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Two-layer tree-connected feed-forward neural network model for neural cryptography
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Neural synchronization by means of mutual learning provides an avenue to design public key exchange
protocols, bringing about what is known as neural cryptography. Two identically structured neural networks
learn from each other and reach full synchronization eventually. The full synchronization enables two networks
to have the same weight, which can be used as a secret key for many subsequent cryptographic purposes. It is
striking to observe that after the first decade of neural cryptography, the tree parity machine (TPM) network
with hidden unit K = 3 appears to be the sole network that is suitable for a neural protocol. No convincingly
secure neural protocol is well designed by using other network structures despite considerable research efforts.
With the goal of overcoming the limitations of a suitable network structure, in this paper we develop a two-layer
tree-connected feed-forward neural network (TTFNN) model for a neural protocol. The TTFNN model captures
the notion that two partners are capable of exchanging a vector with multiple bits in each time step. An in-depth
study of the dynamic process of TTFNN-based protocols is then undertaken, based upon which a feasible
condition is theoretically obtained to seek applicable protocols. Afterward, according to two analytically derived
heuristic rules, a complete methodology for designing feasible TTFNN-based protocols is elaborated. A variety
of feasible neural protocols are constructed, which exhibit the effectiveness and benefits of the proposed model.
With another look from the perspective of application, TTFNN-based instances, which can outperform the
conventional TPM-based protocol with respect to synchronization speed, are also experimentally confirmed.
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I. INTRODUCTION

A. Application background

The public key exchange algorithm, initially introduced
by Diffie and Hellman in their groundbreaking paper [1], is
still a major concern in the field of modern cryptography. A
public key exchange protocol enables two partners, named
A and B, to communicate over an untrusted and unsecure
channel to come up with a common secret value called a secret
key, whereas an attacker E should be unable to retrieve the
key even with the ability to eavesdrop in the communication
channel. The common secret key is subsequently used to
provide privacy, authentication, data integrity, or for other
cryptographic purposes.

In classical cryptography, the solutions for the key exchange
problem are mainly based on algebraic number theory (see
[2]). The search for new key exchange mechanisms still
remains a great challenge. Nevertheless, the synchronization
phenomenon of interacting artificial neural networks (ANNSs)
offers an additional avenue to solve the key exchange problem.
A remarkable feature of such a neural-based key exchange pro-
tocol is the absence of concrete one-way trapdoor functions.
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This situation is similar to a secret key agreement by using
public discussion [3].

B. Fundamental principle

Synchronization of ANNs is a special case of online
learning. Two ANNSs start with randomly chosen weight
vectors. In each time step they receive a common input vector,
compute their outputs, and exchange them through a public
channel. If they agree on the mapping between the current
input and output, their weight vectors are updated according
to a suitable mutual learning rule. In the case of discrete
weight vectors, this process leads to full synchronization in
a finite number of steps. The full synchronization enables the
two ANNs to have identical weight vectors, which can be
used as the common secret key. This synchronization process
is involved in interacting two ANNs. The output of one
ANN influences the update behavior of the other, therefore
it corresponds to a mutual learning. But on the contrary, a
third ANN can be trained using the examples, input vectors,
and output values generated in the process of synchronization.
Note that this third ANN cannot influence the update behavior
of the others; it corresponds to a unidirectional learning.

In the case of a one-layer perceptron, which is a simple
ANN, one finds that the average number of steps needed for
mutual learning and unidirectional learning is the same [4,5].
But in the case of a more complex tree parity machine
(TPM) network with hidden unit K = 3, a crucial scaling
law is observed: the average synchronization steps of the
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mutual learning grow polynomially with the synaptic depth
L, whereas the average synchronization steps of the uni-
directional learning grow exponentially with L [6-8]. This
scaling law provides the theoretical foundation for us to
construct a TPM (K = 3) -based key exchange protocol. In
such a protocol, the partners with mutual learning synchronize
much faster than the attackers with unidirectional learning.
Consequently, the difference in synchronization speed is
essential for the security of the neural key exchange protocol.

In addition to the synchronization of ANNSs, key exchange
can also been achieved by using other interesting systems,
including chaotic maps and coupled lasers [9—12]. They use
almost the same cryptographic protocol by just substituting the
neural networks. We will not elaborate on these works, as this
paper is written from the perspective of neural cryptography.

C. Related work

The innovative idea of using neural synchronization for
a cryptographic key exchange protocol has stimulated much
research in this area. An excellent review of neural cryptogra-
phy can be found in Ref. [13]. In the following, we will briefly
summarize notable works, encompassing very recent research.

Numerous studies have been based on the TPM (K = 3)
-based protocol. Three kinds of learning rules are analyzed
[14], and the dynamics of such a protocol are studied [15].
In addition, the model of the classical ruin problem is used
to examine the average synchronization time of the protocol
[16]. Four common attacks, including a simple attack [17], a
geometric attack [18], a majority attack [19], and a genetic
attack [14], are also experimentally investigated in detail.
Furthermore, the hardware implementation of the TPM (K =
3) -based protocol in embedded systems is realized [20]. Some
informative comments about previous research are embedded
in this paper whenever they are needed.

As for the TPM (K = 3) -based protocol, efforts to enhance
it have been ongoing. At a high level, these efforts can be
generally divided into two distinct types.

(1) The first type focuses exclusively on the public
information (the public generated input vectors or the public
exchanged output bits) in the neural protocol. Among this
type of effort, we note three representative mechanisms.
(i) The feedback mechanism tries to keep input vectors par-
tially secret from attackers by means of adopting a linear feed-
back shift register (LFSR) [21]. This approach only achieves a
small improvement in security. (ii) The queries mechanism re-
places the random input vectors by generated queries [22]. Itis
shown that in this way, the communicating partners can accel-
erate the synchronization process, whereas the attacker cannot.
(iii) The error prediction mechanism introduces an algorithm
called “do not trust my partner” (DTMP), which relies on one
party sending erroneous output bits, with the other party being
capable of predicting and correcting this error [23]. The error
prediction mechanism disrupts the attacker confidence in the
exchanged outputs and thus increases the attack difficulty.

