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Second-Order Consensus Seeking in Multi-Agent
Systems With Nonlinear Dynamics Over
Random Switching Directed Networks
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Abstract—This paper discusses the second-order local con-
sensus problem for multi-agent systems with nonlinear dynamics
over dynamically switching random directed networks. By ap-
plying the orthogonal decomposition method, the state vector
of resulted error dynamical system can be decomposed as two
transversal components, one of which evolves along the consensus
manifold and the other evolves transversally with the consensus
manifold. Several sufficient conditions for reaching almost
surely second-order local consensus are derived for the cases of
time-delay-free coupling and time-delay coupling, respectively.
For the case of time-delay-free coupling, we find that if there exists
one directed spanning tree in the network which corresponds to
the fixed time-averaged topology and the switching rate of the
dynamic network is not more than a critical value which is also
estimated analytically, then second-order dynamical consensus
can be guaranteed for the choice of suitable parameters. For
the case of time-delay coupling, we not only prove that under
some assumptions, the second-order consensus can be reached
exponentially, but also give an analytical estimation of the upper
bounds of convergence rate and the switching rate. Finally, nu-
merical simulations are provided to illustrate the feasibility and
effectiveness of the obtained theoretical results.

Index Terms—Directed spanning tree, local consensus,
multi-agent systems, nonlinear dynamics, random switching,
second-order consensus, time-delay (-free) coupling.

I. INTRODUCTION

I N RECENT years, there has been an increasing interest
in the study of the interplay between communication and

control in networks [1]–[17]. In particular, coordination con-
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trol of multi-agent systems has received compelling attentions
from scientific communities, and emerged as a challenging new
research field [1]–[6]. Coordination control means that local
communication and cooperation among individual agents in the
network may lead to certain desirable global behaviors. The
local interaction mechanism also frequently appears in nature
such as synchronization flashing of fireflies [18], movement of
a school of fish [18], descriptions of the heart [19], the under-
standing of brain seizures [20], nonlinear optics [21], meteo-
rology [22] and so on. These collective activities of creatures
have inspired the designs of many practical engineering appli-
cations [6], including (but not being limited to) the formation
control of multi-robots [23] and unmanned autonomous vehi-
cles (UAV) [24] in control engineer, the distributed computation
[25] and the coordination control of distributed sensor networks
[26], [42], [43] in computer science, swarming or flocking [27],
complex networks [8]–[13], to name a few. A fundamental ap-
proach to make the states of multi-agent systems reach an agree-
ment on a common value of interest is consensus analysis. This
is mainly because consensus analysis not only helps in better un-
derstanding the general mechanisms and interconnection rules
of natural collective phenomena, but also benefits many prac-
tical applications of networked cyber-physical systems.
When the control input is added on the velocity term, each

agent can be modeled simply as a first-order integrator. Signifi-
cant progresses have been made towards the consensus problem
of multi-agent systems for this case, see [1], [2], [4], to name
a few. It is also noted that almost all the reported works can
be treated as a special case of the synchronization problem of
complex dynamical networks [28], [39], [40], [44], [45], [49]
which has been widely studied in the past decades [8]–[13].
However, as pointed out in [29], the extension of consensus
algorithms for agents from first-order dynamics to second-order
(when the control input is added on the driving force/accel-
eration term) is non-trivial. Generally, for the following two
cases that there contains a directed spanning tree for a fixed
topology and all the topologies in the switching sequence con-
tain a directed spanning tree, the existing first-order consensus
criteria can be extended to handle with first-order consensus
problems. While the obtained first-order consensus criteria fails
to solve the consensus problem for second-order multi-agent
systems when there exist isolated agents in some topologies
in the switching sequence. Very recently, the second-order
consensus of multi-agent systems has attracted more and more
attention under various assumptions, such as communication
time-delays [3], [31], [32], switching topology [5], [7], [32],
[33], nonlinear dynamics [28], [30], [34], [35], [50]–[52], or
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nonlinear coupling [34], leader [28], [32], [33] or leaderless [3],
[5], [7], [30], [34], [35], and communication noises [3], [32].
Usually, in reality, some oscillators, for example, harmonic

