78 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

NO. 1, JANUARY-JUNE 2013

Outsourcing Large Matrix Inversion
Computation to a Public Cloud

Xinyu Lei, Xiaofeng Liao, Senior Member, IEEE, Tingwen Huang, Huaqing Li, and Chungiang Hu

Abstract—Cloud computing enables resource-constrained clients to economically outsource their huge computation workloads to a
cloud server with massive computational power. This promising computing paradigm inevitably brings in new security concerns and
challenges, such as input/output privacy and result verifiability. Since matrix inversion computation (MIC) is a quite common scientific
and engineering computational task, we are motivated to design a protocol to enable secure, robust cheating resistant, and efficient
outsourcing of MIC to a malicious cloud in this paper. The main idea to protect the privacy is employing some transformations on the
original matrix to get an encrypted matrix which is sent to the cloud, and then transforming the result returned from the cloud to get the
correct inversion of the original matrix. Next, a randomized Monte Carlo verification algorithm with one-sided error is employed to

successfully handle result verification. In this paper, the superiority of this novel technique in designing inexpensive result verification
algorithm for secure outsourcing is well demonstrated. We analytically show that the proposed protocol simultaneously fulfills the goals
of correctness, security, robust cheating resistance, and high efficiency. Extensive theoretical analysis and experimental evaluation

also show its high efficiency and immediate practicability.

Index Terms—Cloud computing, matrix inversion, secure outsourcing, robust cheating resistant, Monte Carlo verification

1 INTRODUCTION

WITH the emergence of the cloud computing paradigm
in scientific and business applications, it has become
increasingly important to provide service-oriented comput-
ing in third-party data management settings. With this
paradigm, the resource-constrained clients can offload their
intensive computational tasks to clouds, which are
equipped with massive computational resources. In con-
trast to setting up and maintaining their own infrastruc-
tures, the clients can economically share the massive
computational power, storage, and even some softwares
of the clouds.

1.1 Challenges

Promising as it is, outsourcing computational problem to
the commercial public service provider inevitably brings in
new security concerns and challenges [1]. The first
challenge is the client’s input/output data privacy. The
outsourced computational problems and the results to these
problems often contain sensitive information. To hide the
sensitive information from the cloud, the client needs
to encrypt their data before outsourcing and decrypt
the returned result from the cloud after outsourcing. The
second challenge is the verification of the result returned by

o X. Lei, X. Liao, and H. Li are with the State Key Laboratory of Power
Transmission Equipment & System Security and New Technology, College
of Computer Science, Chongqing University, Chongging 400044, P.R.
China. E-mail: xy-lei@qq.com, xflino@cqu.edu.cn, lhq_jsack@126.com.

o T. Huang is with the Texas A&M University at Qatar, Doha, PO Box
23874, Qatar. E-mail: tingwen.huang@qatar.tamu.edu.

e C. Hu is with the Department of Computer Science, George Washington
University, Washington, DC 20052. E-mail: chu@gwu.edu.

Manuscript received 24 Mar. 2013; revised 3 Aug. 2013; accepted 18 Sept.
2013; published online 26 Sept. 2013.

Recommended for acceptance by D. Lie.

For information on obtaining reprints of this article, please send e-mail to:
tcc@computer.org, and reference IEEECS Log Number TCC-2013-03-0057.
Digital Object Identifier no. 10.1109/TCC.2013.7.

2168-7161/13/$31.00 © 2013 IEEE

the cloud. This is because the cloud may behave unfaith-
fully and return incorrect results. As an example of
intentional reason, for the outsourced computational
intensive tasks, there are strong financial incentives for
the cloud to be lazy and just return incorrect answers to the
client if such answers require less work and are unlikely to
be detected by the client. Besides, some accidental reasons
such as possible software bugs or hardware failures may
also result in a wrong computing. Consequently, the
outsourcing protocol must be designed in such a way that
it is able to detect whether the returned result is correct or
not. The third challenge is efficiency. On one hand, a key
requirement is that the amount of local work performed by
the client must be substantially cheaper than performing the
original computational problem on its own. Otherwise,
there is no point for the client to resort to the cloud. On the
other hand, it is also desirable to keep the amount of work
performed by the cloud as close as possible to that needed
to compute the original problem by the client itself.
Otherwise, the cloud may be unable to complete the task
in a reasonable amount of time, or the cost of the cloud may
become prohibitive. To sum up, an outsourcing computa-
tion protocol should satisfy four aspects: it is correct, secure,
verifiable, and efficient.

1.2 Motivations

Matrix inversion computation (MIC) is a basic computa-
tional problem in scientific and engineering fields and has a
number of applications. For example, MIC plays a sig-
nificant role in scientific computations. Take a typical linear
regression model y = X3 as an example, the least squared
error method yields a solution for § by computing 5 =
(XTX)"'XTy [2]. Besides, MIC is widely used in computer
graphics, particularly in 3D graphics rendering and 3D
simulations [3]. Examples include screen-to-world ray
casting, world-to-subspace-to-world object transformations,

Published by the IEEE CS, ComSoc, PES, CES, & SEN

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

LEI ET AL.: OUTSOURCING LARGE MATRIX INVERSION COMPUTATION TO A PUBLIC CLOUD 79

and physical simulations. Moreover, MIC is well rooted is
many other engineering and scientific fields including
image encryption [4], [5], image watermarking [6], [7], to
just list a few. To sum up, MIC is widely needed for a variety
of clients. When the restricted computational resources are
possessed by these clients and MIC deals with a large matrix
(or a batch of large matrices), an economical solution is to
outsource MIC to a powerful cloud. Even if the data are in a
moderate scale, for clients as battery-limited mobile phones,
portable devices, or embedded smart cards, secure out-
sourcing of MIC is preferred. Consequently, we are
motivated to design a protocol to enable clients to securely,
verifiably, and efficiently outsource MIC to a cloud.