(2) The second type concentrates on constructing new
network structures as well as new learning rules on which the
neural protocol is based. In the first decade of the neural pro-
tocol, a few such attempts failed eventually. For instance, the
permutation parity machines (PPMs) -based protocol [24,25]
is among the few to consider designing a new network structure
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and learning rule. Unfortunately, such a PPM-based protocol
is soon broken in the presence of a probabilistic attack [26].

D. Research motivations and road map

Previous papers mainly explored the TPM-based protocol
itself. We realized that up to now there has been no successful
construction of a new network structure other than the conven-
tional TPM (K = 3) network. For application significance,
neural protocols based on other networks may considerably
improve the conventional one. We are therefore motivated to
seek such neural protocols.

Note that the conventional protocol computes and ex-
changes only one bit in each time step. We start, therefore,
by extending the number of output bits. Then the network
structure is extended to more general two-layer tree-connected
feed-forward neural networks (TTFNNSs) (we also refer to our
model as the TTFNN model in this paper). In TTFNN-based
protocols, the learning rules should be adaptively modified to
capture the multiple exchanged bits as well. Intuitively, the
TTFNN model captures the notion that two partners exchange
more information in each time step, which may lead to an
improvement of the neural protocol with respect to efficiency
and security.

E. Main contributions

We regard our main contributions as threefold:

(i) By writing a Markovian process of weights in the
synchronization process, the dynamics of the TTFNN-based
protocol are investigated. According to the theoretically de-
rived feasible condition, a “trial and verification” methodology
for seeking feasible protocols is clearly presented.

(i) By introducing the notion of the Hamming distance, a
completed methodology for designing feasible TTFNN-based
protocols is elaborated upon based on two analytically derived
heuristic rules.

(iii)) Numerous feasible protocols are designed in this paper.
Better TTFNN-based instances with regard to synchronization
speed are also experimentally confirmed.

F. Paper organization

The remainder of this paper is organized as follows.
Section II describes the TTFNN model. In Sec. III, we
investigate the dynamics of weights in the learning process,
based upon which the feasible condition is derived. Afterward,
we exemplify the methodology to apply the feasible condition
to search for additional feasible protocols in Sec. IV.In Sec. V,
a completed methodology for designing feasible protocols is
detailed. Finally, some conclusions are drawn in Sec. VI.

II. MODEL DESCRIPTION

We consider the TTFNN model consisting of two elements,
namely a network and a learning algorithm, which are
formulated below.

A. Network

The structure of a general TTFNN is shown in Fig. 1.
Another similar structure is called a two-layer fully-connected
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FIG. 1. (Color online) A 3-3-2 TTFNN.

feed-forward neural network [27]. A TTENN consists of three
layers. It has N inputs in the input layer, K hidden units in
the hidden layer, and O outputs in the output layer. For the
sake of brevity, the network is referred to as N-K-O TTFNN.
Each hidden unit works like a perceptron with independent
local fields. The input values are binary, x;; € {—1,+1}.
The weights are discrete numbers between —L and +L,
w;j € {—L,...,+ L}. Here index i = 1,...,K denotes the
ith hidden unitof a TTFNN and j = 1, ..., N denotes the jth
element of a weight vector. The local field #; of the ith hidden
unit is defined as

N
1 1

hi = —WX; = —— WijXij. (1)
,—N /—N ; JM

The output o; of the ith hidden unit is defined as the sign of
hl b

= sgn(h;). 2

The special case h; = 0 is mapped to o; = —1 in order to
ensure a binary output value, i.e.,0; € {—1,41}. Generally, the
mappings from the internal representation ¥ = (o1, ... ,0k) to
the total output vector T = (71, ...,Tp) are coded by Boolean
functions,

‘L'q =Fq(2)= Fq(O'l,...,O’K), (3)

where ¢ is indexed from 1 to O and 7, € {—1,+1}.

As two special cases of TTFNNs, the TPM network and the
tree committee machine (TCM) network use N-K -1 structure.
The total output tppy of the TPM network is

K
v = Fi(Z) = sgn (1"[ cn) : “)

i=1

The total output ey of the TCM network is

K
trem = Fi(Z) = sgn (Z ol«) : )
i=1

B. Learning algorithm

Algorithm 1: Learning algorithm.

Step 1: A and B start with an identically structured TTFNN
and they select random initial weight vectors WI.A (t =0) and
w5(t = 0), respectively, both of which are kept secret.

Step 2: A and B receive identical random input vectors X;
in each time step, where x; are generated publicly. Afterward,
A and B compute and exchange their output vectors T4 and
T3, respectively.
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Step 3: Upon receipt of TZ for A (T for B), both partners
update their weight vectors w” and w? according to a certain
learning rule.

Step 4: Repeat step 2 to step 3 until w(r) = w2(r).

End Algorithm 1

The TTFNN-based learning algorithm is presented in
Algorithm 1. In this algorithm, three learning rules, which
are natural extensions of learning rules for the TPM-based
protocol, can be described as follows:

(1) Hebbian learning rule:

A/B

+D
0
=g< A/B(t)+xlj lA/B A/B l_[ )
(6)
(2) Anti-Hebbian learning rule:
wi Pt + 1)
0
—g ( A/B(t) _ xuo_lA/B A/B l—[ ) _
(7)
(3) Random-walk learning rule:
0
A/B _ A/B A/B
w); (r+1)—g( (1) + x;;© ]"[ )
(®)
In these learning rules, g can take values from {1, ..., 0}. ©(x)

is the Heaviside function, i.e., ®(x) = O forx < O and ®(x) =
1 otherwise. If any component of the weight vectors w# and
w? moves outside the range {—L,...,+L}, it is replaced by
the nearest boundary, either —L or +L. This is achieved by

(€))

(w) = sgn(w)L for |w|> L,
glw) = otherwise.