oscillators [34], [36] and pendulums [37], are governed by
second-order systems with both position and velocity terms.
Hence, it is necessary to investigate the consensus problem
of multi-agent systems composed of second-order oscillators,
in which the dynamics of each agent are not only determined
by the interactions among agents, but also by its own more
complicated dynamics, i.e., intrinsic dynamics [28], [30], [34],
[35] (disturbances and unmodeled uncertainties of agent). Pro-
tocols or algorithms dealing with the second-order consensus
of multi-agent systems with nonlinear dynamics have not been
emphasized until the recent works [28], [30], [34]. In [30], a
kind of measurement for directed strongly connected graph,
i.e., general algebraic connectivity, was first defined by Yu et
al. The authors built the bridge between the general algebraic
connectivity and the performance of reaching an agreement for
second-order multi-agent systems with nonlinear dynamics.
The similar problem has also been paid attention by Song et
al. in [28] by using pinning control technique, and it is worth
mentioning that the above approaches have overcome the
restriction, i.e., the interaction network is strongly connected in
[30]. In [34], based on the local adaptive strategies, Su et al.,
have found that if one agent has access to the information of the
virtual leader, all agents in the group can synchronize with the
virtual leader. However, there exists a common drawback in the
previous works: the network topology is deterministic or static,
and the inner coupling matrix is constant in time. In real-world
applications such as the case of terrestrial planet finder (TPF)
mission and other similar mission scenarios, the sensing and
inter-spacecraft communication topology often changes over
time due to the dynamic nature of each spacecraft’s state (e.g.,
range limitations on relative sensing, shadowing scenario, etc.)
[1]. Hence, the study on the consensus problem of multi-agent
systems with switching topology under the removal of old
links and/or the addition of new links with mobile nodes, is not
only important but also necessary [35]. Generally speaking, the
consensus of multi-agent systems with switching topologies
can be divided into the following cases: arbitrary switching
[33], [38] Markov switching [5], controlled switching [32],
[35] and random switching [1], [2], [13], [14], [41]. Random
switching means communication among agents in the network
is dependent on a time-varying topology which may vary
randomly based on a pre-given probability matrix. Moreover,
the other switching modes may be regarded as special cases of
random switching in which some special switching sequences
may take place.
In addition, problems on directed graphs are theoretically

more challenging than those on undirected graphs due to the
fact that algebraic properties are mostly known for undirected
graphs [4]. Also, many important real networks have directed
edges [46]. Moreover, with increasingly strict requirements for
control speed and system performance, the unavoidable time
delays in both controllers and actuators have also become a
serious problem. For instance, all digital controllers, analogue
anti-aliasing and reconstruction filters have also exhibited a
certain time delay during operation, and the hydraulic actu-

ators and human being interaction usually show even more
significant time delays. To the best of the authors’ knowl-
edge, few authors have considered the second-order dynamic
consensus problem for multi-agent systems with time-delay
(-free) coupling over random switching directed networks (that
communicate via a stochastic information network) thus far.
Motivated by the above discussions, this challenging scenario
will be investigated in this paper. Communication among
agents is modeled as a randomly directed graph with different
edge weights which switches with a fixed period. The existence
of any edge is probabilistic and independent of the existence
of any other edge. By applying the orthogonal decomposition
method, the system state vector can be decomposed as two
transversal components, one of which evolves along the con-
sensus manifold and the other evolves transversally with the
consensus manifold. Several sufficient conditions for almost
sure consensus are derived for the cases of time-delay-free
coupling and time-delay coupling, respectively. For the case
of time-delay-free coupling, we find that if there exists one
directed spanning tree in the network which corresponds to
the fixed time-averaged topology and the switching rate of the
dynamic network is not more than a critical value which is also
estimated analytically, then second-order dynamic consensus
can be guaranteed for the choice of suitable parameters. For
the case of time-delay coupling, we not only prove that under
some assumptions, the second-order consensus can be reached
exponentially, but also give an analytical estimation of the
upper bounds of convergence rate and the switching rate.
Moreover, the obtained results are quite powerful, and can be
further used to solve various switching cases for complex dy-
namical networks. Finally, numerical simulations are provided
to illustrate the feasibility and effectiveness of the obtained
theoretical results.
The rest of this paper is structured as follows: Section II in-