1.3 Main Contributions

This paper addresses the issue of how to outsource MIC to a
remote malicious cloud server while ensuring correctness,
maintaining data input/output privacy, realizing result
verifiability, and improving computational efficiency. From
the complexity point of view, matrix multiplication and
matrix inversion of square matrices are essentially the same
problem. The hitherto best algorithm known for the latter
resorts to that of the former. Most efficient algorithms to
both problems hence share the same time complexity of
O(n*3™). An important challenge in encrypting the input
matrix X is, therefore, to avoid multiplying the original
matrix X with general matrices, for avoiding a complexity
that is the same as inverting X itself. By applying
permutation functions, this paper describes a way of
multiplying X with special matrices, where matrix product
can be computed in O(n?) time. Besides, the challenge in the
result verification step is also to avoid general matrix
multiplication, since the validity of a returned matrix can be
easily checked by taking a product of that matrix with the
original input X, and check whether an identity matrix is
obtained. By introducing Monte Carlo verification algo-
rithm, the proposed protocol is able to verify the correctness
of the returned result in O(n?) time. Based on the
permutation technique and Monte Carlo technique, the
client can reduce its original O(n*3™) work to O(n*) work
by outsourcing MIC to a cloud. Moreover, experimental
evaluation is also provided to show that the proposed
protocol is able to allow the client to outsource MIC to a
cloud and gain substantial computation savings.

1.4 Organization

The remainder of this paper proceeds as follows: Section 2
introduces some essential preliminaries. In Section 3, we
describe our protocol with detailed techniques. Sections 4
and 5 give some related analysis and performance evalua-
tion, followed by Section 6 which overviews the related
work. Finally, some conclusions are drawn in Section 7.

2 PRELIMINARIES

2.1 System Model, Threat Model, Design Goals, and
Framework

2.1.1 System Model

We consider the secure MIC outsourcing system model, as
illustrated in Fig. 1. A client with low computational power
wants to outsource the original MIC to a cloud service

Original MIC | } Encrypted MICg
”| Encrypt [,
I I
_ }) Secret }
| key K | e
= Runby | | Run by‘r i
client gee—i| KeyGen || ~ cloud 74_‘. MICSolve |!
@) I LN) T —== I
I Secret | - ’
} key K }
I I
Result to MIC | Decrypt || Result to MICk
‘ and K Proof T
. r00
' Verify ||

Fig. 1. Secure MIC outsourcing system model.

provider, who has massive computational power and
special software. To protect input privacy, the client
encrypts the original MIC using a secret key K to get an
MIC problem, written as MICk. Later, the encrypted MICx
is given to the cloud for a result. Once the cloud receives
MICg, the computation is carried out with software; then,
the cloud sends back the result to MICg. The cloud also
sends back a proof I' that tries to prove the returned result is
indeed correct and the cloud does not cheat. On receiving
the returned result, the client decrypts the returned result
using the secret key K to get the result to the original MIC.
Meanwhile, the client checks whether this result is correct: if
yes, accepts it; if no, just rejects it.

2.1.2 Threat Model

The security threats faced by the outsourcing system model
primarily come from the behavior of the cloud. Generally,
there are two levels of threat models in outsourcing:
semihonest cloud model and malicious cloud model [8].
In the semihonest cloud model, the cloud correctly follows
the protocol specification. However, the cloud records all
the information it can access and attempts to use this to
learn information that should remain private. While in the
malicious cloud model, the cloud can arbitrarily deviate
from the protocol specification. The malicious cloud may
just return a random result to the client to save its
computing resources, while hoping not to be detected by
the client. Therefore, an outsourcing protocol in the
malicious cloud model should be able to handle result
verification. In this paper, we assume that the cloud is
malicious. The proposed protocol should be able to resist
such a malicious cloud.

2.1.3 Design Goals

We identify the following goals that the outsourcing
protocol should satisfy.

e Correctness. If both the client and the cloud follow the
protocol honestly, the MIC can be indeed fulfilled by
the cloud and the client gets a correct result to the
original MIC.

e Security. The protocol can protect the privacy of the
client’'s data. On one hand, given the encrypted
MICg problem, the cloud cannot get meaningful
knowledge of the client’s input data, which are
referred to as input privacy. On the other hand, the
correct result to the original MIC is also hidden from
the cloud, and this is called as output privacy.

e Robust cheating resistance. The correct result from a
faithful cloud server must be verified successfully by

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

80 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

the client. No false result from a cheating cloud
server can pass the verification with a non-negligible
probability.

e Efficiency. The local computation done by the client
should be substantially less than the computation of
the original MIC on his own. In addition, the amount
of computation on computing the encrypted MICg
should be as close as possible to that on computing
the original MIC.

2.1.4 Framework

Syntactically, a secure MIC outsourcing protocol should
contain five subalgorithms:

the algorithm for key generation KeyGen,

the algorithm for MIC encryption MICEnc,

the algorithm for solving MICy problem MICSolve,
the algorithm for MIC decryption MICDec, and

the algorithm for result verification ResultVerify.

One significant difference between this framework and
the traditional encryption framework is that in this case,
both encryption and decryption processes occur in the
client side. This eliminates the expensive public key
exchange process in the traditional encryption framework.
Therefore, this framework is able to efficiently realize one-
time-pad type of flexibility. That is to say, KeyGen will be
run every time for a new outsourced matrix instance to
enhance security. Once we have this framework, we just
need to work out the details of these five sub-algorithms,
which will be shown in Section 3.

nohk W=

2.2 Mathematical Background

Permutation function is well studied in group theory and
combinatorics. In Cauchy’s two-line notation, one lists the
preimage element in the first row and, for each preimage
element, lists its image under the permutation below it in
the second row. Then, the permutation function can be

written as
1 e n
. 1
<p1 o Dn > ()

We use a permutation function (i) = p;, wherei=1,...,n,
to denote (1). Let 7! denote the inverse function of w. The
Kronecker delta function 6, , is defined as

Sy (2)

1,

Let I be an n x n identity matrix and 0 be an n x n zero
matrix. For a matrix X € R™", let X (3, j), z; j, or z;; denote
the entry in ith row and jth column in matrix X, where ¢
and j are indexed from 1 to n.

3 PRoTtocoL CONSTRUCTION

In this section, each part of the framework for secure
outsourcing of MIC will be individually solved.

