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Abstract—Federated learning (FL) is a machine-learning set-
ting, where multiple clients collaboratively train a model under
the coordination of a central server. The clients’ raw data are
locally stored, and each client only uploads the trained weight
to the server, which can mitigate the privacy risks from the
centralized machine learning. However, most of the existing
FL models focus on one-time learning without consideration
for continuous learning. Continuous learning supports learning
from streaming data continuously, so it can adapt to envi-
ronmental changes and provide better real-time performance.
In this article, we present a federated continuous learning
scheme based on broad learning (FCL-BL) to support efficient
and accurate federated continuous learning (FCL). In FCL-BL,
we propose a weighted processing strategy to solve the catas-
trophic forgetting problem, so FCL-BL can handle continuous
learning. Then, we develop a local-independent training solu-
tion to support fast and accurate training in FCL-BL. The
proposed solution enables us to avoid using a time-consuming
synchronous approach while addressing the inaccurate-training
issue rooted in the previous asynchronous approach. Moreover,
we introduce a batch-asynchronous approach and broad learn-
ing (BL) technique to guarantee the high efficiency of FCL-BL.
Specifically, the batch-asynchronous approach reduces the num-
ber of client–server interaction rounds, and the BL technique
supports incremental learning without retraining when learning
newly produced data. Finally, theoretical analysis and experi-
mental results further illustrate that FCL-BL is superior to the
existing FL schemes in terms of efficiency and accuracy in FCL.
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I. INTRODUCTION

VARIOUS end devices (e.g., smartphones) produce a
wealth of data, which can be used to train learning mod-

els for different purposes (e.g., text classification [1], pattern
recognition [2]). To train a learning model, the traditional
approach requires all devices (i.e., clients) to submit their
local training data to a cloud server. However, outsourcing
the client’s local training data to a central server (e.g., cloud
server) may lead to serious security issues because the client’s
local training data are visible and controlled by the central
server. The client’s local training data may be highly secu-
rity sensitive, so the client does not want to share them with
other parties. For example, the training data may contain finan-
cial records, healthcare records, location information, etc. To
address this issue, the federated learning (FL) technique is
proposed to enable multiple clients to jointly train a shared
global learning model while keeping its own local training data
hidden from the central cloud server. In one round of training,
each client computes its local weight and uploads it to the cen-
tral cloud server. Then, the server helps for the aggregation of
locally computed weights (i.e., computing the weighted aver-
age of locally computed weights to obtain the global weight).
A global model can be trained after numerous rounds of
client–server interactions. Because the raw training data are
not required to upload to the cloud server (only the locally
computed weights are uploaded), the privacy of training data
is protected.

Currently, most of the proposed FL models focus on one-
time learning without consideration for continuous learning.
Continuous learning (or lifelong learning) describes a learn-
ing process in which a model is continuously trained on a
stream of training data. Based on past knowledge, continuous
learning can learn new knowledge and summarize it in the
new learning model. Consequently, the continuously updated
learning model can adapt to environmental changes and pro-
vide better real-time performance in practical applications.
Therefore, it is imperative to develop techniques for federated
continuous learning (FCL). However, the existing FL tech-
niques cannot be directly applied or simply extended to enable
FCL. First, the previous FL models lacked the continuous
learning capability, so they suffered from the catastrophic for-
getting problem [3]. In a dynamic scenario, where the clients
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can join and leave the network randomly, the newly received
weights can be significantly different from the previous ones.
Thus, the new aggregated learning model may “forget” the
knowledge learned previously. An FCL scheme being able
to tackle the catastrophic forgetting problem is desirable but
missing in the literature. Second, there are several limitations
in the existing global weight update approaches adopted in FL.
The existing global weight update approaches mainly have
two types: 1) asynchronous and 2) synchronous. In a syn-
chronous approach, the time consumption is determined by the
client of the slowest uploading among all of the clients dur-
ing aggregating, so it may cause a serious slow-training issue.
To avoid the slow-training issue, we can resort to the asyn-
chronous approach in which the clients upload their updates
to the cloud server without waiting for the slowest client.
However, the existing asynchronous approach has two issues:
1) inaccurate-training issue and 2) communication-inefficient
issue.

1) Inaccurate-Training Issue: There is the possibility of
stale updates in an asynchronous approach [4], [5]. The
stale update of one client could overwrite the updates of
other clients in the aggregation process, resulting in an
inaccurate-training issue.

2) Communication-Inefficient Issue: If an asynchronous
approach is adopted, then the required number of client–
server interaction round is growing rapidly with an
increasing number of clients. How to reduce the client–
server interaction round should be considered in FCL.

In this article, we propose an FCL scheme based on broad
learning (FCL-BL) scheme to support efficient and accurate
FCL. FCL-BL is developed based on the following three key
techniques.

1) To address the catastrophic forgetting problem, we
develop a weighted processing strategy. On receipt of the
global weight from the cloud server, the weighted pro-
cessing strategy lets each client compute the weighted
average of the global weight (i.e., received weight from
the server) and the client’s local weight. The weighted
average serves as the client’s next update. Based on the
update, the newly trained global model can preserve the
previously learned knowledge and also adapt to the new
knowledge. Thus, the catastrophic forgetting problem is
solved.

2) To tackle the inaccurate-training issue, we design a
local-independent training solution. In FCL-BL, the
local training process can be performed independently
(the local training model does not rely on the knowledge
of the global learning model). Once the new local weight
is obtained, the client can always use the latest global
weight to compute the new update that is uploaded to the
cloud server. Therefore, the possibility of stale updates
is eliminated and the inaccurate-training issue is tackled.

3) To solve the communication-inefficient issue, we cus-
tomize the exiting asynchronous global weight update
approach (called the batch-asynchronous approach). In
the batch-asynchronous approach, the cloud server com-
putes the global weight only after it receives a batch

(i.e., subset) of clients’ updates. By properly adjust-
ing the cardinality of the subset, the batch-asynchronous
approach can greatly reduce the number of client–server
interaction rounds while ensuring efficient aggregation
(i.e., the high prediction accuracy of the global model
and short aggregation time).

The major technical challenge in the FCL-BL design is how
to achieve continuous learning efficiently for each client. To
preserve the gained historical knowledge, the client can use
all of the historic datasets and the newly produced dataset
in learning. However, this approach is not computationally
efficient because it requires each client to retrain the model
from scratch. To address this challenge, we take advantage
of broad learning (BL). BL supports effective and efficient
incremental learning without the need for the deep architec-
ture [6]. In BL, the network expands neurons broadly, and
only the parameters connected to the output are adjusted by
linear regression, unlike deep learning, which tunes abundant
connecting parameters in filters and layers. In addition, the
BL updates parameters incrementally when new data enter
the network, which means BL can directly add input data
to the original model without reconstructing. The process of
parameter tuning and remodeling is simplified greatly in the
BL. Therefore, the training process of FCL-BL is significantly
accelerated. Moreover, the simple network architecture of BL
can help to reduce the communication volume for FL, and the
incremental learning of BL is suitable for learning streaming
datasets.

To sum up, the main contributions of this article are
described as follows.

1) We propose the FCL-BL scheme to support continuous
learning in the FL setting. To solve the catastrophic
forgetting problem, we propose a weighted process-
ing strategy. The FCL-BL can preserve the existing
learned knowledge and also adapt to the new knowledge,
providing better real-time performance in practice.