troduces some basic concepts of random graph, and formulates
the problem under investigation. In Section III, several suffi-
cient conditions for reaching second-order dynamic consensus
over random switching networks are derived for the cases of
time-delay-free coupling and time-delay coupling, respectively.
Our main results are illustrated by numerical simulations in
Section IV. Concluding remarks and future research topics are
drawn in Section V.
Notation: We list some mathematical notations used in this

paper. Let be the set of positive integer numbers. and
denote the -dimensional Euclidean space and the set

of real matrices, respectively. For a vector , its
Euclidean norm is defined as and

. and denote the identity matrix and
zero matrix of order , respectively. and de-
note the minimum and maximum eigenvalue of a square matrix
, respectively. denotes the -th eigenvalue of a square
matrix . Let . The Kronecker product, de-
noted by , facilitates the manipulation of matrices with appro-
priate dimensions by the following properties: i)

and ii) . The symmetric
part of a is indicted with .

and denote the real and imaginary part of a com-
plex number , respectively.
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II. PRELIMINARIES AND PROBLEM FORMULATIONS

A. Random Graph

Graph theory is the study of objects, naturally called graphs,
consisting of a set of vertices, each pair of which is endowed
with an incidence relation represented by an edge. In variety
of emerging applications, including mobile ad hoc networks,
opinion dynamics, cooperative control, mathematical epidemi-
ology, information exchange among agents in multi-agent
networked systems can be modeled by an interaction random
graph. Mathematically, a dynamically switching directed/undi-
rected random network can be described by a sequence of
weighted directed/undirected random graphs ,
where is a vertex set whose elements
denote the agents in the networks; is an edge set
whose elements denote the directed/undirected communication
links between agents. A directed edge in graph
is represented by an ordered pair of , where is the head
and is the tail, which also means that vertex can receive
information from vertex for , . We assume that the
existence of an edge from vertex to vertex in graph

is determined randomly and is also independent of other
edges with probability which satisfies . An
information link is referred to as a potential link when the
associated edge probability . The probabilities ’s are
collected in the probability matrix . We also assume
that the random graph does not have self-loops, i.e., no single
edge starts and ends at the same vertex. Thus we have
for . We then define independent Bernoulli
random variables, ’s, , , , as follows:
with probability and with probability , in
which each random variable is associated with the edge

. is a weight matrix with all diagonal
elements equal to 0, and the element denotes the weight
associated with the edge . The weight denotes how each
agent evaluates the information collected from its neighboring
agents to update the consensus algorithm. We have that is
symmetric for undirected graphs while it can be asymmetric
for directed graphs. Moreover, a directed graph has a directed
spanning tree if there exists at least one vertex called root which
has a directed path to all the other vertices.
Algebraically, a weighted directed random graph is rep-

resented by an adjacency matrix and a Laplacian ma-
trix defined as if and
if , where is the corresponding entry of the weight
matrix , and if and
if [4], [13]. Both the adjacency matrix and the Laplacian
matrix defined above are essentially random. The Laplacian ma-
trix is a zero row-sum matrix, therefore is an eigenvector
of associated with the eigenvalue 0. In addition, the rank of
equals to if and only if, for an undirected graph ,
is connected; for a directed graph , has a directed span-

ning tree. In one of the circumstances, the spectrum of can
be ordered of the form:

[1]. As shown in [13], the authors
also consider a class of random graph , which keeps un-
changed in the interval and switches at a se-
ries of fixed time instants where is called fixed

period or switching rate. The finite sample space of the random
directed graph is indicted by , and the elementary events (pos-
sible graphs) are indicted by , where

represents cardinality. The Laplacian matrix which corre-
sponds graph is denoted as . In this sense, amulti-agent
system which corresponds to a random switching network can
be viewed as a set of nonlinear stochastically switched systems.
It follows from the switching mechanisms described above that
the graph edges are independent random variables. The fixed
time-averaged topology of the random graph Laplacian matrix,
written , may be computed entrywise

for and for .
And the fixed time-averaged topology, i.e., , corresponds
to a weighted directed graph which does not necessarily belong
to . We refer to this graph as the average graph, denoted by

as in [13].

B. Problem Formulations

In this paper, we consider a dynamical network com-
posed of identical agents with second-order nonlinear dy-
namics. Suppose is interconnected pairwise via a random,
weighted, directional time-delay states information interaction,
in which each agent is an -dimensional dynamical unit. The
model of each agent can be described by

(1)
where and

are the position and velocity vector
of the -th agent, respectively; is
a continuously differentiable vector-valued function, which
describes the agents’ individual dynamics; and
stand for position and velocity coupling strengths between
any two agents in the network, that partially assigns coupling
strength between agents; is a semi-positive
definite matrix, modeling the time-varying inner coupling
among agents; is the Laplacian
matrix representing the topological structure of the random
network at time . specifies the coupling delay
between agents. Here, and denote two kinds of distinct
time scales.
For system (1), if and ,

, and some is a so-
lution of the individual subsystem

(2)

then we can see that the second-order dynamical consensus can
be achieved. Here, is called consensusmanifold. Generally,

can be an equilibrium point, a nontrivial periodic orbit, or
even a chaotic attractor defined for finite dimensional systems.
It is also noted that the consensus we discuss in this paper refers
to the almost sure consensus over random switching directed
network . Almost sure consensus is also called consensus
with probability one [4].
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The problem of second-order consensus for multi-agent sys-
tems with nonlinear dynamics that communicate via a stochastic
information network corresponds to stability analysis of con-
sensus manifold in the randomly coupled dynamical network
(1). To this end, subtracting (2) from (1) and noticing that the
all of the row sums of equal to one, we obtain the fol-
lowing error dynamical system

(3)

where and ,
. Linearzing (3) around the consensus manifold

leads to

(4)

where and denote the Jacobianma-
trices of function towards the state vectors and on
the consensus manifold , respectively. In addition, the high-
order terms satisfy
and .
Equivalently, (4) can be rewritten as the following compact

vector form:

(5)

where ,
,
,

and

Similarly, the high-order

term also satisfies . It
follows that analyzing the asymptotical stability of linear
part of random switching system (5) at the origin suffices to
investigate the second-order dynamic local consensus of all
agents over the random switching directed network .

III. MAIN RESULTS

A. Orthogonal Decomposition

In this section, we will give some results regarding to the
time-delay-free case and the time-delay case
, respectively. In general, to investigate the second-order dy-

namic local consensus of all agents in the random switching
network , we need to consider the local stability of error
system (5) along the consensus manifold . To begin with,
we first decompose the state vector of (5) (neglecting the high-

order term into two components which are orthog-
onal each other [9], [13], [14]. One component evolves along
the consensus manifold, and the other evolves transverse to the
consensus manifold. Since , we denote its spanned
subspace by . On the other hand, each subspace of has
only one orthogonal complementary subspace, so the orthog-
onal subspace of uniquely exists. Suppose that this orthog-
onal complementary space is the column space of matrix

that satisfies and ,
where consists of an array of
vectors in . (In the following section, we will discuss the ex-
istence of orthogonal decomposition matrix ). We therefore
have . Similarly, we can also expand this de-
composition into , i.e., , where is the
subspace spanned by and represents the orthogonal
complement space spanned by . Note that the consensus
state is in the range of and then in the null
space of [9]. So the state variable can
be decomposed into a component in the subspace spanned by

and a component in the subspace spanned by
as follows:

(6)

where and
. Note that is the average of all

the components in , and the two components are orthogonal
each other, i.e.,

(7)

Using the following state transformation

(8)

the linear part of (5) can be partitioned as two dynamically cou-
pled subsystems. The first subsystem can be described as:

(9)

where
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(10)

and

(11)
Therefore,

(12)

Similarly, the second subsystem can be expressed as:

(13)

where

(14)

Combining (12) and (13) yields the following two coupled
random switching subsystems:

(15)

Correspondingly, we write the deterministic expectation
system associated with the random switching system (15) as
follows:

(16)

in which denotes the expectation matrix of random
switching matrix . In the following, we will respec-
tively discuss two cases in detail, i.e., the case of time-delay-free
coupling and the case of time-delay coupling .

B. The Case of Time-Delay-Free Coupling

First, we will give a lemma for deriving our main results re-
garding to the time-delay-free case. It establishes the relation-
ship between asymptotical stability of the second differential
equation in (15) and that of a derived sampled-data system (at
the switching instants for all ).
Lemma 1: For random switching system (15)with ,

suppose that , and defined in (5) are
bounded and piecewise continuous functions for all , and

is constant for all and switches
at fixed time instants for all . If the sampled
sequence convergences to zero almost surely, then for
all , the state vector will decay to zero
almost surely too.

Proof: Let be for simplicity. For any
, can be computed by

, where denotes the
transition matrix of from to with

.
Since , and are bounded and
piecewise continuous functions, thus there exist posi-
tive constants , and such that for any ,

and .
In addition, from the definition of matrix , we ob-
tain . According to the Gronwall



1600 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 6, JUNE 2013

Bellman’s inequality [see 13, the proof of Theorem 1], for any
, could be estimated by

(17)

and the claim follows immediately.
Consequently, the second equation of system (16) may be

compactly rewritten as:

(18)

where
.

We list the following assumptions for our main results.
(H1) There exists a directed spanning tree in the fixed time-
averaged graph associated with the expectation Lapla-
cian matrix .
(H2) Let be a symmetric positive definite and
bounded matrix, i.e., for some constants
such that and

for some .
(H3) , and defined in (5) are
bounded and piecewise continuous functions for all
, i.e., there exist three positive real numbers , and
such that , and

for all ; is constant for all
and switches at fixed time instants

for all .
Based on the previous lemmas, the main results of the time-

delay-free case can be stated as follows.
Theorem 1: Suppose that (H1)–(H3) hold, and

( and are estimated in the
following proof procedure). Then state vector of stochas-
tically dynamical system (15)with will converge to zero
almost surely, which implies that the second-order dynamical
local consensus over the random switching network (1) can be
achieved almost surely.

Proof: (H1) can guarantee the existence of the orthogonal
decomposition matrix , i.e., the existence of (15). Construct
the quadratic function as:

(19)

The time derivative of along the trajectory of the expectation
system (18) is given by

(20)
We note from (H2) and (20)that is a Lyapunov function for the
expectation system (18) whose time derivative along the flow of
(18) is strictly negative definite. Thus, the expectation system
(18) is globally exponentially stable. However, in general, the
function is not a Lyapunov function for the stochas-
tically switched system (20). Inspired by the results of Porfiri

et al. in [13], we use the difference method to complete this
task. For every , we define

(21)

Let be the transition matrix of the stochastically
switched system over the time interval

. Thus, we have . Recalling the
Peano-Baker expansion for [13], [14], we have

(22)

where satisfies

(23)
in which .

If , we get
.

Therefore, we have

(24)

where

(25)

Let , by some

calculations, we can get

(26)
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Moreover, see (27) at the bottom of the page. Therefore, the
following inequality holds.