Two types of learning rules are taken into account in the
TTFNN model.

(L) Random-walk learning rule with sufficiently large N.

(L,) Hebbian or anti-Hebbian learning rules with N —
+00.

C. Characteristic parameters

A TTFNN-based protocol is parametrized by its character-
istic parameters, as sketched below.

(i) The structure of a TTENN, i.e., the values of N-K-0O.
The choice of N is determined by the chosen type of learning
rule, either (L) or (L;). Therefore, without the consideration
of N, the first factor is determined by K and O.

(ii) Boolean functions Fj,.
(iii)) The learning rule.

D. Secure definition

A computationally secure system [1] requires a neural
protocol to maintain the following two conditions:
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(C}) The communicating partners take only polynomial (P)
time in terms of the security parameter L to come up with a
secret key.

(C,) All currently known attacks take nondeterministic
polynomial (NP) time in terms of the security parameter L.

Definition 1. If a TTFNN-based protocol maintains condi-
tion (C), we say it is feasible; otherwise, it is infeasible.

It can be deduced from Definition 1 that TTFNN-based
protocols can be divided into two classes: feasible class and
infeasible class.

III. FEASIBILITY ANALYSIS

Recalling that a TTFNN-based protocol is parametrized
by its characteristic parameters, it is desirable to reveal how
the characteristic parameters of a TTFNN-based protocol
influence its feasibility. Toward that end, we will examine
the dynamic process of such protocols in this section.

A. Related parameters

For the sake of describing the correlations between two
TTFNNSs in the synchronization process, one can look at the
probability distribution of the weight values in each hidden
unit. It is given by (2L + 1) x (2L + 1) variables,

Pas = P(w}; =anw?, =b), (10)

which are defined as the probability to find a weight with
wA] = a in A’s TTFNN and w i.,; = bin B’s TTFNN.

The standard order parameters [27], initially used for the
analysis of online learning, can be calculated as functions of
P

L L
1
A A LA 2
OF = yWiwi = YD b
a=—L b=—
1
N S 3L T
a=—L b=—L
1 L L
RO = Lot = 3 a,
a=—L b=—L

The synchronization level is then represented by the normal-
ized overlap between two corresponding hidden units [27],

A B RAB

pi = L, 12)
ity

- Joror

where 0 < p; < 1, and the subscript i denotes the ith pair
of corresponding h1dden units. Uncorrelated weight vectors
at the beginning of the synchronization process have p = 0,
whereas p = 1 represents that full synchronization is reached.

Another important parameter is the well-known generation
error ¢ of the perceptron. With the random input vectors,
the generation error ¢ is the probability of the event that
two corresponding hidden units have different o. It can be
computed from the overlap p [27,28],

1
& = — arccos(p). (13)
b1
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B. Average step size

We first consider TTFNN-based protocols with the learning
rule (L): the random-walk learning rule with sufficiently large
N. Then (8) can be rewritten as

A/B

(t+ 1) = g[w P )+ £5x;], (14)

with 48 = 00"t [12, 0t/ tf) € (0,41}. In each
step, three cases are possible.

Case 1: If f4 = f8 = 1, the weights in both corresponding
hidden units are moved in the same direction. This is an
attractive step, which increases the overlap on average. It can
be described as anisotropic diffusion with reflecting boundary
conditions, as shown in Eq. (A1) in the Appendix.

Case 2: If f4 4+ fB =1, only the weights of one hidden
unit are updated. This is a repulsive step, which decreases the
overlap on average. This step performs a normal diffusion on a
(2L 4+ 1) x (2L + 1) square lattice with boundary conditions,
as shown in Eq. (A2) in the Appendix.

Case 3: If f4 = f8 =0, the weights stay at their position.

The above discussion indicates that the TTFNN-based
neural synchronization is a stochastic process consisting of
attractive steps and repulsive steps. The average step size of
an attractive step is denoted by (Ap,), while we use (Ap;) in
the case of a repulsive step. Additionally, we denote by P,
and P; the probability of an attractive step and a repulsive
step, respectively. The transition probabilities P, and P, are
functions of the generation error ¢, and hence functions of p
by Eq. (13).

We explicitly note that the dynamics of p, j is a Markovian
process, which can be described by the state moving equations
(Al) and (A2) in the Appendix. With the help of the
state moving equations, the average step sizes (Ap,) and
(Ap;) at different synchronization levels can be estimated by
Algorithm 2.

Notations in Algorithm 2:

p[] £ a variable length array, each element records current
overlap p.

Pa[] = avariable length array, each element records current
overlap p if an attractive step occurs.

Ap, Zan array with the identical length as p,, where Ap,[i]
denotes (Ap,(p0)) at p = pali].

p:[1 £ a variable length array, each element records current
overlap p if a repulsive step occurs.

Ap[] £ an array with the identical length as p;, where
Ap;[i] denotes (Ap(p)) at p = p;[i].

Current = counter of the current step.

Count,(Count,;) = counter of the attractive (repulsive)
step.

Ran «<— [0,1] denotes a real number. Ran is randomly
chosen in the interval [0,1].

Algorithm 2: Estimation of (Apd(p)) and (Ap:(p)).

Step 1: Initialize p,, = (2L+]) by Eq. (15). Current =
Count, = Count, = 1, apply p,., to compute p[Current] by
Egs. (11) and (12).