3.1 Secret Key Generation

Consider a nonsingular matrix X € IR"*"; the resource-
constrained client wants to securely outsource the
computation of X! to the cloud. The protocol starts by

NO. 1, JANUARY-JUNE 2013
invoking Procedure Secret-Key-Generation to set up a
secret key K.

Algorithm 1. Procedure Secret-Key-Generation.
Input: A security parameter \.
Output: Secret key K: {aq,..., a0}, {B1,..., B}, m, mo.
1: On input a security parameter)\, which specifies key
space K, and Kp, the client picks two sets of random
numbers: {ay,...,an,} — Ko, {B1,..., 00} < Kp, where

0¢&K,UKs.
2: The client invokes Algorithm 2 to generate two random
permutations m; and m; of the integers 1,...,n.

Algorithm 2. Random Permutation Generation.
1: Set m = I,,. (identical permutation)
2: for i = n down to 2
3: Set j to be a random integer with 1 < j <.
4: Swap 7[j] and 7[i].
5: end for

Algorithm 2 is due to Durstenfeld [9]; it is usually called
Fisher-Yates shuffle [10]. There are several variants of
Algorithm 2 to generate a random permutation. Never-
theless, the asymptotic time complexity of Algorithm 2 has
already been optimal. This is the reason for this algorithm to
be used for random permutation generation in this work.

3.2 MIC Encryption.
Next, we describe Procedure MIC-Encryption.

Algorithm 3. Procedure MIC-Encryption.

Input: The original matrix X and the Secret key
K: {Oq, ceay Oé,L}, {ﬂl, . ,ﬁn}, T, 9.

Output: Y = P, XP; .

1: The client generates matrices P;, Py, where
Py (i,) = ibr ()4 P2(i,5) = Bibry(i).

2: The client computes Y = P, XP; . According to
Theorem 1, the client can use (4) to efficiently (via time
O(n?)) compute Y.

3: Later, the encrypted matrix Y will be outsourced to
the cloud.

Lemma 1. In Procedure MIC-Encryption, matrices Py and Py
are invertible. More precisely,

Pfl(ivj) = (aj)iléﬂl’l(i),ja

P71 N -1 (3)

5 (4,7) = (ﬁj) 57@1(1‘)‘,]'-

Proof. Since 0 ¢ K, U K3, the determinants of Py, P satisfy

det(P1) # 0, det(P2) # 0. Hence, P; and P, are inver-

tible. Hereafter, the proof is straightforward. 0

Theorem 1. In Procedure MIC-Encryption, if Y = P1XP,",
then it holds that

Y (i, j) = (ai/B;)X(m1 (i), m2(7))- (4)
Proof. Let
x=|: o (5)

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

LEI ET AL.: OUTSOURCING LARGE MATRIX INVERSION COMPUTATION TO A PUBLIC CLOUD 81

Observe that Py (i, j) = a;0,,(;);, this leads to

Q1T (1)1 Q1T (1),n
P X = | aiZq(i)1 QT (i) |- (6)
ATy (n),1 AL (n)n

It holds from Lemma 1 that P,'(i,j) = (@-)716@1““.
Then, one can obtain '

P, XP;!
r o (651 (051 T
Exm(l)ﬂrz(l) Exm(])ﬂz(j) Exm(l)m(")
o Q; @
= Emm(i)ﬂz(l) ijﬂl(i)ﬂ(j) E'Tﬂ'l(i)ﬂz(”)
a” an a'n
Exm(")ﬂz(l) ijm(“)-ﬂw(ﬁ Exﬂ'l(”)ﬂfz(”)
(7)
This can be finally rewritten as P1XP,' = Y(i,j) =
(a;/B;)X(m1(2), m2(4)), completing the proof. 0

3.3 MIC in the Cloud
See Procedure MIC g-in-the-Cloud.

Algorithm 4. Procedure MICg-in-the-Cloud.
Input: Y.
Output: R’ =Y .
1: On input the encrypted matrix Y, the cloud then
invokes any matrix inversion algorithm to compute
R =Y.
2: The cloud then sends matrix R’ back to the client.

3.4 MIC Decryption
See Procedure MIC-Decryption.

Algorithm 5. Procedure MIC-Decryption.
Input: R’ and K.
Output: R.
1: On receiving the returned matrix R’ from the cloud, the
client compute R = P; R'P,. According to Theorem 2,
the client can use (8) to efficiently (via time O(n?))
compute R.

Theorem 2. In Procedure Result-Verification, if R = Py 'R'Py,
then it holds that

R(i,)) = (a1(5)/ By o)) R (m3 1 (0), 71 () (8)

Proof. The detailed proof is similar to Theorem 1. We now
briefly describe the proof. By Lemma 1, we have
P;(i,)= (ﬂj)_l(s,”;](i)yj. Together with P (4, j) = a6, ()4,
then (8) can be deduced from R = P,'R'P;. i

3.5 Result Verification

Generally, handling result verification is not an easy task.
However, this problem is well addressed by using the idea

of Freivalds’ algorithm [11], [12]. Technique details are
elaborated in Procedure Result-Verification. We defer the
detailed analysis of it in Section 4.

Algorithm 6. Procedure Result-Verification.
Input: The decrypted but unchecked result R.
Output: Accepts R as a correct result; or rejects it.
1: fori=1:1 /*parameter [represents the running times
of the random check process from Step 2 to Step 6*/

2: The client selects an n x 1 random 0/1 vector r.
3: The client computes P =R x (Xr) —I xr.

4 ifP#(0,...,0)"

5: Output “verification fails;” aborts.

6: end if

7: end for

8: The client accepts R as a correct result if it passes
the above check; otherwise, rejects it.