(28)

Thus, if the switching rate satisfies
the stochastic sequence

will almost surely converge to zero. It
follows from (H2) that the conditions in Lemma 1 are satisfied.
By Lemma 1, we have that will also decay to zero almost
surely when . Therefore, the second-order dynamical
local consensus over the random switching network (1) can be
achieved almost surely. The proof is thus completed.
Remark 1: The results of our paper are based on the orthog-

onal decomposition method. Therefore, the existence of the de-
composition matrix satisfying and

is very essential. (H1) is indispensable because
it can guarantee the existence of the decomposition matrix. is
also indispensable in testing the condition (H2). In short, (H1)
can keep the existence of (15), while (H2) can guarantee the
asymptotical stability of (15). According to (H1) we can seek a
matrix that satisfies the desired requirements. First, we give
a fact that for a directed graph with a directed spanning tree
the eigenvalues corresponding to its Laplacian matrix can be
ordered as .
is an eigenvector of associated with the eigenvalue 0. Due
to the asymmetry of the eigenvectors of associated with
the nonzero eigenvalues are complex. They could not be
used to construct because is needed to be a real matrix.
Second, a directed graph with a directed spanning tree corre-
sponds to a connected undirected graph by doubling the orien-
tation of all the directed edges and taking half of weights of a
directed edge as the weights of the two undirected edges. The
resultant undirected graph is connected. For the obtained undi-
rected connected graph, its weighted matrix is symmetric. The

eigenvectors associated with nonzero eigenvalues
of the obtained connected graph’s Laplacian matrix are real
vectors. Then we can use the normalized real eigenvec-
tors to construct the decomposition matrix .
Remark 2: The idea in the above proof originated from [13].

Here we show that by suitable adapting the methods of proof in
[13], and adding further substantial arguments, now allows us

to rigorously estimate the upper bound of the switching rate .
Nevertheless, in [13] the authors have only proven that there ex-
ists a such that for all , the synchronization of com-
plex dynamical random switching networks can be achieved.
Remark 3: From (H2) we can find a positive definite matrix
whose derivative matrix is negative definite to guar-

antee the condition is satisfied. Additionally, choose to be
diagonal can simply our computation. The diagonal elements

may be in the form of , where ,
and are three positive constants to be determined by the in-
equality. At this time, we can select and .

C. The Case of Time-Delay Coupling

Note that for linear systems, the uniformly asymptotical sta-
bility of solutions is equivalent to the uniformly exponential sta-
bility [9], [14]. Thus, assume that the second differential equa-
tion in (15) is uniformly asymptotically stable almost surely, by
the definition of the exponential stability, for , there al-
ways exists two constants and such that for

and ,
holds. This also implies .
Therefore, and will simultaneously al-
most surely converge to zero as . Then the transversal
component will disappear and the second-order dynamical local
consensus over the random switching directed network (1) with
time-delay couplings can be achieved almost surely.
We list the following assumption for obtaining the main re-

sults of the time-delay coupling case.
(H4) There exists a infinite subsequence composed
of some fixed moments in the random switching se-
quence, denoted ,
and satisfies . Moreover, there is a

finite positive integer such that
and

where is defined
in the following (30), is short for

, , and .
The main results of the time-delay case can be stated as fol-

lows.
Theorem 2: Suppose that (H1)–(H4) hold. If

and
with , then state vector of stochastically dynam-
ical system (15) will converge to zero almost surely, which im-

(27)
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plies that the second-order dynamical local consensus over the
random switching network (1) can be achieved almost surely.

Proof: The second equation in system (16) can be rewritten
as follows:

(29)

where and
.

Construct the Lyapunov function for system (29) as follows:

(30)

where also satisfies (H2). Calculating the time derivative
of along the trajectory of system (29) gives that

(31)

Note and (H2), we can obtain the following.