2) We develop a local-independent training solution used
in the customized asynchronous global weight update
approach. The proposed solution enables us to avoid
using a time-consuming synchronous approach while
addressing the inaccurate-training issue rooted in the
existing asynchronous approach. Therefore, FCL-BL
achieves both fast and accurate training.

3) We introduce a batch-asynchronous approach and a BL
technique to guarantee the high efficiency of FCL-BL.
On the one hand, the batch-asynchronous approach can
greatly reduce the number of client–server interaction
rounds while largely preserving the prediction accuracy
of the global model and avoiding long aggregation delay.
On the other hand, the BL technique supports incremen-
tal learning without requiring each client to retrain when
learning newly produced data.

4) The experimental results demonstrate that FCL-BL can
ensure the high prediction accuracy of the global trained
model even if each client owns an imbalanced and
nonindependent and identically distributed (Non-IID)
dataset.
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The remainder of this article is organized as follows. In
Section II, some related works are reviewed. The preliminar-
ies about FCL-BL are introduced in Section III. Section IV
describes the overview of FCL-BL, including the system
model, assumptions, and goals. Section V presents the design
of a global weight update in FCL-BL. In Section VI, FCL-BL
is constructed to support continuous learning, and the related
algorithms are described in detail. The analysis of FCL-BL
is presented in Section VII. Performance evaluations are con-
ducted in Section VIII, followed by the conclusions and the
future work in Section IX.

II. RELATED WORK

FL is an efficient and secure scheme for the dis-
tributed network and focuses on training heterogeneous
datasets. Konečnỳ et al. [7] first introduced the federated
optimization for the distributed data. Then, McMahan et al. [8]
proposed communication-efficient learning, called FedAvg,
which reduces the communication cost in update transmis-
sion and can train Non-IID data. After that, a variety of
techniques [9]–[12] had been proposed to make the FL
more computationally efficient and accurate. The schemes
in [13] and [14] proposed the uplink communication-efficient
approaches to featurewise distributed data. In the realistic
wireless networks, the methods based on user selection [15]
and resource optimization [16], [17] were used to improve the
communication of FL. However, these schemes suffer from
the communication-inefficiency issue caused by the inherent
constraints of a synchronous approach.

Different from the above synchronous schemes, some asyn-
chronous FL schemes have been proposed in [18] and [19],
but they have the inaccurate-training issue due to stale
updates. In addition, the above synchronous and asynchronous
FL schemes do not support continuous learning. The asyn-
chronous online FL scheme in [20] focuses on the continuous
streaming data, but the catastrophic forgetting problem is not
addressed.

To solve the catastrophic forgetting problem in continuous
learning, some feasible schemes are proposed in [21]–[23].
Specifically, in the work of learning without forgetting
(LwF) [21], the new data are inputted into the old network
to generate virtual data, and all virtual data are used to recall
old knowledge. The objective function of LwF contains the
constraints of the old network and trains the new task on the
entire network every time. Kirkpatrick et al. [22] proposed
elastic weight consolidation (EWC) to adjust weights (network
parameters) according to the importance of weights in the old
tasks and then train new tasks on these weights. However,
these works do not consider the distributed system and cannot
be used to prevent the catastrophic forgetting problem caused
by dynamic clients. The work (Fed-ADP) in [23] focuses on
continuous learning and FL. It aims to continuously train with
multiple clients on a sequence of tasks from the private local
data stream. Unfortunately, it ignores the training of a global
model and still cannot solve the catastrophic forgetting of the
dynamic clients.

TABLE I
COMPARISON BETWEEN FCL-BL AND EXISTING FL SCHEMES

(�: YES, �: NO, ��: PARTLY)

Fig. 1. Four steps of an FL round.

Different from the horizontal FL considered in this article,
the vertical FL focuses on the cases, where all participat-
ing parties share the same sample space but differ in the
feature space. Some related works about vertical FL are
presented in [24] and [25]. Moreover, some continuous learn-
ing schemes [26], [27] have been proposed to learn the
multidomain data. These are interested topics but beyond the
scope of this article.

Compared to the above schemes [7]–[23], the proposed
FCL-BL shows great advantages. The comparison results are
summarized in Table I.

III. PRELIMINARIES

In this section, we introduce some related preliminaries and
mathematical notations.

FL: FL is a machine-learning setting, which multiple decen-
tralized clients collaboratively train a model under the orches-
tration of a central server, and each client’s raw data are not
exchanged and transferred [28]. In the FL setting, each client
independently computes weights based on its local data and
uploads the trained weights to a server, where the client-side
weights are aggregated to obtain a global model. Each client–
server interaction for a global model calculating is defined as
an FL round. In general, the processes of FL can be decou-
pled into multiple rounds, and each round consists of four
steps which are shown in Fig. 1.

1) The server chooses a statistical model to be trained.
2) The server sends the initial model or the global weight

to clients.
3) Clients train the received model independently with their

data and obtain local weights, which are uploaded to the
server.

4) The server updates the global weight by computing the
weighted average of the received local weights.
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Assume that there are N clients and the set of indices
of samples is U = {u1, u2, . . . , uN}, where the set ui stores
the indices of samples in client i. Let (xk, yk) be a sam-
ple of client i. The samples of client i can be denoted as
(Xi, Yi) = {(xk, yk)}k∈ui . The sample number of client i is
represented as ni = |ui|. The loss function on the sam-
ple (xk, yk) with model parameter (i.e., model weight) ω is
typically defined as fk(ω) = �(ω; xk, yk). In the FL, the
goal of model training is to find a weight ω that mini-
mizes the loss. The minimization of the loss function can be
expressed as minω f (ω) = ∑N

i=1(ni/n)Fi(ω), where Fi(ω) =
(1/ni)

∑
k∈ui

fk(ω) and n = |U | represents the number of total
samples in training.

Federated stochastic gradient descent (FedSGD) [29] is the
direct transposition of stochastic gradient descent (SGD) to
the federated setting, where the gradients are calculated on all
local datasets of a client. Then, the gradients are averaged by
the server and used to make a gradient descent step.

Federated averaging (or FedAvg) [8] is a generalization of
FedSGD, which exchanges the updated weights rather than
the gradients. In a typical implementation of FedAvg, it ran-
domly selects a part of clients for the aggregation in each
round. Each elected client computes gi = ∇Fi(ωt) with a
fixed learning rate η based on its local data, where t repre-
sents the index of the FL round. Specifically, the local update
ωi ← ωi − ηgi is iterated multiple times before the aggre-
gation step in FedAvg. Then, the calculated update ωi

t+1 is
taken as the weight of client i in the next round and uploaded
to the server. Finally, according to the aggregation equation
∇f (ωt) = ∑N

i=1(ni/n)gi, the global weight in the server can
be written as ωt+1 ← ∑N

i=1(ni/n)ωi
t+1, where ωt+1 is the

global weight at t+1 round. Currently, FedAvg as an efficient
and robust technique has been used widely in the learning of
distributed data.

Continuous Learning: Continuous learning (or lifelong
learning) is proposed by Thrun [30], which is a long-
studied topic with a vast literature. It can learn continuously
from streaming data, building a model on what was learned
previously, while being able to reapply, adapt, and generalize
it to new situations. In this part, we only discuss some recent
relevant works that may be applied in the distributed network.

Fed-Regularizer: Adding a regularized term (the �1-norm
and �2-norm) into the loss function is a simple method to
alleviate catastrophic forgetting and achieve continuous learn-
ing. For the FL, the loss function with the �2-norm can be
rewritten as

min
ωt

f (ωt) =
N∑

i=1

ni

n
Fi(ωt)+ λ‖ωt − ωt−1‖2

where λ is constant coefficient and sets how important the
previous model is compared to the new one. If �1-norm is
added, the regularized term represents λ||ωt − ωt−1||1.