3.6 The Completed Protocol

We now present the completed protocol that contains five
subalgorithms (KeyGen, MICEnc, MICSolve, MICDec,
ResultVerify) as follows:

e KeyGen(1%). On input a security parameter), the
client invokes Procedure Secret-Key-Generation to
get a secret key K: {a1,...,a,}, {f1,..., 8.}, m, ™.

e MICEnc(X; K). On input the original matrix X and
the secret key K, the client invokes Procedure MIC-
Encryption to encrypt the original matrix X into an
encrypted matrix Y to protect the input privacy.

e MICSolve(Y). On input the encrypted matrix Y, the
cloud invokes Procedure MICg-in-the-Cloud to get a
result R’. Then, the cloud returns R’ and an empty
proof I to the client.

e MICDec(R/, K). On input the returned result R’ and
the secret key K, the client invokes Procedure MIC-
Decryption to get an unchecked result R.

e ResultVerify(R,T"). On input the unchecked result R
and the empty proof I, the client invokes Procedure
Result-Verification to check its correctness. If it passes
the check, then accepts R as the correct inversion of
the original matrix X; otherwise, just rejects it.

4 CORRECTNESS, SECURITY, AND VERIFIABILITY
ANALYSIS

4.1 Correctness Guarantee

Theorem 3. The proposed protocol is correct.

Proof. It suffices to show that if both the client and the cloud
follow the protocol honestly, the corresponding de-
crypted result R is always the correct inversion of the
original matrix X.

The client first computes Y =P;XP,'. Next, an
honest cloud server computes

R =Y '=P,X'P/L. (9)

Then, in Procedure MIC-Decryption, the client computes

R=P;'RP, =X"1. (10)

This implies the proposed protocol is correct. 0

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

4.2 Security Guarantee

Input Privacy. The proposed protocol can protect input
privacy if the cloud cannot recover the original matrix X
from the encrypted matrix Y. The original matrix X is
encrypted by the following two phases:

e Phase 1. The position of each entry in the original
matrix is randomly rearranged under two random
permutations, i.e., T(4,7) = X(m1(2), m2(j))-

e Phase 2. Each entry in matrix T is further masked by
multiplying a factor, i.e., Y(3,7) = (ou/8;)T (4, j).

In Phase 1, the key space consists of all random
permutations of 7, 7, meaning that there are (n')2 cases of
permutations. Each case occurs with probability —. This
implies that even if the cloud has the correct matix T the
expected time of brute-force attack on the key space to
recover the original matrix X is "2! _/ which is definitely
a nonpolynomially bounded quantity in terms of n. In Phase
2, each entry in matrix T is further masked, the expected
time of brute-force attack on the key space to guess
{ai,...,an} and {B1,...,5,} is M A choice of large
key space K, and K3 will thwart thlS attack. Consider the
above, without the each-run-specific secret key, the cloud
cannot recover X from Y by trivial means. In this way, input
privacy is protected.

Output Privacy. The proposed protocol can protect
output privacy if the cloud cannot recover the correct
inversion R from the computational result R'. According to
(8), it is evident that output privacy is protected in the same
way as input privacy. The detailed analysis is omitted
accordingly.

Remarkably, the security analysis follows an informal
approach. A meaningful and challenging future work lies in
giving a rigorous proof of security.

4.3 Verifiability Guarantee

Theorem 4. The proposed protocol satisfies robust cheating
resistance.

Proof. The correctness of the decrypted result R is checked
from Step 1 to Step 7 in Procedure Result-Verification.
The random check process from Step 2 to 6 is repeated
[times. We first define the following two parameters to
facilitate our proof. Let Prob; be the probability of a false
negative (nondetection of a false returned result) in one
round of a random check process. Let Prob; denote the
probability of check failure, i.e., the probability of
occurrence of a false negative in whole [times random
check processes.

The proof consists of two steps. First, we show that
the result from a faithful cloud server must be verified
successfully by the client. From Theorem 3, if the cloud is
faithful, we have R = X~!. This leads to R x X =I. So

(11)

regardless of what vector r is. In such case, the verification
failure step (Step 5 in Procedure Result-Verification) will
never be executed. This means that a correct result R must
be verified successfully by the client.

Next, we show thatno false result from a cheating cloud
server can pass the verification with a non-negligible

P=Rx (Xr)—Ixr=(0,...,0),

NO. 1, JANUARY-JUNE 2013
probability. In other words, we attempt to prove that
Proby is a negligible quantity. Let

D=RxX-LP=Dxr=(p,....p,)". (12)

If the cheating cloud return a false R/, then this leads to
R # X', Accordingly, we have R x X —1#0, so at
least one element of D is nonzero. Suppose that the
element d;; # 0. By the definition of matrix-vector
multiplication, we obtain

pi = Zdikrk =duri+---

k=1

+ d,;jrj + - diprn, = d,;j’f’j + v,

(13)

where y = >, dir — dijrj. Applying Total Probability

Theorem, it holds that

Prlp; = 0] = Pr[p; = 0]y = 0]Pr[y = 0] (14)
+ Pr[p; = Oly # 0]Pr[y # 0.
Note from (13) that
{Pr[pi =0ly =0] =Prr; =0] =1/2, (15)
Prp; =0ly # 0] < Pr[r; =1] = 1/2.
Substituting (15) into (14) results in
Prlp; = 0] < (1/2)Pr[y = 0] + (1/2)Prly # 0. (16)
Putting Pr[y # 0] = 1 — Pr[y = 0] into (16) leads to
Prlp; = 0] < 1/2. (17)
Based on (17), Prob, satisfies
Proby = Pr[P = (0,...,0)"] < Prpi = 0] < % (18)

Observe that the random check process is repeated !
times, Prob; can be estimated by

Prob; < Prob < ok (19)
which demonstrates that Prob; is a negligible quantity in

terms of [. The proof is completed. 0

It can be deduced from the proof of Theorem 4 that the
proposed protocol can handle result verification with check
failure probability at most 2. The size of [is a tradeoff
between cheating resistance and efficiency. A conservative
choice of high cheating resistance should require ! to be
around 80 bits (in this case Proby < %). For a fast check, a
reasonable choice of 20 bits is also acceptable (in this case
Proby <). A similar case of tradeoff can be found in [13].

4.4 Further Discussions on Result Verification
MONTE CARLO VERIFICATION ALGORITHM. Let us pro-
ceed to introduce the notion of Monte Carlo verification
algorithm, which is formally defined below.