(32)

Using Halanay inequality (see, e.g., [48]), we have that if
there exists a unique positive real number satisfies

(33)
such that . However, in
general, the function is not always a Lyapunov func-

tion for the stochastically switched system .
If (H4) is satisfied, then there exists a such that

. For any , we can derive that

(34)

where . We therefore have

(35)

It follows that

(36)

Applying the Gronwall inequality yields:

(37)

Thus, we can get

(38)

When , since and

,
it can be derived that

(39)

Due to , we have
. Repeat this computation procedure

(which is analytically determined in the following (41)) times,
we have

(40)
If we select

(41)

then we can get

(42)

and

(43)
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Letting and

(44)

the following relationship can be established, i.e.,

(45)

Combining (42)–(45), it can be derived that

(46)
For all , by a similar argument procedure the same as
that leading to (39), we can get

(47)

By the definitions of (41) and (44), one can further has

(48)

still holds.
Therefore, , the following inequality holds.

(49)
On the other hand, for all , there exists such
that , thus we have

(50)

By using differential theory and Gronwall inequality, we have
the following. From . , we can get

. Thus, the following
inequality holds.

(51)

Substituting (38) into(51) yields

(52)

Therefore, we have that will also decay to zero almost
surely when . Therefore, the second-order dynamical
local consensus over the random switching network (1) can be
achieved almost surely. The proof is thus completed.
Remark 4: The classical Lyapunov approach to uniform

asymptotic stability of the zero solution of dynamical system
requires the existence of a positive definite, decrescent Lya-
punov function whose derivative along the solutions of the
system is negative definite. However, for the case of random
switching topologies, the above approach may fail. On the one
hand, it is difficult to construct a suitable Lyapunov function
for random switching dynamic network. On the other hand,
the derivative of the Lyapunov function may have positive
and negative values. In this situation, we can also resort to
the Lyapunov function of the time-averaged system to investi-
gated the exponential stability (not exponentially asymptotical
stability) of the corresponding random switching system. The
obtained theorem additionally requires the designed Lyapunov
function decrease when valuated along the solutions at an infi-
nite subsequence of random switching moments. To reach the
second-order nonlinear consensus in networks of multi-agent
with directed topologies and random switching connections, a
more harsh condition, i.e., at the cost of measuring position and
velocity states of all agents at all times, is needed.

IV. SIMULATIONS

In this section, some numerical simulations are performed to
illustrate the feasibility and effectiveness of our theoretical re-
sults presented in the previous sections. For convenience, we
assume that there are totally 4 agents in the random switching
directed network . Each agent is modeled as a second-order
system with nonlinear dynamics. At time , all agents are cou-
pled by position and velocity states with other agents according
to the topology of dynamic network . Suppose the agents’
inner coupling matrix . Through coupling, the dynamics
of agent at time can be described by:

(53)
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for , where ,
, ,

and , , are constants. Especially, when ,
and , the second-order isolated oscillator
depicts a chaotic attractor [47]. In our experiments, we use
the Runge-Kutta method to solve the differential equations by
letting the step size .
For the time-delay-free coupling case, it is assumed that the

link weights among the agents is

(54)

and the potential link probability among agents is

(55)

According to Remark 1, we choose the decom-
position matrix as , where

,
and

. Obvi-
ously, and . By computation, we can
select the parameters as follows: , ,

, , , , ,
.

This shows that our bound is exceedingly conservative. For
example, the switching rate , the initial position
and velocity conditions are both selected randomly over the
interval . Fig. 1(a) and 1(b) show the time evolution
process of position states and velocity states of all agents with
time-delay-free couplings over the random switching directed
network, respectively. It is easy to see that the second-order
dynamical local consensus over the designed random switching
network is achieved. Moreover, we also give the time evolution
of (the real part of the second minimum
eigenvalue of , which is shown in Fig. 2. From Fig. 2, we
can see that in some time intervals, equals to
zero, which means there exists no directed spanning trees in
these topologies, i.e., there exist some isolated nodes in these
topologies.
In the following, we consider a larger network with 10, 20,

30 agents, respectively. Suppose that all the link weights among
the agents are 0.01 and all the potential link probabilities among
agents are 0.5, and the coupling strengths . Through
simulations, we empirically find that the allowable upper bound
of the switching rate will decrease as the number of the agents in
the network increases when other parameters keep unchanged.
Due to the limited space, we omit presenting these simulation
results.
Remark 5: Before the second-order dynamical consensus is

achieved, the consensus state vector is unknown to us.
However, we can still use one of the agents’ state vectors to sub-
stitute the consensus state vector to approximately estimate
the time-varying parameters. In the simulations, we have used

Fig. 1. The time responses of position and velocity states of all agents with
time-delay-free couplings in the random switching network. (a) Position states
of all agents. (b) Velocity states of all agents.