Step 2: while (p[Current] < 0.99) do

Step 3: Ran <— [0,1].

Step 4: if [Ran < P,(p[Current])] then
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FIG. 2. (Color online) Dynamics of p, , for TTFNN-based protocols with L = 3: (a) At the beginning (o = 0), p,» is given by Eq. (15).
(b) In the middle (p = 0.57). (c) Toward full synchronization (p = 0.97), p,, is close to the distribution in Eq. (16).

Step 5: Update p, , = M,(pa.»), where M, is given by the
moving functions in Eq. (A1).

Step 6: p,[Count,] = p[Current].

Step 7: Apply p.» to compute p[Current + 1] by
Egs. (11) and (12).

Step 8: Apa[Count,] = p[Current + 1] — p[Current].

Step 9: Count, = Count, + 1.

Step 10: else if [Ran > 1 — P.(p[Current])] then

Step 11: Update p, , = M(p4.»), where M, is given by the
moving functions in Eq. (A2).

Step 12: p[Count,] = p[Current].

Step 13: Apply p.» to compute p[Current 4+ 1] by
Egs. (11) and (12).

Step 14: Ap[Count,] = p[Current + 1] — p[Current].

Step 15: Count, = Count, + 1.

Step 16: end if

Step 17: Current = Current + 1.

Step 18: end while

Step 19: Outputs: (p,, Ap,), (pr, Ap;). Several discrete
values of (Apa(p)), (Ap:(p)) are obtained. By interpolation,
we can get the estimation of (Ap,(p)), (Ap:(p)).

End Algorithm 2

In Algorithm 2, the dynamics of p,; can be obtained by
recording p,, in each update step. It is observed that the
dynamics of p,, share a similar moving tendency in the
learning process, as graphically illustrated in Fig. 2, which
helps us to gain insight into the dynamics of weights.

(i) At the beginning of the synchronization, the weights are
randomly chosen and uncorrelated,

1

Pab(p =0)
A sufficiently large N ensures that (15) can better match
the frequencies of weights in reality. Substituting (15) into
Egs. (11) and (12), it is then easily checked that p = 0.
(ii) In the middle of the learning process, the distribution of
Da.p 1s shown in Fig. 2(b).
(iii) When full synchronization is reached,

1
3L+1 for a= b, (16)
0 for a #b.

Putting (16) into Eqgs. (11) and (12) yields p = 1.
In Algorithm 2, the estimation of (Ap,(p)) and (Ap.(p))
highly depends on the fact that the overlap p can be computed

Pap(p=1) =

from the knowledge of p,;,. The inputs of Algorithm 2
involve the transition probabilities P,(p) and P;(p), which are
case-specific for different TTFNN-based protocols. However,
through simulations using Algorithm 2, the following is
observed:

Property 1. For any TTFNN-based protocol with identical
L, (Ap,) and (Ap;) are generally identical as a function of
p itself and independent of the learning rule, as graphically
depicted in Fig. 3.

The experimental confirmation of Property 1 can be found
in the Appendix.

C. Feasible condition

For a given L, (Ap,), (Ap:), Py, and P, are functions of
p. Accordingly, the average change of overlap (Ap) can be
computed by

(Ap(p)) = Pa(p){Apa(p)) + Pi(p){Ap(p)), 0< p < 1.

A7)
The quantity (Ap(p)) plays an important role in depicting the

dynamics of overlap in the synchronization process, which
takes the total effect of both types of steps into consideration.

2.5 \

—O—(Ap,(P))
- {ap ) ]
-~ -T(p)

(Ap(p))

-1.5 ‘
0 0.1

02 03 04 05 06 07 08 09 1
p

FIG. 3. (Color online) (Ap,(p)) and (Ap.(p)) for TTFNN-based
protocols, L = 10. The linear fitting equation I'(p) is given by
Eq. (25).
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FIG. 4. (Color online) Two typical types of dynamics of (Ap(p))
for TTFNN-based protocols. The arrow lines display the moving
directions on average.

Let us concentrate on two typical types of dynamics of
(Ap(p)) for TTFNN-based protocols, as shown in Fig. 4.

(i) With regard to synchronization with a mutual learning
rule, (Ap(psync)) > 0,0 < p < 1, there is only one absorbing
state at p = 1; the overlap psyn. keeps increasing on average
in the whole process of synchronization.

(ii) With regard to attack with a unidirectional learning rule,
there is a fixed point of dynamics at 0 < pf < 1, such that

>0, 0 < patack < POr,
(Ap(Pattack)) § =0,  Pattack = O, (18)
<0, pr < Pawack < 1.

As long as 0 < paack < 0f> {(AP(Parack)) > 0, the overlap
o keeps increasing on average. But when pr < paack < 1,
Ap(partack)) < 0, the overlap p keeps decreasing on average.
The point pr is a quasistationary state. When py,cx reaches the
quasistationary state, pack displays an oscillatory behavior
around the point pr. A further absorbing state p =1 can
only be reached by fluctuation. With regard to puack, it is
explicitly observed that time is wasted in reaching p =1 if
Pattack OScillates around py.

Property 2. For TTENN-based protocols, if the overlap
p keeps increasing on average in the whole process of
synchronization, the average synchronization time (Zgync)
grows polynomially with L, whereas (Tsy.) for fluctuation
grows exponentially with L.

As a special case of TTFNN-based protocols, the TPM
(K = 3)-based protocol maintains this property [15]. Based on
Property 2, a feasible condition for a TTFNN-based protocol
is

(Ap(p)) >0, 0<p<LI 19)

By a feasible condition, we mean that if a TTFNN-based
protocol maintains (19), itis feasible; otherwise, itis infeasible.