Definition 1 (Monte Carlo Verification Algorithm [12]).
The classification and definition of Monte Carlo verification
algorithm are summarized in Table 1. The detailed verbal
description of case 1 is as follows: for a randomized verification
algorithm Vrfy and any decrypted but unchecked result Res, if

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

LEI ET AL.: OUTSOURCING LARGE MATRIX INVERSION COMPUTATION TO A PUBLIC CLOUD 83

TABLE 1
Classification and Definition of Monte Carlo Verification Algorithm
Cases Satisfied conditions Definitions
case 1 Pr[Vrfy accepts Res|Res is correct]=1, | True-biased Monte Carlo verification
Pr[Vrfy accepts Res|Res is false] <4. algorithm with one-sided error ¢
case 2 Pr[Vrfy accepts Res|Res is correct] >¢, | False-biased Monte Carlo verification
Pr[Vrfy accepts Res|Res is false]=0 algorithm with one-sided error e
case 3 Pr|[Vrfy accepts Res|Res is correct] >, Monte Carlo verification algorithm
Pr[Vrfy accepts Res|Res is false] <4. with two-sided errors (9, €)

Pr[Vrfy accepts Res|Res is correct | =

1,

20

Pr[Vrfy accepts Res|Res is false | < 6, (20)

then we define Vrfy as a true-biased Monte Carlo verification

algorithm with one-sided error 6. The detailed verbal descrip-
tion of cases 2 and 3 can be analogously obtained.

Based on Definition 1 and the proof of Theorem 4, we
immediately have the following theorem.

Theorem 5. One round of random check process, i.e., from Step 2
to Step 6 in Procedure Result-Verification, is a true-biased

Monte Carlo verification algorithm with one-sided error }.

For a Monte Carlo verification algorithm with one-sided
error, the failure probability can be reduced (or the success
probability amplified) by running the algorithm multiple
times. Indeed, this mechanism has been exploited in
Procedure Result-Verification. According to the above
analysis, case 2 and case 3 of Monte Carlo verification
algorithms (see Table 1) can also be used in designing
practical result verification algorithms for secure outsour-
cing. One may see in what follows that Monte Carlo
verification algorithm offers superiority in designing effi-
cient result verification algorithm, which is generally a
difficult task in secure outsourcing.

5 PERFORMANCE EVALUATION
5.1 Theoretical Results

Client-Side Overhead. The client-side overhead is gener-
ated by running four subalgorithms: KeyGen, MICEnc,
MICDec, and ResultVerify. It is evident that KeyGen takes
time O(n). In MICENC, applying (4) to efficiently compute Y,
it only takes time O(n?). Likewise, the time consumed by
MICDec is O(n?). As to ResultVerify, the time is dominated
by computing R x (Xr), which takes time O(n?).

Cloud-Side Overhead. For the cloud, its only computa-
tion overhead is generated by running MICSolve. The cloud
can apply any existing matrix inversion algorithm. As
mentioned before, from the complexity point of view,
matrix multiplication and matrix inversion of square
matrices are essentially the same problem. Table 2 shows
representative algorithms for MIC. From Table 2, the time
consumed by MICSolve is O(n*)(2.373 < p < 3).

Shown in Table 3 is a summarization of the theoretical
results. More specifically, the overall time cost is O(n?) for
the client and O(n”) for the cloud. From the perspective of
efficiency, the proposed protocol is feasible because there
exists a gap between O(n?) and O(n”). According to the
asymptotic behavior of Big-O notation [17], we have that the

computational overhead in the client side will be less than
that in the cloud side for a sufficiently large n. The
theoretical results indicate that the proposed protocol is
able to allow the client to outsource MIC to the cloud and
gain substantial computation savings. This claim will be
further validated by our experiments in the next section.

5.2 Experimental Results

Theoretical analysis of the protocol has shown that out-
sourcing indeed benefits the client. We proceed to imple-
ment the protocol to assess its practical efficiency in this
section. Both client and cloud server computations in our
experiments are conducted on a same workstation. If we
implement the protocol for both client side and cloud side on
a same workstation and measure their running time, then
the ratio of time (see the definition of cloud efficiency in the
next paragraph) can reflect the asymmetric amount of
computation performed in both sides. However, if we
implement the protocol on two different workstations with
one being client and the other being cloud server, then the
cloud efficiency will be case-specific, depending on the
asymmetric computing speed owned by the two different
workstations. Consequently, one-workstation-based experi-
ment is employed. In reality, the cloud server is always more
powerful and this will further reduce the running time
measured in our experiment. Besides, we ignore the
communication latency between the client and the cloud
for this application because the computation dominates the
running time as shown in our experiments.

Our goal is to find the performance gain for the client
by outsourcing. Thus, the main performance indicator is a
ratio of the time that is needed if the computation is done
locally over the time that is needed by the client’s
computation if outsourcing is chosen. With clear definition
of parameters in Table 4, the performance gain of the client

can be shown by = Lot and we refer to this as client speedup.
This value theoretlcally should be a considerable positive
number greater than 1, which means there is a considerable
performance gain. We also consider another metric, i.e., the
cloud efficiency, using * < Ideally, the MIC encryption

TABLE 2
Representative Algorithms for Matrix Inversion

Algorithms Time complexity
Gauss-Jordan elimination O(n?)
Strassen algorithm [14] O(n2-807)
Coppersmith-Winograd algorithm [15] O(n?:376)
Williams algorithm [16] O(n2373)

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

84

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.1, NO. 1,
TABLE 3
Theoretical Performance of the Proposed Protocol
Client Cloud
KeyGen | MICEnc | MICDec | ResultVerify | Sending cost MICSolve Sending cost
O(n) O(n?) O(n?) O(n?) Matrix Y O(nP)(2.3713 < p < 3) Matrix R/
TABLE 4
Notations
Notations Means
toriginal the time for the client to compute the original MIC locally
teloud the time for the cloud to compute the outsourced MIC g
telient1 the time for the client to generate the secret key and encrypt the original MIC
telient2 the time for the client to decrypt and verify the returned result
telient telient = telientl T Eclient2