Fed-ADP: The continuous learning with additive param-
eter decomposition (called Fed-ADP) [23] is proposed by
Yoon et al. It allows to additively decompose parameters
to prevent catastrophic forgetting. Assume that there are C
clients, and each client c trains a model on a privately

Fig. 2. Framework of BL [6].

accessible sequence of tasks T 1
c , T 2

c , . . . , T t
c ⊆ T . The goal

of Fed-ADP is to effectively train C continuous learning mod-
els on their private task stream. The model parameters ωt

c for
task t at client c can be defined as follows:

ωt
c = Bt

c � mt
c + At

c +
∑

i∈C

∑

j=1,...,t−1

αt
i,jA

j
i

where Bt
c is a base parameter for the cth client shared across

all tasks, mt
c is a sparse mask that enables to selectively uti-

lize Bt
c, � is an elementwise multiplication, and At

c is the
highly sparse task-adaptive parameter for the task given at
round t. The additively decomposable parameter ωt

c is learned
by optimizing the following objective:

min
Bt

c,m
t
c,A
{1:t}
c ,αt

c

L
(
ωt

c, T t
c

)+ λ1�
(

mt
c, A{1:t}

c

)

+ λ2

t−1∑

i=1

∥
∥�Bt

c � mi
c −�Ai

c

∥
∥2

2

where L is a loss function, �(·) is a sparsity-inducing regu-
larization term, �Bt

c = Bt
c − Bt−1

c , and �Ai
c is the difference

between the task-adaptive parameter for task i at the current
and previous round.

BL: BL is a complete paradigm shift in discriminative
learning and a very fast and accurate learning technique
without deep structure. BL is based on the traditional ran-
dom vector functional-link neural network (RVFLNN), which
was proposed by Chen and Liu [6]. Moreover, BL is incre-
mental learning, which can continuously learn from the
new incoming datasets without the entire retraining from
the beginning. Currently, BL had been applied in the time-
series prediction [31], [32]; control of nonlinear dynamic
systems [33]; and image recognition [34].

The structure of BL, shown in Fig. 2, is established in the
form of a flat network. In BL, the original dataset X (or the
new dataset X̂) is mapped to the feature nodes. The ith feature
node Zi is calculated by function φi(Xωei + βei), where ωei

is the random weight vector with a proper dimension. φi and
φk are different functions for i 	= k. We denote that Zi ≡
[Z1, . . . , Zi] is the concatenation of all the first i groups of
feature nodes. Then, the structure is expanded in a wide sense
via the enhancement nodes. Similarly, the jth group of the
enhancement nodes is represented as Hj = ξj(Znωhj + βhj),
and the concatenation of the first j groups of the enhancement
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nodes is denoted as Hj ≡ [H1, . . . , Hj]. ξj and ξr are different
functions for j 	= r. Hence, the training of the BL model can
be represented as Y = [Zn|Hm]W, where [Zn|Hm] is taken as
input and Y is the output. Moreover, W is represented as the
model weight, and | is the concatenation operation.

The goal of broad networks is to calculate the connecting
weights Wm. According to the above formulas, we can obtain
Wm = [Zn|Hm]+Y , where Wm can be easily computed through
the ridge regression approximation of [Zn|Hm]+ by using the
formula A+ = limλ→0(λI + AAT)−1AT . In this article, A+ is
represented as the pseudoinverse of A.

BL also supports incremental learning, which can fast
update model weights based on the previous networks. The
detailed process is shown below. Let the newly produced
datasets be X̂. Then, we denote Am

n = [Zn|Hm], which rep-
resents the n groups of feature nodes and m groups of
enhancement nodes of the initial network. Âm

n represents
the updated group of feature nodes and enhancement nodes
based on X̂, where Âm

n = [φ(X̂ωe1 + βe1), . . . , φ(X̂ωen +
βen)|ξ(Ẑnωh1 + βh1), . . . , ξ(Ẑnωhm + βhm)]. Hence, the new
weight is calculated by Ŵ = W + (ŶT − (Âm

n )TW)B, where Ŷ
are the corresponding labels of additional X̂, Ŵ is the updated
weight, and matrix B satisfies

BT =
{

(C)+, if C 	= 0
(
1+ DTD

)−1(
Am

n

)+D, if C = 0

where the superscript T represents the transpose of the matrix,
DT = (Âm

n )TAm
n
+, and C = ÂT − DTAm

n .
Quantity Imbalance: Quantity skew, that is, different clients

can hold vastly different amounts of data. For example, clients
use the service or application differently, resulting in different
amounts of local datasets [8].

Non-IID: This article focuses on the Non-IID caused by
label distribution skew (called class imbalance), where the dis-
tribution of label (i.e., class) varies across clients. For example,
when clients are tied to particular geo-regions, the distribution
of labels varies across clients—some animals are only in cer-
tain countries or zoos, such as kangaroos in Australia and
pandas in China [28]. To achieve a Non-IID setting, the ran-
domly assigned samples for each client contain only a part of
labels. Take the MNIST dataset as an example. The training
sets are evenly partitioned into 100 clients. For the IID set-
ting, each client is randomly assigned a uniform distribution
over ten classes. For the Non-IID setting, the training data
are sorted by class and divided to create two extreme cases:
one-class Non-IID, where each client receives data partition
from only a single class, and two-class Non-IID, where the
sorted data are divided into 200 partitions and each client is
randomly assigned two partitions from two classes [9].

Mathematical Notations: The mathematical notations used
and their semantic meanings are summarized in Table II.

IV. OVERVIEW OF FCL-BL

In this section, we will introduce the system model, assump-
tions, and goals of FCL-BL.

TABLE II
MATHEMATICAL NOTATIONS USED BELOW AND

THEIR SEMANTIC MEANINGS

Fig. 3. System model of FCL-BL.

A. System Model of FCL-BL

As shown in Fig. 3, the system model of FCL-BL includes
two layers. Client layer, where the clients independently train
their own datasets and perform local training based on the
BL model, is the source of the data in the network. In each
client, the new dataset with a priori unknown size can be
produced over time in an IID or Non-IID way. Server layer,
which receives model updates from local clients, performs
aggregating and then returns the global weight to clients.

Under the coordination of the cloud server, multiple clients
collaboratively train a global model based on their local
datasets. Then, the global weight will be updated based on the
new datasets in the next round. To solve the catastrophic for-
getting problem caused by the newly generated dataset from
local clients, the BL model is adopted. Based on the incre-
mental learning of BL for new inputs, it can fast learn new
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knowledge without forgetting the previously learned model.
Besides, the broad network architecture of FCL-BL helps to
mitigate the catastrophic forgetting caused by dynamic clients.

B. Assumptions

We make the following assumptions: 1) the clients are
mobile devices, such as smartphones and laptops; 2) the clients
can control their data, so they can refuse to upload their
updates. The clients may be unstable so they may drop out
at any time; 3) the local model can be directly applied to the
clients for prediction, classification, etc. These three assump-
tions are in line with real-world applications to ensure that
the proposed scheme can be more scalable; and, in addi-
tion, 4) assume that each user uses the same initial model
for training.

C. Goals

The proposed FCL-BL aims to achieve the following design
goals.

1) Efficiency: a) The speed of local training based on BL is
faster than that of the deep learning with SGD in FCL-
BL. b) The global weight update is communication-
efficient and can avoid the slow-training issue.

