud: a document recommender system on cloud computing

with plausible deniability, Inform. Sci. 258 (2014) 387–402.
[33] Cong Wang, Kui Ren, Jia Wang, Secure and practical outsourcing of linear programming in cloud computing, in: INFOCOM, 2011 Proceedings, IEEE,

2011, pp. 820–828.
[34] Cong Wang, Qian Wang, Kui Ren, Jia Wang, Harnessing the cloud for securely outsourcing large-scale systems of linear equations, IEEE Trans. Parallel

Distrib. Syst. 24 (6) (2013) 1172–1181.
[35] Lifei Wei, Haojin Zhu, Zhenfu Cao, Xiaolei Dong, Weiwei Jia, Yunlu Chen, Athanasios V. Vasilakos, Security and privacy for storage and computation in

cloud computing, Inform. Sci. 258 (2014) 371–386.
[36] Jie Xu, Jian Yang, Zhihui Lai, K-local hyperplane distance nearest neighbor classifier oriented local discriminant analysis, Inform. Sci. 232 (2013) 11–26.
[37] A.C. Yao, Protocols for secure computations, in: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 160–164.
[38] Zhi-liang Zhu, Wei Zhang, Kwok-wo Wong, Hai Yu, A chaos-based symmetric image encryption scheme using a bit-level permutation, Inform. Sci. 181

(6) (2011) 1171–1186.

http://refhub.elsevier.com/S0020-0255(14)00552-0/h0125
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0125
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0130
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0130
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0130
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0135
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0135
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0140
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0140
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0145
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0145
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0150
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0150
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0155
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0160
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0160
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0165
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0165
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0170
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0170
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0170
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0175
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0175
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0180
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0180
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0185
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0190
http://refhub.elsevier.com/S0020-0255(14)00552-0/h0190

	Achieving security, robust cheating resistance, and high-efficiency for outsourcing large matrix multiplication computation to a malicious cloud
	1 Introduction
	1.1 Challenges
	1.2 Motivations
	1.3 Contributions
	1.4 Organization

	2 Preliminaries
	2.1 System model, threat model, design goals, and framework
	2.1.1 System model
	2.1.2 Threat model
	2.1.3 Design goals
	2.1.4 Framework

	2.2 Mathematical background

	3 Protocol construction
	3.1 Secret key generation
	3.2 MMC encryption
	3.3 MMC in the cloud
	3.4 MMC decryption
	3.5 Result verification
	3.6 The completed protocol
	3.7 A numerical example

	4 Correctness, security, and verifiability analysis
	4.1 Correctness guarantee
	4.2 Security guarantee
	4.2.1 Input privacy
	4.2.2 Output privacy

	4.3 Verifiability guarantee
	4.4 Further discussions on result verification

	5 Performance evaluation
	5.1 Theoretical results
	5.2 Experimental results

	6 Related work and comparisons
	6.1 Works for specific applications
	6.2 Functionally related work

	7 Conclusions
	Acknowledgments
	References