We now consider (Ap(p)) for TTFNN-based protocols with
the learning rule (L,): Hebbian or anti-Hebbian learning rules
with N — +o00.
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Property 3. For any TTFNN-based protocol, (Ap(p)) of
Hebbian and anti-Hebbian learning rules converges to that of
their corresponding random-walk learning rule in the limit
N — +o0.

Readers may refer to the Appendix for a detailed analysis.

Due to Property 3 and (19), it can be deduced that the
feasibility of a TTFNN-based protocol with learning rule
(L) and its corresponding learning rule (L;) is consistent.
Consequently, we will only consider TTFNN-based protocols
with learning rule (L) in the rest of this paper.

D. Further analysis

Substituting (17) into Eq. (19), and applying ¢ to replace
p according to Eq. (13), the feasible condition (19) can be
rewritten as

R() < U(e), 0<e<0.5, (20)

where

_ P(e)
R(e) = P(0) 2n
and
(Apa(e))

Ue)= ————. 22
= ane) 22

Figure 3 shows that when it is closed to full synchronization,
an attractive step size is approximated to 0, whereas a repulsive
step size reaches its maximum effect,

3
C(LADRL+ D

The derivation of Eq. (23) is similar to that of the TPM (K = 3)
-based protocol [15].

With the goal of maintaining feasible condition (20), P,(¢)
should be dominant in comparison with P,(¢) when ¢ — 0.
Therefore, we can expect and then observe in simulations that
R(¢) meets its strictest requirement when ¢ — 07. This can
be formally stated as follows:

Property 4. If R(e) of a TTFNN-based protocol satisfies

R(g) < U(e) in the limit s — 0T, 24)

(Ape(p =1)) = (23)

then it satisfies the feasible condition (20).
When it is closed to full synchronization, (Ap,(p)) can be
approximated as a straight line I'(p), as displayed in Fig. 3,

(Apa(p)) = T'(p)
. —7L
L+ DEL+1)?
The following equality always holds:

(p—=1, 08<p<1. (25

_ hmp—> 1- (Apa(p)>
(Api(p = 1))
Ignoring the fitting error in Eq. (25) and combining (23) and
(26), then we have
Ue) ~ I(e)(e — 07), (27)

sem?e?. For the purpose of capturing the

scaling law of (Tync) with large L, we have I(e) = %7.[282 for
sufficiently large L.

lim U(e) = (26)

where I(e) =
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To maintain (24), R(¢) needs to satisfy R(g) ~ ae?, a <
Lm*(e — 07), or R(e) = o(5m*e?) [R(e) is a higher-order
infinitesimal quantity of m?&?]. This can be described by a

single inequality,
C <1, (28)

where

R
C = lim 7& (29)
e—0F —77.’282
12
According to Property 4, feasible conditions (19), (20),
(24), and (28) are equivalent to each other, among which (28)
will be most frequently used in the following.

IV. APPLICATION OF FEASIBLE CONDITION

In this section, we will exemplify how to apply the feasible
condition to search for additional feasible TTFNN-based
protocols. The search methodology is graphically depicted in
Fig. 5.

This methodology involves computing the transition prob-
abilities,

Pe) = P[ A (7 =1P)].

P,(e) = P[UA =08 = 7,

2 l

R (=

Pi(e) = P[al-A #al| :

S
=

>3]
~—
| IS

We denote by P,, P,, and P; the probability of an update step,
an attractive step, and a repulsive step, respectively. These
transition probabilities can be computed from the knowledge
of the generation error €. An example of how to compute these
transition probabilities is displayed in the Appendix. See [29]
for further details.

A. Case of success

Case (i): For the conventional TPM-based protocol: K = 3,
O =1, F; is given by Eq. (4), and the random-walk learning
rule can be described as

wi P+ 1) = g[w'A'/B(t) +x1;0(0]"" " 7) O (v o) |

ij ij
(31

select characteristic
parameters: K, O, F,
and a learning rule

-

compute transition
probabilities: P, and P,

FIG. 5. (Color online) The methodology for seeking additional
feasible protocols.
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One finds [15,21]
PTPME=3)(g) — (1 — g)} + 3(1 — e)e?,

%(1 —&)’ + %(l —g)g?
PuTPM(K:.%)(E)

PZ;TPM(K::S)(S) —

32
2(1 — g)e? G2)

TPM(K =3
Pr ( )(8) - —PTPM(K=3)(8)’
u

4(1 — g)e?
(1 —¢)P+ (1 —e)e?

It follows that CTPME=3) — 7‘% < 1; the feasible condition
(28) indicates it is feasible.

Case (ii): We now attempt to extend the number of outputs.
A straightforward method is to let O = 2. F; uses the same
function as the TPM network in Eq. (4), and F, uses the same
function as the TCM network in Eq. (5). There are two different
random learning rules for the above construction,

wij(t + 1) = g[wij (1) + x;; (0 Ty

X®(T?PMT"16PM)®(TTACMT1§CM)]7 g=1, (33

RTPM(K:B)(E) _

wij(t + 1) = g[wij (1) + xi;0(0,75)

X®(TTAPM7TBPM)®(TTACM71§CM)]’ q=2. (34

We refer here to neural protocols using the learning rules (33)
and (34) as tree parity committee machine (TPCM) -based
protocols and tree committee parity machine (TCPM) -based
protocols, respectively.