2) Accuracy: a) The prediction accuracy of the global
model in FCL-BL should be close to that of a central-
ized learning model, and higher by comparing with that
of the FL model with deep learning; b) FCL-BL should
overcome the catastrophic forgetting problem and solve
the inaccurate-training issue effectively.

V. FCL-BL WITH GLOBAL WEIGHT UPDATE DESIGN

In this section, we present the design of the global weight
update in FCL-BL. We first introduce the proposed local-
independent training and then propose a batch-asynchronous
approach.

A. Local-Independent Training Solution

The synchronous and asynchronous global weight update
approaches are two commonly used methods for updating the
global weight. However, they suffer from some limitations as
analyzed in the following.

In the synchronous approach, the server updates the
global weight when receiving all the client’s local weights.
Specifically, all clients are trained in parallel, and then they
upload their local weights simultaneously when all clients fin-
ish local training. However, it can incur a lot of idle time in the
fast clients while waiting for the slowest client, meaning the
fast clients cannot do anything until the slowest client finishes
training. Even worse, the global weight update process may
be halted if any client drops out or refuses to upload. Hence,
the synchronous approach leads to serious slow training.

In the asynchronous approach, the global weight is updated
whenever the server receives a local weight from any client.
However, the different training speeds of clients will cause the
inaccurate-training issue. For example, if client 1 and client 2
are both trained based on gw1 and the training speed of client

Fig. 4. Batch-asynchronous approach.

1 is faster, gw2 may be updated on ω1 (i.e., gw2 = gw1+ω1)
and gw3 may be updated by ω2 (i.e., gw3 = gw1 + ω2) in
the asynchronous approach. When client 3 trains on the latest
global weight gw3 and obtains gw4 (i.e., gw4 = gw3 + ω3),
ω1 is overwritten by ω2. If ω1 provides better training results
than ω2, we take ω2 as a stale update, which may cause the
inaccurate-training issue.

To address the slow-training and inaccurate-training issues,
we propose a local-independent training solution. In the solu-
tion, the local training processing is performed independently.
Moreover, to avoid the local training on a too small dataset or
large dataset, the sample threshold of the client is set as thr1,
and the local training is performed as long as the sample num-
ber is more than thr1. Thus, the client can train on its new local
datasets continuously without waiting for the slow clients any-
more, so the slow-training issue of the synchronous approach
is tackled. Besides, in local-independent training, each client
updates the local weight only based on its own local dataset.
That is, the local training model does not rely on the knowl-
edge of the global learning model. Without the constraint of
global weight, the clients can always choose the newest global
weight to compute the new client’s updates.

Hence, the local-independent training solution can guarantee
that each global weight update is based on the newest global
weight, so the stale update is eliminated and the inaccurate-
training issue is solved.

B. Batch-Asynchronous Approach

Although the slow-training issue and inaccurate-training
issue can be tackled by the local-independent training solu-
tion, there are other limitations in the global weight update.
If the local-independent training solution is used in the syn-
chronous approach, the server only performs aggregation to
update the global weight when all client’s updates are received,
so the aggregation time is determined by the slowest client. If
the asynchronous approach is adopted, the server performs
the global weight update as soon as receiving any client’s
update, which achieves a short aggregation delay. However,
the cost of doing so is to increase the number of interaction
rounds to obtain a global model with high prediction accu-
racy, especially for massive clients, which will lead to a
communication-inefficient issue. Toward this end, we propose
a batch-asynchronous approach, as shown in Fig. 4.

In the batch-asynchronous approach, the server performs the
aggregation only after it receives a batch of client’s updates.
By properly adjusting the cardinality of the batch (defined
as bs), the batch-asynchronous approach can greatly reduce
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Fig. 5. Local update in clients.

the number of client–server interaction rounds while ensur-
ing efficient aggregation. In addition, to ensure an efficient
global weight update and avoid stale updates simultaneously,
the client’s update can be uploaded at any time. To ensure the
fairness of learning, only at most one update of each client can
be received by the server in a round of FCL-BL. If the client’s
update upload fails, the client is allowed to upload again; if
the uploading is received by the server, the uploading of this
update to the other client will be refused in the same round.

In a round of FCL-BL, there are the following four steps.
1) The server sends the newest global weight gwm to all

clients.
2) Clients perform local training based on their new

datasets to obtain the new client’s weight ω
j
i indepen-

dently.
3) Clients calculate their own updates ω̄ based on gwm, and

send ω̄ to server (presented in the next section).
4) The server performs aggregation on the received bs

client’s updates, then computes new global weight
gwm+1.

VI. FCL-BL WITH CONTINUOUS LEARNING

Based on the above design of global weight update, FCL-BL
is constructed to achieve continuous learning. In the FCL-BL,
the local BL model, the local reaggregation strategy, and the
weighted processing strategy are proposed.

In clients, the local update is performed, which is presented
in Fig. 5. In a local update, it includes the local training, the
local reaggregation strategy, and the weighted processing strat-
egy. To be more specific, in the local training, the new local
weight ω

j
i can be computed by using the BL model. Then,

in the local reaggregation strategy, the newest global weight
gwm and ω

j
i will be reaggregated to compute cω

j
i, which can

be used to update the local model. Finally, the weighted aver-
age of cω

j
i and ω

j
i is computed to obtain the new updates ω̄

j
i

in the weighted processing strategy, and ω̄
j
i will be uploaded

to cloud server.
In the server, bs client’s updates are received and then are

aggregated to generate the new global weight gwm+1. Finally,
gwm+1 will be returned to the clients for the next local update.

The detailed processes of FCL-BL in a round are presented
in Algorithm 1, including the local training, the local reaggre-
gation strategy, and the weighted processing strategy.

A. Local Training Based on Broad Learning

Local training based on BL can achieve continuous learn-
ing without any catastrophic forgetting for each client. As the

Algorithm 1 Proposed FCL-BL
Clients:
Input: [(X̂j

i , Ŷj
i ), . . . , (X̂

h
k , Ŷh

k )] that are the new datasets of all clients,

(n̂j
i, . . . , n̂h

k) that is the number of the new samples, ω
j−1
i (the current

weight), gwm (the received global weights), lab (the label set), |L| (the
number of received clients), Nm

A (the total number of samples participating
in the aggregation).

Output: The updated weights [ω̄j
i, . . . , ω̄

h
k ] in round m.

1: Initialization: The threshold of sample number is thr1.
2: According to Algorithm 2, the local training is performed to obtain new

weight ω
j
i .

3: According to Local Re-aggregation Strategy (Algorithm 3), we can get
the local re-aggregated value cω

j
i .

4: Then calculate ω̄
j
i based on cω

j
i and [X̂j

i , Ŷj
i ] by Algorithm 3.

5: Upload [ω̄j
i, nj

i] to the server.
6: Each client runs steps 2 to 5, and there is no order between clients.

Server:
Input: {(ω̄

j
i, nj

i), . . . , (ω̄n
k , nn

k )} the client’s updates with sample number.

Output: [gwm+1, Nm+1
A ].

1: Initialization: The batch size bs.
2: Receive the updates and sample number from clients.
3: if |L| = bs then
4: Let the set of the received information be represented as [W, N].
5: Calculate the total number of the received samples

Nm+1
A =

∑
num∈N num.

6: gwm+1 =
∑

ωl∈W,nl∈N(wl · nl)/Nm+1
A .