TABLE 5

Experimental Performance of the Proposed Protocol (Time in Seconds)

1=20 with check failure probability Prob; < 537: Low Cheating Resistance and High Client Speedup

Benchmark Original MIC Encrypted MICg Client Speedup | Cloud Efficiency
No. dimension n toriginal teloud Lelient1 Lelient2 Lclient toriginal/tclient toriginal/tcloud
1 250 0.4825 0.5088 0.0225 | 0.0544 0.0769 6.3020 % 0.9523
2 500 3.8055 3.8745 0.0876 | 0.2258 0.3134 12.1438x 0.9822
3 1000 36.2676 36.3036 0.4653 1.2461 1.7115 21.1911x 0.9990
4 1500 138.5206 138.4096 | 1.7331 3.8700 5.6031 24.7222x 1.0008
5 2000 337.3394 337.3223 | 4.3605 | 7.8746 | 12.2351 27.5714x 1.0001

1="50 with check failure probability Proby < 2%: Tradeoff between Cheating Resistance and Client Speedup

JANUARY-JUNE 2013

Benchmark Original MIC Encrypted MIC g Client Speedup | Cloud Efficiency
No. dimension n toriginal teloud telientl telient2 telient toriginal /tclient toriginal /tcloud
1 250 0.4828 0.4916 0.0116 | 0.1117 0.1233 3.9149x 0.9821
2 500 3.8374 3.8881 0.0648 | 0.4661 0.5309 7.2280x 0.9870
3 1000 36.2769 36.4662 | 0.4588 | 2.4061 2.8649 12.6626 X 0.9948
4 1500 138.0207 137.8952 | 1.7620 | 6.9443 8.7063 15.8530% 1.0009
5 2000 337.3203 337.6601 | 4.4533 | 12.8006 | 17.2539 19.5504 x 0.9990
1 =80 with check failure probability Prob; < ﬁ: High Cheating Resistance and Low Client Speedup
Benchmark Original MIC Encrypted MIC i Client Speedup | Cloud Efficiency
No. dimension n toriginal teloud telient1 Lclient2 Lelient toriginal/tclient toriginal/tcloud
1 250 0.4971 0.5054 0.0239 | 0.1707 0.1947 2.5536 % 0.9835
2 500 3.7922 3.8659 0.0636 | 0.7022 0.7658 4.9521x 0.9809
3 1000 37.6828 38.2111 0.4578 | 3.5890 4.0468 9.3117x 0.9862
4 1500 140.7814 138.9219 | 1.7289 | 10.1187 | 11.8476 11.8827x 1.0134
5 2000 336.4960 338.0702 | 4.3743 | 17.7906 | 22.1649 15.1815% 0.9953

should not increase the time to solve the original MIC. It is
desirable that the cloud efficiency is close to 1.

The implementation is done using Matlab 2012a on a
workstation equipped with Intel(R) Core(TM) 3.20-GHz
CPU and 4-GB RAM. In our experiments, the Guass-Jordan
elimination, the most commonly used schoolbook matrix
inversion algorithm, is employed by the cloud. All of matrix
instances in experiments are generated to be invertible with
each entry randomly located in (0,1). We set K, = K3 =
{1,...,n} and conduct three groups of experiments with
1 =20, =50, and [= 80.

The choice of parameter [is intuitive. From the proof of
Theorem 4, we have that the probability of a false negative
is upper bounded by 3. Keeping Proby <3 in mind, if
1 =20, then the probability of a false negative Prob; <

77~ 1076, this means that a false negative occurs with

probability no more than 107°. In other words, there is one
occurrence of a false negative in more than 10° trials on
average. This probability is a little bit large and a false
negative may occur in applications, we label this case as
“efficiency priority case.” Likewise, if [=280, a false
negative occurs with probability no more than 5; ~ 10724,
This probability is very small and a false negative “nearly
cannot” occur in applications, we label this case as
“cheating resistance priority case.”

The main performance is shown in Table 5. It can be
observed that client speedup is monotonically increasing
with matrix dimension n. Outsourcing MIC is able to gain
more than 10 times client speedup if n is sufficiently large. It
can also be found that tuienta > tegient1, Which indicates that
handling result decryption and verification is more costly.
Besides, the cloud efficiency stays close to 1, which is very

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

LEI ET AL.: OUTSOURCING LARGE MATRIX INVERSION COMPUTATION TO A PUBLIC CLOUD 85

—©— efficiency priority(/=20)
30 tradeoff(/=50)
—&— cheating resistance priority(/=80) b

client speedup

0 500 1000 1500 2000
dimension n

Fig. 2. Comparison of client speedup.

satisfactory. The comparison of client speedup as a function
of matrix dimension n is depicted in Fig. 2. It is shown that
client speedup in the case of efficiency priority(l = 20) is
much larger than that in the case of cheating resistance
priority(l = 80), which is expected. Note that, in our
experiments n < 2,000, a matrix with dimension n =
2,000 is not an unreasonably large matrix. Many real-world
applications, for example, MIC from processing 3D graphics
or MIC in image watermarking, could easily lead to a large
matrix with considerably more than 2,000 dimensions.

Remarkably, the experimental performance really de-
pends on matrix dimension, code compile platform, and the
selected algorithm for MIC in the cloud side. If the cloud
exploits other faster matrix inversion algorithms as dis-
played in Table 2, then client speedup will decrease to some
extent. However, as long as n goes sufficiently large, the
substantial computation savings can always be anticipated
by the client due to the clear existence of a gap between
O(n?) and O(n?).

6 RELATED WORK

Secure outsourcing, since its proposal, has stimulated
considerable research efforts both from theoretical crypto-
graphers and security engineers. With the advent of cloud
and mobile computing age, the theoretical cryptographers’
interest in secure outsourcing is persistently increasing,
especially after Gentry’s first FHE scheme [18] by using an
ideal lattice. They often focus on designing a generic
protocol that covers all problems, for example, [19], [20].
The generic protocol always involves in applying an FHE
scheme, which is a cryptographic primitive that seems to be
far from practical. Hence, the generic protocol is currently
quite complicated and inefficient. As to security engineers,
they often identify some specific problems and design
different techniques to mask the original problem to protect
input/output privacy. Their protocols always lack formal
security treatment and do not handle the important case of
result verification, but these protocols are always quite
efficient and can be deployed immediately.