With regard to the TPCM-based protocol: K =3, O =2,
F) is given by Eq. (4), F, is given by Eq. (5), and the random-
walk learning rule is described by Eq. (33). It is obtained that

3
PTPOMK=3) (o) = (1 — g)* + 5(1 — &)e?,

! 3
PTPCM(K=3)() _ 31 —¢€) ’
a pIPCMK=3) )

) (35)
PTPCMK=3) oy _ (1—-e)
r pIPCMR=3) )
RTPOM(K=3) ) 2(1 - 8)82'
(1—¢)
Since CTPMK=3 = 24 1 it belongs to the feasible class
by Eq. (28).
Case (iii): With regard to the TCPM-based protocol: K = 3,
O =2, F is given by Eq. (4), F, is given by Eq. (5), and the
random-walk learning rule is described by Eq. (34). We can
obtain

3
PECPM(K=3)(8) — (1 _ 8)3 4 E(1 _ 8)82,

21— + 11 — e)&?
PUTPCM(K=3) ()

P:CPM(K=3) (8) —

(1 —e)e? (36)
TCPM(K=3) /.y _ -
P, (e) = PIPCME=3) .y’

(1 —e)e?

RTPOMK=3) (o) —

21 —eP 4+ 11 —e)e?’
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Because CTCPM(K=3) — 7'”—62 <1, from Eq. (28), this one
appears to be feasible.

B. Case of failure

The TCM (K = 3) -based neural protocol is analyzed
to be infeasible [29]. This result can be clearly veri-
fied by our methodology. As to the TCM-based proto-
col: K=3, O=1, F; is given by Eq. (5), and the
random-walk learning rule is wlf;/B(t+ 1) = g[wA/B(t)+

ij
X000, P 1)O(tfy TE-yp)]- One finds [29]
3 3
PIMETNe) = (1 =)’ + S(1 = &)’ + S(1 — £)e7,
21—l + 10 —e)?+ (1 —e)

PUTCM(K=3)(8) ’(37)

PZ;TCM(K=3)(8) —

(1 —e)e*+1(1 —e)e
P[:FCM(K:S) (8)

PTOM(K=3)(¢) —

(1—e)e’+ (1 —e)

RTCM(K=3) ) _ '
© 31—er+ 30 —e)e?+(1—e)

Due to CTM(K=3) — 40 > 1, this protocol unfortunately
falls into the infeasible class by Eq. (28).

V. HOW TO DESIGN FEASIBLE PROTOCOLS

Our approach to search for additional feasible protocols
is based on the “trial and verification” methodology. This
methodology, however, does not instruct us how to design
a feasible protocol. Consequently, we proceed to study how to
design feasible protocols.

A. Heuristic rules

Let us consider a TTFNN-based protocol with K hidden
units and O outputs. According to the values of (ty,...,7p),
with ; = Fi(X), 2X configurations of internal representation
¥ can be divided into 29 classes.

Definition 2. For any internal representation X, we define
% as belonging to class number (c; - - - ¢p )2, Where subscript
2 denotes binary representation of a number, and

Ui n=F(®) =1,
“%=1o if

T = Fi(2) = —1. (38)

We note from Definition 2 that 0 < (¢; -+ - ¢p)a < 29 — 1.

The following descriptions will make it clear.

(i) 2% configurations of ¥ are divided into 29 classes.

(i1) Each class contains zero or several configurations,
which are arranged by a certain sequence.

(iii) Each configuration of X consists of K items.

Let v;j; € {—1,+1} stand for the value of the class number
i, the jth configuration, and the /th item. We define

K
hipg = Z(Uipl @ vig1), (39)
I=1

where h;, , denotes the Hamming distance between the pth
internal representation and the gth internal representation in
class number i. In particular, if p = g, h;, ;, = 0. Suppose that
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there are totally N; different configurations for class number
i. Then h; and H are defined as

o {+OO, N;

. N 40
mini<p g<n;, pqihip.gts Ni 22, 40)

H= min {h;}. 41

0<i<20—1
The variable H, indeed, plays an important role in computing
the transition probabilities, which can be explained by the
following analysis.

Under the precondition that an update step occurs, let
P.i(e) denote the probability of a repulsive step if there are
i pairs of corresponding hidden units disagreeing. Recalling
the definition of P, in Eq. (30), one can deduce that an update
step occurs iff 4 and X belong to an identical class. Note
thatif 0 < i < H — 1, anupdate step cannot occur. This finally
results in

Pi(e)=0, 0<i<H-I. (42)
But when H < i < K, the following equality always holds:
di(1 —g)X-igl _
Pi(e) = —————, H<i<K, (43)
Pu(e)
where d; > 0. It is not hard to find that
lim Py(e) =1. (44)
e—>0F

Suppose that dy > 0. Apply (42)—(44) and, together with
P.(s) = Z,'K=o P.;(¢), we can obtain

Pi(e) ~ dyef (e — 0T). (45)
Further, suppose that lim,_, o+ P,(¢) = e > 0. This leads to
P, d
Ree)= DE i e g, (46)
P,(¢) e

We proceed to consider the choice of H:

Case (i) H = 1 implies that (28) cannot be maintained.

Case (ii) H = 2 indicates that (28) may be maintained,
depending on the coefficient dTH

Case (iii) H > 3, and then (28) is maintained immediately.
Accordingly, two heuristic rules to design feasible TTFNN-
based protocols are as follows:

(Ry) For the constructed protocol, it is preferable to let H >
3. If we let H = 2, the feasibility should be further checked
by applying (28).

(R;) Meanwhile, it should be ensured that dy > 0 and
lim,_, ¢+ P,(¢) = e > 0.

B. Applications
1. Design a feasible protocol

Following the instructions of the two rules, we design two
protocols: K = 3, O = 2, F| and F, are given by Table I, and
the learning rules are

wlf;/B(t +1)= g[wi'j./B(t) + x,-j®(aiA/qu)

x0(tf )0 (r'f)]. ¢=12. @D

In Classification I, h; = 3; for 0 <i <3, H = 3. This
implies that rule (R;) is maintained. It can be easily found
that rule (R;) is also maintained. We refer to classification I
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TABLE 1. Classification 1.