7: end if
8: Send the new global weight and its sample number [gwm+1, Nm+1

A ] to
the clients for the next round of learning.

dataset of the client is changed over time, the continuous learn-
ing in the client may cause catastrophic forgetting. To address
this issue, the client can use all of the historic datasets and the
newly produced dataset in learning. However, this approach is
not computationally efficient, because it requires each client to
retrain the local training model from scratch. In this article, we
introduce the BL, which employs a broad network architecture
for learning and supports incremental learning. In BL, it can
continuously learn new incoming datasets without the entire
retraining from the beginning, so the training is significantly
accelerated. Algorithm 2 shows the local training based on BL
in a client. In Algorithm 2, the client produces a new dataset
(X̂j

i, Ŷ j
i ). When the sample number of the new dataset is more

than thr1, the local training based on BL is performed, where
the new local weight is computed according to (1). Moreover,
the total sample number (nj

i) of the client will also be updated
(see step 5). Finally, the new local weight ω

j
i and the sample

number nj
i will be used in the next processing of local update.

B. Local Reaggregation Strategy

The local reaggregation strategy ensures the local model
with high prediction accuracy. In clients, the local model can
be applied for prediction, classification, etc. However, as the
new datasets are produced over time, if the global weight is
directly used to update the local model, the newly produced
dataset is not utilized. If the new local weight is used to update
the local model, the learned knowledge from other clients is
not utilized. Both of them will affect the prediction accuracy
of the local model.
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Algorithm 2 Local Training in Client i

Input: (X̂j
i , Ŷj

i ) that are the new samples, n̂j
i (the number of the new samples),

ω
j−1
i (the previous weight), nj−1

i (the sample number).

Output: ω
j
i .

1: if n̂j
i < thr1 then

2: ω
j
i = ω

j−1
i and n̂j

i = 0
3: else
4: According to equation (1), compute new weight ω

j
i based on X̂j

i , Ŷj
i ,

ω
j−1
i .

5: nj
i=nj−1

i +n̂j
i

6: end if
7: ω

j
i and nj

i will be used in the local re-aggregation.

Algorithm 3 Local Reaggregation for Client i

Input: gwm, lab (the label set), L (the number of received clients), Nm
A , ω

j
i

(the new weight of client i), and nj
i (the sample number of clients).

Output: cω
j
i and N̄j

i , Uj
i .

1: Initialization: The last upload time is tli , ω
tli
i is the uploaded weight of

client i at time tli , and the client number in local re-aggregation Uj
i = 0.

2: if the client don’t receive global weight from server then
3: cω

j
i = ω

j
i and N̄j

i = nj
i (A0)

4: else if lab includes labi then

5: cω
j
i = (gwm × Nm

A − nt1
i × ωt1

i + nj
i × ω

j
i)/(N

m
A − n

tli
i + nj

i),

N̄j
i = (Nm

A − n
tli
i + nj

i) and Uj
i = L (A1)

6: else if lab does not includes labi then
7: cω

j
i = (gwm × Nm

A + nj
i × ω

j
i)/(N

m
A + nj

i), N̄j
i = (Nm

A + nj
i)

and Uj
i = L+ 1 (A2)

8: end if

To address this issue, we propose a local reaggregation strat-
egy, as shown in Algorithm 3. The key idea of the strategy is
to reaggregate the global weight gwm and the new local weight
ω

j
i in the client. In order to obtain a high prediction accuracy

of cω
j
i, we need to consider two cases.

1) If the client participates in the aggregation of gwm, it
will lead to bias, because gwm and ω

j
i are both associated

with the same datasets. This bias may result in unfairness
in the learned model [28]. Here, we develop a parame-
ter elimination method. Specifically, the relatively stale
weight of the client in the global weight is deleted, so
that the bias is eliminated. To achieve this purpose, first,
we need to track the client’s weight to determine whether
there will be bias. Here, the label of each client is defined
as labi = [id, tli], where id is a randomly selected tem-
porary identifier of the client and tli represents the last
upload time of client i. These labels will travel between
the clients and the cloud server with uploaded updates

and global weights. Then, the latest weight ω
tli
i and the

number of samples n
tli
i that have been received by the

cloud are saved in clients. When the client i receives
lab that includes labi, we delete the client’s local weight

form the global weight by subtracting the n
tli
i × ω

tli
i , as

shown in A1 of Algorithm 3.
2) If the client does not participate in the aggregation of

gwm, the client’s local weight ω
j
i can be reaggregated

directly, as shown in A2 of Algorithm 3. Finally, the

Fig. 6. Catastrophic forgetting problem illustration.

calculated reaggregated values cω
j
i, N̄j

i , (i.e., the total
sample number in cω

j
i) and Uj

i (i.e., the total client
number in cω

j
i) will be used in the weighted process-

ing except to the results of A0. In addition, labi will be
renewed after A1 or A2.

C. Weighted Processing Strategy

The weighted processing strategy is developed to overcome
the catastrophic forgetting problem caused by dynamic clients.
When trained on one dataset, then trained on a second dataset,
many machine-learning models will “forget” the knowledge
learned from the first dataset, so a catastrophic forgetting
problem occurs. An example is shown in Fig. 6 to illustrate the
catastrophic forgetting problem. Model 1 is generated based
on training over training data 1. Based on Model 1, contin-
uous learning is performed by using the new dataset 2, and
finally, Model 2 is generated. Due to the catastrophic forget-
ting problem, Model 2 has a bad prediction accuracy on testing
data 1, which means that Model 2 forgets the knowledge from
the previous learning.

In FCL-BL, the clients are allowed to join and leave at
any time, so the number of clients is not fixed in each round.
Moreover, the client’s datasets are changed over time, so the
new training datasets (includes bs client’s training dataset) can
be significantly different from the ones in the previous rounds.
Thus, FCL-BL suffers from a catastrophic forgetting problem.
At first glance, the catastrophic forgetting problem can be pre-
vented if the historic datasets and new datasets are jointly used
in continuous learning. Unfortunately, however, it is difficult
to collect all historic datasets and newly produced datasets of
the bs clients who participate in the training, because each
client only knows its own datasets in the setting of FL.

In this article, we propose a weighted strategy to address
the catastrophic forgetting problem. On receipt of the global
weight from the cloud server, the weighted processing strat-
egy allows each client to compute the weighted average of
the global weight and the client’s local weight. Assigning
an appropriate weight will help to remember the previous
knowledge while avoiding underfitting or overfitting the new
datasets. In this article, (cω

j
i × N̄j

i − nj
i × ω

j
i)/(N̄

j
i − nj

i)

is used to represent the global weight without bias, and
(N̄j

i − nj
i)/[(Uj

i − 1) × nj
i] is taken as the assigned weight.

Thus, the weighted average ω̄
j
i (i.e., client’s update) can be

written as ω̄
j
i = ((cω

j
i × N̄j

i − nj
i × ω

j
i)/[nj

i × (Uj
i − 1)] + ω

j
i.

Finally, (ω̄
j
i, nj

i) is uploaded to the server for next aggregation.

VII. ANALYSIS

In this section, we analyze the parameter setting, the impact
of local reaggregation, and the weighted processing strategy.
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Fig. 7. bs: batch size.

Fig. 8. thr1: sample threshold.

Fig. 9. Local reaggregation.

A. Parameter Analysis and Setting

By properly adjusting the parameters bs and thr1, the effi-
ciency of communication and local training in FCL-BL will
be improved greatly. An appropriate batch size bs and sam-
ple number thr1 should be small while without sacrificing the
prediction accuracy of the global model. The parameter anal-
ysis is based on some experiments for the FL scheme, which
are conducted on the MNIST dataset (the experimental setting
is the same as described in Section VIII).