Fig. 2. The time evolution of .

the first agent’s state to replace the consensus manifold to appro-
priately compute the corresponding time-varying parameters.
For the case of time-delay coupling, the time delay is

chosen as , other parameters are selected the same
as that for the time-delay-free coupling case. Fig. 3(a) and
3(b) show the time evolution process of position states and
velocity states of all agents with time-delay couplings over
the random switching network. Fig. 4(a) and 4(b) display the
time evolution of and time evolution of logarithms
with regard to , respectively. From Fig. 4, one can see
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Fig. 3. The time responses of position and velocity states of all agents with
time-delay couplings in the random switching network. (a) Position states of all
agents. (b) Velocity states of all agents.

that the time derivative of have positive and negative
values. The reason is that the multi-agent network undergoes
some topologies which do not contain directed spanning trees.
However, we can observe that there exists a subsequence of the
switching sequence at which the estimated values of the Lya-
punov function decreases totally. In this sense, the exponential
stability instead of exponentially asymptotical stability of the
error dynamical system can be established.
Remark 6: The weight denotes how each agents to update

the consensus algorithm. In general, we do not require to
have nonnegative elements. The negative weights may imply
deteriorated communication channels, or natural disagreement
of the child node over the information obtained from its parent
node. It is noted that in our experiments, we have considered the
case in which some communication links have negative weights,
e.g., and . We find that
the second-order dynamical consensus over random switching
network can also been achieved. Therefore, the obtained results
in this paper are more practical in applications of engineering.
Remark 7: The results obtained in this paper have provided

new insights about the requirements for second-order dynam-
ical consensus when the network topology is random switching.
The results also show that even if the network is not always
connected instantaneously, sufficient information is propagated
through the network to allow almost sure consensus as long
as the network which corresponds to the fixed time-averaged

Fig. 4. (a) The time evolution of . (b) The time evolution of logarithms
with regard to .

topology has a directed spanning tree, and that the switching rate
is sufficiently fast. We note that the results obtained in this paper
are only limited to the second-order local dynamical consensus.
Remark 8: From the above simulation, we found that the

allowable time delay and switching rate may be significantly
bigger than the theoretically estimated values. It seems that our
estimations of and are somewhat conservative. Since we
hope that the resulting system is exponentially stable with the
convergence rate satisfying (45), within this framework the es-
timations can hardly be improved. The limitations on time delay
and the switching rate are a commonly unsolved problem which
deserves further investigations.

V. CONCLUSIONS

In this paper, the problem of second-order dynamical con-
sensus over the random switching directed networks has been
studied in detail. Note that our theoretical results are only
limited to the local consensus, despite to the fact that some
numerical results seem to indicate that the stronger property of
global consensus might in fact be exhibited by the case-study
system. The orthogonal decomposition method is used to
simplify the theoretical analysis. We pose the second-order
nonlinear consensus problem in a stochastic framework where
the communication among the agents is modeled as weighted
directed random switching graph. The theoretical results show
that the local consensus can be achieved almost surely if the
time-averaged communication network supports the consensus
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and the time delay and switching rate are less than two upper
bounds respectively, which are estimated analytically. The
obtained results are quite powerful, and can be further used
to solve various switching cases for complex dynamical net-
works. In this framework of random switching networks, the
following issues deserve careful studies: i) consensus of agents
with different nonlinear dynamics; ii) consensus of agents
with time-varying delay couplings; iii) cluster consensus; iv)
consensus with the communications constraints, such as packet
losses, channel noises, limited width, ect. These problems will
be discussed in future papers.
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