Class number

z4/8 1 =F(ZY8) 5, =FEY5) (cic2)n
(-1,—-1,—-1) -1 —1 (00),
(+1,+1,4+1)
(—1,—141) 1 +1 01),
(+1,+1,—-1)
(—1,+1,—1) +1 -1 (10),
(+1,—1,4+1)
(+1,—1,—1) +1 +1 (11),
(—1,+1,41)

with learning rule (47), ¢ =1 as the CI (¢ = 1) neural
protocol, and (47), g = 2 as the CI (g = 2) neural protocol.
Based on our heuristic rules, they are believed to be feasible.
Their feasibilities are further checked below. For CI (¢ = 1)
and CI (¢ = 2) neural protocols, we obtain

PIO=ID(e) = (1—e)’ + ¢,

1 3
PCIG=12) gy — 31 —¢)
a Cllg=1.2), <°
Py (&)
3 (48)
Clg=1,2)/ .\ _ €
P (&) = PuCI(q:l,Z)(g)’
263
RCI(q:l’z)(S) — -
(I-¢)

By Eq. (28) again, C"¢=12 = 0 < 1, they appear to be
feasible, in agreement with our expectation. Because of
symmetry, the above two protocols can be viewed as one.

More feasible instances will not be enumerated. We remark,
however, that the two heuristic rules allow us to design a variety
of feasible protocols, even with K > 4 and O > 3. Readers
can gain a profound understanding of the two rules if they try
to design a feasible protocol by themselves.

2. Feasibility from a classification perspective

The feasibility of TTFNN-based protocols can be explained
from the perspective of classification. Applying the classifica-
tion of the TCM (K = 3) -based protocol as an example, it is
clearly illustrated in Table II that hg = h; = 1, H = 1. This
results in R(g) ~ fe(e — 01), with f > 0. Accordingly, it
turns out to be infeasible immediately. In the same manner,
from the classification of TPM (K = 3), TPCM (K = 3), and

TABLE II. Classification TCM (K = 3).

»A/B Trem = Fi(24/8) Class number (c)),

(-1,-1,-1 -1 (0),
(=1,—1,+1)
(=1,+1,-1)
(+1,—1,—1)
(—1,4+1,+1) +1 (1)
(+1,—1,+1)
(+1,+1,—1)
(+1,+1,+1)
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4500 TPCM(K=3)
<] TCPM(K=3)
4000 | Cl(g=1.2)
3500 | o
~ 3000 | o 5
o 2500 | l
=7 ‘
~ 2000 | (0]
1500 | o 4
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(@) < <
500 | 2 4
§ <
0‘} &£ « ) : : . . .
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L

FIG. 6. (Color online) The average synchronization time (Zyy)
as a function of L for different protocols. Symbols denote averages
over 1000 simulations with learning rule (L;) using N = 100.

TCPM (K = 3), it can be found that H = 2. Therefore, their
feasibilities should be further checked by applying (28).

VI. SYNCHRONIZATION SPEED AND SECURITY

On the basis of our results, a question arises naturally:
is there any TTFNN-based protocol that is superior to the
conventional TPM-based protocol with regard to synchro-
nization speed and security? For speed considerations, it
can be observed from Fig. 6 that three additional available
protocols considerably accelerate the synchronization speed.
For security considerations, a secure protocol should further
maintain Condition (C,). It is easy to observe that some
instances in the TTFNN model cannot satisfy this condition.
For example, the trivial solution in which a neural protocol
with each configuration is a class is a feasible protocol since no
repulsive steps will occur. However, in this case, the attacker E
knows all the internal representations of partners, which leads
to this protocol being insecure. In the TTFNN model, there
are many instances that are more secure than the TPM-based
protocol. Because the majority attack and the genetic attack
apply a geometric attack or a simple attack as an element and
because the geometric attack cannot directly work on neural
protocols with multiple bits, we only consider the simple attack
in this paper. It is shown in Table III that the TCPM and the
CI (¢ = 1,2) protocol are better at resisting a simple attack. In
Table III, following [30], success probability Pg is defined as

TABLEIIL. Success probability Pg of a simple attack as a function
of L. Results are obtained in 10 000 simulations with learning rule
(Ly) using N = 1000.

L=1 L=2 L=3
TPM Pg = 0.4390 P =0.0320 Pg = 0.0005
TPCM P =0.5180 Pr = 0.0843 Pr = 0.0008
TCPM Pr = 0.3240 P =0.0129 Pr = 0.0002
Cl(g =12 Pg =0.3176 Pz =0.0073 Pg = 0.0000
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the probability that the attacker knows 98% of the weights at
synchronization time.

Based on our simulations, we come to the conclusion that
the TCMP and the CI (¢ = 1,2) protocol can outperform
the TPM-based protocol in terms of both synchronization
speed and security. It is worth noting that despite the fact
that the original geometric attack currently cannot be used for
neural networks with multiple outputs, a generalization of the
geometric attack may be possible, and we leave this as a future
research issue. Note that we can design many different neural
protocols in the TTFNN model. Finding the best one is another
interesting future research issue.