Fig. 7 exhibits the prediction accuracy as the function of
the client number. The experimental results show that the
aggregation with 50 client’s updates or more provides bet-
ter prediction accuracy. Hence, we can set the batch size bs
to 50. It can reduce the aggregation time and the number of
client–server interaction rounds while maintaining the high
prediction accuracy of the global model. For the sample thresh-
old thr1, Fig. 8 shows the prediction accuracy as the function
of the sample number. The experimental results indicate that
the prediction accuracy is high with 200 or more samples per
client. Therefore, the sample threshold thr1 is preferably 200
to ensure the high prediction accuracy of local training.

B. Impact of Local Reaggregation Strategy

The local reaggregation improves the prediction accuracy of
the global model. To verify it, we compare the weights cwj

i and
the global weight WLR with gwm without local reaggregation,
where WLR is the global weight based on cwj

i. Then, we have
the following claim.

Claim 1: The model updated by cwj
i and WLR provides

higher prediction accuracy than that by gwm.

Validation: More training data always means a higher
prediction accuracy. The local reaggregation just follows this
idea. To verify the impact of local reaggregation, we con-
duct the experiments on A1, A2, and NoTLR (gwm is model
weights) in 50 clients, where each client has 100 samples. A1
and A2 represent two different cases in the local reaggrega-
tion strategy. In Fig. 9, the clients’ prediction accuracy of the
local model with A1 and A2 is higher than that of without
local reaggregation in most instances. Furthermore, to com-
pare the prediction accuracy of the global model after local
reaggregated. The experiments on the different new samples
and different percentages of clients who participate in local
reaggregation are conducted. The prediction accuracy of the
global model after A1, A2, Hybrid method (includes A1 and
A2), and NoTLR are presented in Fig. 10, where the global
weights of A1, A2 and the Hybrid method represent the three
styles of WLR. From the experimental results, the prediction
accuracy of local model after local reaggregation is higher.
Therefore, Claim 1 is validated.

In summary, the local reaggregation strategy improves train-
ing accuracy, and then the local model updated by cwj

i will
provide higher prediction accuracy.

C. Impact of Weighted Processing Strategy

The weighted processing strategy is feasible under some
extreme conditions and superior to the method by using a
weighted processing strategy in the server. h1, h2, and h3
are represented as the set of clients using A1, A0, and A2 of
Algorithm 3, respectively. The set of clients in the round m+1
of FCL-BL is defined as H = h1∪h3. The relationship between
the set of clients L = h1∪h2 in round m and H in round m+1
is described in Fig. 11.

gwm+1 represents the global weight of round m + 1 in
FCL-BL and WC is global weight based on ω

j
i. Then, we have

WC =
∑

i∈H

ω
j
in

j
i/

∑

i∈H

nj
i

gwm+1 =
∑

i∈H

ω̄
j
in

j
i/

∑

i∈H

nj
i

=
∑

i∈H

⎛

⎝
cω

j
i · N̄j

i − nj
i · ωj

i

U
tli
i − 1

ω
j
i · nj

i

⎞

⎠/
∑

i∈H

nj
i

=

⎡

⎢
⎢
⎣

∑
i∈h1

(

gwm · Nm
A − ω

tli
i n

tli
i

)

|L| − 1
+

∑
i∈h3

(
gwm · Nm

A

)

|L|

⎤

⎥
⎥
⎦

/
∑

i∈H

nj
i +WC

=
⎡

⎣
( |h1|
|L| − 1

+ |h3|
|L|

)

· gwm · Nm
A −

1

|L| − 1

∑

i∈h1

ω
tli
i n

tli
i

⎤

⎦

/
∑

i∈H

nj
i +WC

=
⎡

⎣
( |h1 − 1|
|L| − 1

+ |h3|
|L|

) ∑

i∈h1

ω
tli
i n

tli
i +

( |h1|
|L| − 1

+ |h3|
|L|

)
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Fig. 10. Prediction accuracy of the local model after A1, A2, hybrid method, and NoTLR.

Fig. 11. Set of clients for aggregation in two adjacent rounds.

×
∑

i∈h2

ω
tli
i n

tli
i

⎤

⎦/
∑

i∈H

nj
i +WC.

When |h1| = |L|, |h3| = |h2| = 0, or |h3| = |L|, |h1| =
|h2| = 0, gwm+1 =

∑
i∈L ω

tli
i n

tli
i /

∑
i∈H nj

i + WC. The new
client’s updates are used for the next round of local train-
ing, which is similar to an iterative operation if the data are
static.

The method by using a weighted processing strategy in
the server to tackle the catastrophic forgetting problem is
presented as follows.

M1 (Weighted Processing Strategy in Cloud Server): Clients
train new samples to obtain new updates ω

j
i, which will be

uploaded to the cloud server. Then, in the server, we com-
pute the weighted average of the new updates and gwm by
using a × ∑H

i=1 ω
j
i + b × gwm, where a = ∑

nj
i/|H| and

b = ∑
n

tli
i /|L| represent the average of the received samples

on them. The weights a and b are used to keep the balance
between the previous knowledge and the knowledge on new
datasets.

For M1, the global weight of the round m + 1 is

WM1 = (|H|/|L|) ∑L
i=1 ω

tli
i · n

tli
i /

∑H
i=1 nj

i+WC. In the proposed
weighted processing strategy, the global weight of the round

m+1 is gwm+1 = [([(h1 − 1)/(L− 1)]+(h3/L))
∑

i∈h1
ω

tli
i n

tli
i +

([|h1|/(|L| − 1)] + [|h3|/|L|])× ∑
i∈h2

ω
tli
i n

tli
i ]/

∑
i∈H nj

i +WC.
Define the global weight based on the updates from all
previously received clients and the clients in the next round
as Wglobal, which can reflect the training results most directly
and accurately. Wglobal, WM1, and gwm+1 are described as
follows:

Wglobal =
⎛

⎝
∑

i∈h1∪h3

ω
j
in

j
i +

∑

i∈h2

ω
tli
i · n

tli
i

⎞

⎠/

⎛

⎝
∑

i∈H

nj
i +

∑

i∈h2

n
tli
i

⎞

⎠

WM1 =
⎛

⎝ |H||L|
∑

i∈L

ω
tli
i n

tli
i +

∑

i∈h1

ω
j
in

j
i +

∑

i∈h3

ω
j
in

j
i

⎞

⎠/
∑

i∈H

nj
i

gwm+1 =
⎡

⎣
( |h1 − 1|
|L| − 1

+ |h3|
|L|

) ∑

i∈h1

ω
tli
i n

tli
i +

( |h1|
|L| − 1

+ |h3|
|L|

)

×
∑

i∈h2

ω
tli
i n

tli
i +

∑

i∈h1

ω
j
in

j
i +

∑

i∈h3

ω
j
in

j
i

⎤

⎦/
∑

i∈H

nj
i.

Claim 2: gwm+1 is more similar to Wglobal than WM1, and
provides higher prediction accuracy.

Validation: For Wglobal, the distribution in

{WC,
∑

i∈h1
ω

tli
i n

tli
i ,

∑
i∈h2

ω
tli
i n

tli
i } equals [

∑
i∈H nj

i : 0 : 1].
Similarly, the distributions of WM1 and
gwm+1 are [

∑
i∈H nj

i : (|H|/|L|) : (|H|/|L|)]
and [

∑
i∈H nj

i : ([|h1 − 1|/(|L| − 1)] +
(|h3|/|L|)) : ([|h1|/(|L| − 1)]+ (|h3|/|L|))], respectively.