WORKS FOR SPECIFIC APPLICATIONS. Over the past few
decades, many of protocols have been designed for secure
outsourcing of some specific applications. The common
drawback of the early protocols on secure outsourcing is
that they often lack detailed efficiency analysis and
evaluation. Also, they do not handle the important case
of result verification. Until recently, two secure matrix

multiplication outsourcing protocols were introduced in
[21] and [22]. The former is built upon the assumptions of
two noncolluding servers, making it vulnerable to colluding
attacks, while the latter achieves provable security using
Shamir’s secret sharing [23] technique. But this theoretically
elegant protocol still suffers from large amount of commu-
nication overhead. After Gentry’s breakthrough work on
FHE scheme, the research direction is currently shifting to
design secure outsourcing protocol in the malicious cloud
model rather than in the fully trusted cloud model. Hence,
handling result verification becomes a must. Following this
trend, several protocols that can handle result verification
are proposed, among which there are the secure out-
sourcing of linear programming [24] and the secure out-
sourcing of linear equations [25], and so on. Our system
model and framework are inherited from these works.
Besides, the main idea of this work to protect input privacy
is similar to that of [24], i.e., modifying the input matrix so
that it looks rather different from the original input.

FUNCTIONALLY RELATED WORK. We would like to
give an overview of three kinds of existing work that are
conceptually and functionally related to secure outsour-
cing. The first is secure multiparity computation (SMC),
initially introduced by Yao [26] and later developed by
Goldwasser et al. [27] and many subsequent researchers.
The same to secure outsourcing, SMC can be applied to
privacy-preserving cooperative computations. But a major
difference with secure outsourcing lies in that SMC does
not consider the asymmetry between the resources pos-
sessed by cloud and client. This indicates that SMC cannot
be applied in secure outsourcing directly. Second is about
delegating computation and cheating detection (see [28] for
some recent general results). It is shown in this paper that
detecting the malicious behaviors of the cloud is often
troublesome and costly. The traditional work on cheating
detection allows the server to access the original data.
However, for data privacy purpose, access to original data
is not granted to the cloud server in our secure outsourcing
paradigm. Therefore, further research should focus more
on the improvements of those previous works in the
protection of input/output data privacy. The third is work
on server-aided computations, such as [29], [30], [31], to
just list a few. One limitation of these protocols is that they
are mainly concerned with outsourcing of cryptographic
computations like signature and modular exponentiation.
The other limitation is that these protocols do not handle
result verification.

7 CONCLUSIONS

In this paper, we have designed a protocol for outsourcing
of MIC to a malicious cloud. We have shown that the
proposed protocol simultaneously fulfills the goals of
correctness, security (input/output privacy), robust cheat-
ing resistance, and high efficiency. With MIC already well
rooted in scientific and engineering fields, the proposed
protocol can be deployed individually or serve as a
primitive building block, based on which some higher level
secure outsourcing protocols are constructed. We also
introduced a Monte Carlo verification algorithm to handle
result verification. Its superiority in designing inexpensive

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

result verification algorithm for secure outsourcing is well
demonstrated. Directions to launch further research in-
clude: 1) establishing formal security framework for MIC
outsourcing problem; 2) adding result verification for some
early protocols, which do not handle result verification, as a
counteroffensive to malicious cloud; and 3) identifying new
meaningful scientific and engineering computational tasks
and then designing protocols to solve them.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China (61170249), the Natural Science
Foundation project of CQCSTC (2009BA2024), in part by the
State Key Laboratory of Power Transmission Equipment &
System Security and New Technology, Chongqing Univer-
sity (2007DA10512711206), in part by the program for
Changjiang scholars, and supported by Specialized Research
Fund for priority areas for the Doctoral Program of Higher
Education. This work was also supported by NPRP Grant 4-
1162-1-181 from the Qatar National Research Fund (a member
of the Qatar Foundation).

REFERENCES

[1] G. Brunette and R. Mogull, “Security Guidance for Critical Areas
of Focus in Cloud Computing V2.1,” Cloud Security Alliance,
pp- 1-76, 2009.

[2] G.A. Seber and A.J. Lee, Linear Regression Analysis. John Wiley &
Sons 2012.

[3] S.F.Gibson and B. Mirtich, “A Survey of Deformable Modeling in
Computer Graphics,” Technical Report TR-97-19, Mitsubishi
Electric Research Laboratory, 1997.

[4] R. Tao, X.-Y. Meng, and Y. Wang, “Image Encryption with
Multiorders of Fractional Fourier Transforms,” IEEE Trans.
Information Forensics and Security, vol. 5, no. 4, pp. 734-738, Dec.
2010.

[5] X. Zhang, “Lossy Compression and Iterative Reconstruction for
Encrypted Image,” IEEE Trans. Information Forensics and Security,
vol. 6, no. 1, pp. 53-58, Mar. 2011.

[6] S.Lee, C.D. Yoo, and T. Kalker, “Reversible Image Watermarking
Based on Integer-to-Integer Wavelet Transform,” IEEE Trans.
Information Forensics and Security, vol. 2, no. 3, pp. 321-330, Sept.
2007.

[71 X. Zhang, Z. Qian, Y. Ren, and G. Feng, “Watermarking with
Flexible Self-Recovery Quality Based on Compressive Sensing and
Compositive Reconstruction,” IEEE Trans. Information Forensics
and Security, vol. 6, no. 4, pp. 1223-1232, Dec. 2011.

[8] Y. Lindell and B. Pinkas, “Secure Multiparty Computation for
Privacy-Preserving Data Mining,” . Privacy and Confidentiality,
vol. 1, no. 1, article 5, 2009.

[9] R. Durstenfeld, “Algorithm 235: Random Permutation,” Comm. the
ACM, vol. 7, no. 7, p. 420, 1964.