VII. CONCLUSION

This paper has formulated and studied the TTFNN model
for neural cryptography. A completed methodology for de-
signing a TTFNN-based protocol satisfying Condition (C;)
has been elaborated on, based on two analytically provided
heuristic rules. Several TTFNN instances that can outperform
the TPM-based protocol were presented. Simulations were
also conducted to validate our results. Our model in this paper
has shown that further development of neural cryptography is
indeed possible.
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APPENDIX

1. State moving equations

These state moving equations are consistent with those of
the TPM (K = 3) -based protocol [15]. They are presented
here to keep this paper self-contained.

a. Attractive steps
In an attractive step, corresponding weights move in the
same direction. The weights move according to the following
state moving equations, where —L < a,b < L:
Pap = %(Pa+1,b+1 + Pa—1,p-1)s
PaL = %(pafl,L + Pa—1,L-1)s
Pa_L = 5(Past.—L + Pat1-111):
Piy=3(PLo-1+ PLo1b-1),
Pr s =3PLptt + P

PrL= %(pol,L—l + pr-1,L +Pr,i-1+ PLL)

PHYSICAL REVIEW E 87, 032811 (2013)

ij,,L = %(P—L-H,—L-H + P-4 —L+ Pt —1+1+ DL L),
p[t—L =0,
Pt =0. (A1)

b. Repulsive steps
In a repulsive step, only the weights in one hidden unit
move, either A’s or B’s TTFNN. The weights move according
to the following state moving equations, where —L < a,b <
L:
Pty = YPat1b + Pa—rb + Pabs1 + Pap—1),
P = iPat1.L + Pa-t.L + Pa.L + Pa—1):
Pi_1 = 1Pasi—L + Pa—t—1 + Pa—L+1 + Pa—1),
Ply=3pro+ Pt + PrLott + PrLo-1),
iy =1P—r16+ P—rb+ P—Lir1 + P—Lb—1),

o ; (A2)
pro=iQ2pLL+pLy 1+ pPLi)

piL.—L = %(2P—L~—L + pi—L-H,—L + P—L,—L+1),
Pl = TP+ P+ PL L),
ptL-,L = %(ZP—L,L + pi—L—H,L + P—L,L—1).

2. Experimental results for Property 1

Figure 7 illustrates that (Ap,(p)) and {(Ap.(p)) are gener-
ally identical for different feasible TTFNN-based protocols,
especially when 0.8 < p < 1.

3. Analysis of Property 3

Following the methodology in Ref. [14], we briefly intro-
duce how to derive Property 3. Three learning rules (6)—(8)
can be described by a uniform equation,

wi/ P+ 1) = g(w/P @)+ fBx;).

1

(A3)

(Ap(p))

(Ap(p)

-0.01 -0.01

-0.02

FIG. 7. (Color online) (Ap,(p)) and (Ap:(p)) of (a) TPM (K =
3), (b) TPCM (K = 3), (c) TCPM (K = 3), and (d) CI (¢ = 1,2).
L = 10. The linear fitting equation I'(p) is given by Eq. (25).
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If fA/B = 0,no weights move;if £/ = 0, it can be described
as

oi, Hebbian learning rule,
f A/B =1 _g;, Anti-Hebbian learning rule,  (A4)
1, Random-walk learning rule.

From Eq. (A4) the only difference between these learning rules

is whether and how the output o; affects the moving direction.
(1) In the case of the random-learning rule, the moving

direction is determined by x;;, which is a random variable,

P(xij=+1)=3, Pli=-1)=1 (AS)

(i1) In the case of the Hebbian learning rule, by Eqgs. (A3)
and (A4), the direction in which the weight w;; moves is
determined by the product o;x;;. As the output o; is a function
of all input values, x;; and o; are correlated random variables.
Thus the probabilities to observe o;x;; = +1 and o0;x;; = —1
are not equal, but they depend on the value of the corresponding
weight Wi,

1 w;:
P(oixij = +1) = -[1 +erf<+)i|,
2 /NQ'—w.2.
i ij
P(oix;; = 1)—1[1 erf( d/
i =—h=3]1- —m> |
1 lj

Note that the error function vanishes in the limit N — +o00. It
holds that

(A6)

lim P(aix,-j = +1) = lim P(oixij = —1) =
N—+o0

1
N—+o0 2°

(AT)

1
27

(iii) In the case of the anti-Hebbian learning rule, the
direction in which the weight w;; moves is determined by
the product —o;x;;. Similarly, it always holds that

lim P(—oix,-j = +1) = !

im P 1
20 li ( OiXij 1) 2°
N——+o00 N—+o00

(A8)

Based on the aforementioned analysis, the moving direction
of learning rule (L;) converges to that of learning rule (L ). So
the state moving equations for learning rule (L) can also be
described as (Al) and (A2), which implies that the average
step sizes (Ap,) and (Ap;) for learning rule (L;) and its
corresponding rule (L,) are identical. Furthermore, note that

PHYSICAL REVIEW E 87, 032811 (2013)

the transition probabilities P,(p) and P.(p) for learning rule
(L) and its corresponding rule (L,) are equal to each other,
together with the consequence of Eq. (17), so Property 3 is
maintained.

4. Example to compute transition probabilities

With regard to the TPM-based protocol: K =3, 0 =1, F)
is given by Eq. (4), and the random-walk learning rule is given
by Eq. (31). Then (30) is reduced to

Py(e) = P(tipy = Thom)-
Py(e) = P(UiA = UiB = r|‘c1’~4PM = tlé;PM)’
Pi(e) = P(0/" # o |tipm = Tibm)-

(1) Compute P,. Let Py;(e) denote the probability of an
update step if there are i pairs of corresponding hidden units
disagreeing. The following equality always holds:

(A9)

(1—¢P, i=0
0, i=1,

Pui(g) - 3(1 _ 8)82, i = 2’ (Alo)
0, i=3.

It can be computed from Eq. (A10) that

3
PIME= (o) = 3" Pule) = (1 — &)’ +3(1 — e)é”.
i=0
(2) Compute P,. Under the precondition that an update step
occurs, let P,;(g) denote the probability of an attractive step if
there are i pairs of corresponding hidden units disagreeing. It
follows that

1(1—e)

(ma l = (1)7

) =1,

Pai(g) = %(1—5)82 (All)
0, i =3.

From Eq. (A11), we have

10—+ 11 — e)e?
(1 -8B +3(1 —sg)s?

3
PIPME=I(e) =3 " Pu(e) =
i=0

(3) Compute P;. P.(¢) can be computed in a similar manner
to P,(¢) and is hence omitted.
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