1) When |h1| = |L|, we obtain |h2| = 0. The distribution
of WM1 and gwm+1 is both [

∑
i∈H nj

i : 1 : 0].
2) When |h1| = 0, we obtain |h3| = |L|. The distribution

of WM1 and gwm+1 is both [
∑

i∈H nj
i : 0 : (|h3|/|L|)].

To test the prediction accuracy of the global model, experi-
ments on different new samples are conducted. The right-most
two subfigures of Fig. 12 show the above two cases. The
prediction accuracy of the global model updated by WM1 and
gwm+1 are the same because they have the same distribution.
Specially, when |h3| = |L|, the distribution of Wglobal is the
same as WM1 and gwm+1, the right-most subfigure shows the
result.

In the other condition, that is, |h1| > 0 and |h3| > 0,
we use the Euclidean distance to calculate the similarity
of the distributions of Wglobal, WM1, and gwm+1. For the
sake of simplicity, the distributions of Wglobal, WM1, and
gwm+1 are represented as Rg, RM1, and RA, respectively. Then,
their Euclidean distance can be written as d(Rg, RM1) =√

(|H|/|L|)2 + ([|H|/|L|]− 1)2 and

d
(
Rg, RA

) =
√

( |h1| − 1

|L| − 1
+ |h3|
|L|

)2

+
( |h1|
|L| − 1

+ |h3|
|L| − 1

)2

where |H| = |L| in the setting of FCL-BL. Then, according to
d(Rg, RM1) and d(Rg, RA), we have

d
(
Rg, RM1

)2 − d
(
Rg, RA

)2

= 1−
[( |h1| − 1

|L| − 1
+ |h3|
|L|

)2

+
( |h1|
|L| − 1

+ |h3|
|L| − 1

)2
]

= 1−
(|H|4 − 2|H|3 − (2h3 − 2)|H|2 + 2|h3|2

(|H| − 1)2|H|2
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Fig. 12. Accuracy comparison in Wglobal, WM1, and gwm+1.

= (2|h3| − 1)|H|2 − 2|h3|2
(|H| − 1)2|H|2

where |h3| > 0, |H| = |L| > h3, and they are all integers.
Then, it always holds [d(Rg, RM1)

2 − d(Rg, RA)2] > 0. As
d(Rg, RM1) > 0 and d(Rg, RA) > 0, we obtain d(Rg, RM1) >

d(Rg, RA). That means gwm+1 is more similar to Wglobal
than WM1 in the distribution. The more similar, the higher
prediction accuracy, and the left-most subfigure of Fig. 12 also
verifies the conclusion. Hence, Claim 2 is validated.

VIII. PERFORMANCE EVALUATION

In this section, we first introduce experiment datasets,
performance metrics, and implementation. Then, we evalu-
ate the performance of FCL-BL and compare it with the
other three schemes (Fed-APD [23], Fed-Restart, and Fed-
Regularizer).

A. Datasets, Metrics, and Implementation

1) Datasets: a) The MNIST handwritten digits dataset1

consists of 60 000 training images (28× 28 pixels) and
10 000 testing images with ten categories (i.e., labels).
b) The NORB dataset2 contains 24 300 training samples
and 24,300 testing samples with five generic categories.
Each sample includes an image pair with 2×32×32 pix-
els. c) The FASHION dataset3 has 44 000 color images
with six categories and 3 × 60 × 80 pixels. 80% of
the dataset is taken as training samples and the other
20% is testing samples. d) The SIGNAL dataset is
collected from four universal software radio peripheral
(USRP) platforms, including 4000 samples. Each sam-
ple has 1024×16 data points. The examples of MNIST,
NORB, and FASHION datasets and the collection of the
SIGNAL dataset are shown in Fig. 13.
Metrics: Three metrics are used: a) overhead;
b) prediction accuracy; and c) efficiency. The overhead
is involved in communication volume and data upload.
The prediction accuracy is evaluated in three aspects:
a) quantity imbalance and Non-IID setting; b) a round
of FL; and c) continuous learning. The efficiency of
FCL-BL is reflected by training time, and lower training
time means higher efficiency.

2) Implementation: FCL-BL implementations are achieved
by PYTHON 3.7 on PC with 3.1-GHz Intel Core i5,

1http://yann.lecun.com/exdb/mnist/
2https://cs.nyu.edu/∼ylclabylclab/data/norb-v1.0-small/
3https://www.kaggle.com/paramaggarwal/fashion-product-images-small

Fig. 13. Examples for training figures. (a) MNIST. (b) NORB. (c) FASHION.
(d) SIGNAL.

TABLE III
SIZE OF UPLINK

8-GB main memory, and macOS High Sierra operat-
ing system. The FL schemes compared are based on the
convolutional neural network (CNN) with two 5×5 con-
volution layers, two fully connected layers, and ReLu
activation, which are the typical settings used in [8].
The BL model used in FCL-BL is based on 100 feature
nodes and 3000 enhancement nodes and also uses ReLu
activation.

B. Experimental Results

We evaluate the performance of FCL-BL in terms of
overhead, prediction accuracy, and efficiency.

1) Overhead: The communication between clients and
server is expensive and the data uplink is time con-
suming. The regular FL schemes, such as [7]–[12],
always require multiple rounds of aggregation to achieve
convergence. For faster convergence and less client–
server communication volume, the direct approach is
to learn as much as possible from local data sam-
ples in one round of FL. Unfortunately, this approach
can result in more weight divergence between differ-
ent clients, and then decreases the aggregation effect of
the global model. However, FCL-BL can eliminate this
weight divergence, which means fewer communication
rounds are achieved. For the practical experiments on
the MNIST, NORB, and FASHION datasets, the size
of the model weights uploaded to the server in each
client is shown in Table III. Fewer data are transmitted
in FCL-BL when the samples are images with large pix-
els. In summary, the fewer communication rounds and
data uplink for the images of large pixels reduce the
overhead of FCL-BL.

2) Prediction Accuracy: The evaluation of prediction accu-
racy in the imbalanced datasets, a round of the FL, and
the continuous learning shows the effectiveness of FCL-
BL to handle quantity imbalance and Non-IID datasets,
inaccurate-training, and incremental learning.

1) FCL-BL for Quantity Imbalance and Non-IID Datasets:
The datasets in the comparison experiments satisfy two-class
Non-IID, and the quantity imbalance is generated with the
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Fig. 14. FCL-BL for quantity imbalance and Non-IID data.

Fig. 15. FCL-BL in the imbalanced data with different extent.

Fig. 16. Training in a centralized learning scenario.

same probability distribution. Fig. 14 shows the prediction
accuracy of FCL-BL on 100 clients with a different total
sample number. The results on MNIST and NORB datasets
indicate that the FCL-BL is suitable for tackling the Non-IID
dataset regardless of whether the quantity of client’s samples
is imbalanced or balanced.

Fig. 15 exhibits prediction accuracy as a function of the
extent of quantity imbalance. The extent is reflected by four
different probability distributions, as shown below. (Assume
that there are n clients and {1, . . . , n} represents the n clients.).

1) P1: The probability of each sample being randomly
assigned to each client is the same, that is, 1/n.

2) P2: The probability distribution of each sample being
randomly assigned to the client in {1, n/2} and {1 +
n/2, n} is {2/3n, 4/3n}, respectively.