[10] D.E. Knuth, The Art of Computer Programming. Addison-Wesley,
2006.

[11] R. Freivalds, “Probabilistic Machines Can Use Less Running
Time,” Information Processing, vol. 77, pp. 839-842, 1977.

[12] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
Univ. Press, 1995.

[13] J. Camenisch, S. Hohenberger, and M. Pedersen, “Batch Verifica-
tion of Short Signatures,” Proc. 26th Ann. Int’l Conf. Advances in
Cryptology (EUROCRYPT '07), pp. 246-263, 2007.

[14] V. Strassen, “Gaussian Elimination is Not Optimal,” Numerische
Math., vol. 13, no. 4, pp. 354-356, 1969.

[15] D. Coppersmith and S. Winograd, “Matrix Multiplication via
Arithmetic Progressions,” J. Symbolic Computation, vol. 9, no. 3,
pp- 251-280, 1990.

[16] V.V. Williams, “Breaking the Coppersmith-Winograd Barrier,”
unpublished manuscript, Nov. 2011.

[17] C.H. Papadimitriou, Computational Complexity. John Wiley & Sons,
2003.

NO. 1, JANUARY-JUNE 2013

[18] C. Gentry, “A Fully Homomorphic Encryption Scheme,” PhD
dissertation, Stanford Univ., 2009.

[19] R. Gennaro, C. Gentry, and B. Parno, “Non-Interactive Verifiable
Computing: Outsourcing Computation to Untrusted Workers,”
Proc. 30th Ann. Conf. Advances in Cryptology (CRYPTO '10),
pp. 465-482, 2010.

[20] K. Chung, Y. Kalai, and S. Vadhan, “Improved Delegation of
Computation Using Fully Homomorphic Encryption,” Proc. 30th
Ann. Conf. Advances in Cryptology (CRYPTO ’10), pp. 483-501, 2010.

[21] D. Benjamin and M.J. Atallah, “Private and Cheating-Free
Outsourcing of Algebraic Computations,” Proc. Sixth Ann. Conf.
Privacy, Security and Trust (PST '08), pp. 240-245, 2008.

[22] M. Atallah and K. Frikken, “Securely Outsourcing Linear Algebra
Computations,” Proc. Fifth ACM Symp. Information, Computer and
Comm. Security, pp. 48-59, 2010.

[23] A. Shamir, “How to Share a Secret,” Comm. the ACM, vol. 22,
no. 11, pp. 612-613, 1979.

[24] C. Wang, K. Ren, and]. Wang, “Secure and Practical Outsourcing
of Linear Programming in Cloud Computing,” Proc. IEEE
INFOCOM, 2011.

[25] C. Wang, Q. Wang, K. Ren, and]. Wang, “Harnessing the Cloud
for Securely Outsourcing Large-Scale Systems of Linear Equa-
tions,” IEEE Trans. Parallel and Distributed Systems, vol. 24, no. 6,
pp- 1172-1181, June 2013.

[26] A. Yao, “Protocols for Secure Computations,” Proc. 23rd Ann.
Symp. Foundations of Computer Science, pp. 160-164, 1982.

[27] S. Goldwasser, S. Micali, and A. Wigderson, “How to Play Any
Mental Game, or a Completeness Theorem for Protocols with an
Honest Majority,” Proc. 19th Ann. ACM Symp. Theory of Computing,
vol. 87, pp. 218-229, 1987.

[28] S. Goldwasser, Y. Kalai, and G. Rothblum, “Delegating Computa-
tion: Interactive Proofs for Muggles,” Proc. 40th Ann. ACM Symp.
Theory of Computing, pp. 113-122, 2008.

[29] T. Matsumoto, K. Kato, and H. Imai, “Speeding Up Secret
Computations with Insecure Auxiliary Devices,” Proc. Advances
in Cryptology (CRYPTO '88), pp. 497-506, 1990.

[30] S.Hohenberger and A. Lysyanskaya, “How to Securely Outsource
Cryptographic Computations,” Proc. Second Int’l Conf. Theory of
Cryptography, pp. 264-282, 2005.

[31] S. Kawamura and A. Shimbo, “Fast Server-Aided Secret Compu-
tation Protocols for Modular Exponentiation,” IEEE]. Selected
Areas in Comm., vol. 11, no. 5, pp. 778-784, June 1993.

Xinyu Lei received the BS degree in computing
science from Chongqing University, China, in
2010. He is working toward the PhD degree in
computer science at Chongging University, and
is a visiting scholar at Texas A&M University at
Qatar, Doha. His research interests include
information security and algorithms.

Xiaofeng Liao received the BS and MS
degrees in mathematics from Sichuan Univer-
sity, Chengdu, China, in 1986 and 1992,
respectively, and the PhD degree in circuits
and systems from the University of Electronic
Science and Technology of China in 1997. His
current research interests include neural net-
works, nonlinear dynamical systems, bifurcation
and chaos, and cryptography. He is a senior
member of the IEEE.

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

Tingwen Huang received the BS degree from
Southwest Normal University (now Southwest
University), China, in 1990, the MS degree from
Sichuan University, China, in 1993, and the PhD
degree from Texas A&M University, College
Station, in 2002. He was the president of Asia
Pacific Neural Networks Assembly in 2012. He is
currently an associate editor for the IEEE
Transactions on Neural Networks and Learning
Systems.

Huaqing Li received the BS degree from
Chongging University of Posts and Telecom-
munications in Information and Computation
Science, China, in 2009. He is currently
working toward the PhD degree in computer
science at Chongging University. His research
interests include nonlinear dynamical systems,
bifurcation and chaos, and consensus of
multiagent systems.

LEI ET AL.: OUTSOURCING LARGE MATRIX INVERSION COMPUTATION TO A PUBLIC CLOUD

87

Chungiang Hu received the BS degree in
computer science from Southwest University,
Chongging, China, in 2006, and the MS degree
in computer science from Chongging University,
China, in 2009. He is working toward the PhD
degree in computer science at Chongging
University and is a visiting scholar at the George
Washington University. His research interests
include wireless and mobile security, secret
sharing, and cryptography.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:27:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