3) P3: The probability distribution of each sample being
randomly assigned to the client in {1, n/4}, {1 +
n/4, n/2}, {1 + n/2, 3n/4}, and {1 + 3n/4, n} is
{2/5n, 4/5n, 6/5n, 8/5n}, respectively.

4) P4: The probability distribution of each sample being
randomly assigned to the client in {1, n/5}, {1 +
n/5, 2n/5}, {1+2n/5, 3n/5}, {1+3n/5, 4n/5}, and {1+
4n/5, n} is {1/3n, 2/3n, 1/n, 4/3n, 5/3n}, respectively.

The experimental results in Fig. 15 validate FCL-BL can
work well in the quantity imbalance to a different extent
because the prediction accuracy of FCL-BL is very approx-
imate in the four different probability distributions.

2) FCL-BL Handles Inaccurate-Training: The prediction
accuracy of CNN is higher than that of BL in the central-
ized learning scenario, as shown in Fig. 16. However, in a
round of FL, the FedAvg-based schemes are inaccurate, espe-
cially in the Non-IID setting, as shown in Figs. 17 and 18.
The FedAvg-10, FedAvg-50, and FedAvg-75 represent the
SGD with ten local epochs, 50 local epochs, and 75 local
epochs, respectively. In the IID setting, the prediction accuracy
of FCL-BL is similar to that of FedAvg-50 and FedAvg-75
schemes in MNIST and FASHION datasets, but 40% higher
in the NORB dataset, shown in Fig. 17. In the Non-IID set-
ting, the experimental results in Fig. 18 show the prediction
accuracy of FCL-BL is 20%–60% higher than that of FedAvg-
based schemes. Therefore, the proposed FCL-BL handles the
inaccurate-training issue well.

3) FCL-BL for Continuous Learning: Continuous learn-
ing means more than one round of FL is performed. The
incremental learning capability is reflected by overcoming the
catastrophic forgetting problem and high testing accuracy.

Catastrophic Forgetting: The experiments on catastrophic
forgetting are conducted in two adjacent rounds on the MNIST
dataset. In each round, there are 100 clients and each client
owns 300 samples (training data 1) for current training and
300 new samples (training data 2) in the next round. The new
samples are with different ratios of new classes: 0%, 25%,
50%, 75%, and 100%. For example, if the ratio is 50%, the
classes of 150 samples in the next round are new classes that
do not appear in the previous round. In Fig. 19, the left-
most bar is the testing accuracy in the current round, and
others represent the results in the next round. The results in
Fig. 19(a) show that the testing accuracy of the FedAvg-based
scheme gradually decreases as the ratio of new classes in the
next round increases. It indicates the catastrophic forgetting
problem exists in regular FL. However, FCL-BL maintains
high testing accuracy no matter what the ratios of classes
are, as shown in Fig. 19(b). Thus, FCL-BL can overcome the
catastrophic forgetting problem in continuous learning.

Comparison With Other Schemes: We compare FCL-BL
with some other schemes (Fed-APD, Fed-Restart, and Fed-
Regularizer) that can be used to solve the catastrophic for-
getting problem. Fed-Restart retrains all client’s data from the
beginning in different rounds, which is the most direct method
to overcome the catastrophic forgetting problem in continu-
ous learning. Fed-APD and Fed-Regularizer are introduced in
Section III.

These comparison experiments are conducted in five con-
tinuous rounds (or timestamps) on the FASHION dataset
and SIGNAL dataset. The experiment settings are shown as
follows.

1) 100 clients participate in training in each timestamp.
2) In the FASHION dataset, 35 200 samples are sorted by

class and evenly divided into 500 partitions. Then, ran-
domly assign five partitions to each client as the samples
in five different timestamps.
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Fig. 17. Accuracy comparison for FCL-BL and FedAvg-based schemes with IID.

Fig. 18. Accuracy comparison for FCL-BL and FedAvg-based schemes with Non-IID.

Fig. 19. (a) Catastrophic forgetting in the continuous learning. (b) FCL-BL
without catastrophic forgetting.

3) The SIGNAL dataset is natural streaming collected from
the real world. We adjust the data collection time to
obtain the samples in different timestamps. In each
timestamp, approximately 160 samples per client are
trained.

In Fig. 20, the prediction accuracy is increased over time. It
indicates the four schemes can perform incremental learning.
Fig. 20(a) shows that the prediction accuracy of FCL-BL is
about 10% higher than that of Fed-APD, about 20% higher
than that of the Fed-Regularizer, and close to that of Fed-
Restart in the fifth timestamp. In Fig. 20(b), the prediction
accuracy of Fed-Restart is similar to that of Fed-APD, but
the prediction accuracy of Fed-Restart and Fed-APD is about
12% lower than that of FCL-BL. Because the Fed-APD and
the Fed-Restart cannot handle catastrophic forgetting caused
by dynamic client changes, which reduces prediction accuracy.
In summary, the prediction accuracy of FCL-BL is higher than
that of other schemes, indicating better incremental learning
of FCL-BL.

Efficiency: The results in Fig. 21(a) show the training time
on the FASHION dataset in continuous learning. The training
time of FCL-BL is about 11.0 s, which is near 1.5 times faster
than that of the Fed-APD and Fed-Regularizer. In addition,
the training time of Fed-Restart is increased over time and far
higher than that of FCL-BL.

Fig. 20. Prediction accuracy comparison of continuous learning on (a)
FASHION dataset and (b) SIGNAL dataset.

Fig. 21. (a) Training time comparison in the continuous learning. (b) Training
time comparison with the same prediction accuracy.

To further verify the efficiency of FCL-BL, we compare
the training time of FCL-BL with FedAvg-based schemes
(FedAvg-50 and FedAvg-75) when they achieve the same
prediction accuracy (92.0% in the experiment). The training
time is shown in Fig. 21(b), and the results indicate that the
training time of FCL-BL is lower than that of FedAvg-50 and
FedAvg-75 in a round of FL. Thus, if the Fed-Restart and the
Fed-Regularizer are based on FedAvg-50, the FCL-BL is also
more efficient in continuous learning.
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IX. CONCLUSION

In this article, we have designed an efficient and accurate
FCL-BL. In FCL-BL, we develop a local-independent train-
ing solution and a batch-asynchronous approach to support the
fast and accurate global weight update. Based on it, a weighted
processing strategy is designed to solve the catastrophic forget-
ting problem, so that FCL-BL can achieve continuous learning.
Then, we introduce BL to tackle the computation-efficient
issue in local training while avoiding the catastrophic for-
getting problem in clients. In addition, to ensure the local
model can provide good services to clients, we design a local
reaggregation strategy. Finally, the experimental results also
demonstrated that FCL-BL keeps the high prediction accu-
racy of the global model in the unbalanced data and Non-IID
data.

In FCL-BL, there are interesting problems that deserve
further investigation, such as the privacy issues in the trans-
mission of updates and the improvement of accuracy and
efficiency in FCL. For the privacy issues, the methods based
on differential privacy [35], [36]; secure multiparty computa-
tion [37], [38]; homomorphic encryption [39]; and over-the-air
computation [40] are used to additionally improve privacy
protection. In terms of performance improvement, the fuzzy
BLS in [41] is a solution to improve the prediction accu-
racy and training time in centralized and distributed learning,
and the incremental method in [42] is used to overcome the
catastrophic forgetting problem. Combined with these meth-
ods, we may further improve the performance of FCL. The
aforementioned problems are left for our future work.
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