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Highly Efficient Linear Regression
Outsourcing to a Cloud

Fei Chen, Tao Xiang, Xinyu Lei, and Jianyong Chen

Abstract—With cloud computing and mobile computing becoming more and more popular, there are a lot potential applications for
computation outsourcing to the cloud. This paper investigates the linear regression outsourcing problem, which is a quite common
engineering task and employed in various applications, as a case study to find out the possible problems that need to be solved. We
propose two protocols which can enable secure and efficient outsourcing of linear regression problems to the cloud. The protocols can
protect the client’s data privacy well and at the same time have good efficiency. We show all subtleties and the techniques in designing
such protocols. The main idea to protect the privacy is employing some transformations to the original linear regression problem to get
a new problem which is sent to the cloud; and then transforming the answer returned back from the cloud to get the true solution to the
original problem. Experimental results validate the practical usability of our protocols.

Index Terms—Linear regression, computation outsourcing, cloud computing, data transformation

1 INTRODUCTION

ITH the advent of the age of cloud computing and

mobile computing, computation outsourcing is
becoming a popular computing paradigm. Clients with low
computation power or resources can off-load their compu-
tation tasks to clouds, which are equipped with more
computing resources. The clients could be mobile phones,
companies, and senor nodes in a wireless sensor network,
etc. Since there are a lot of such applications, this paper
investigates the computation outsourcing problem with a
case study of the linear regression (LR) task.

COMPUTATION OUTSOURCING. As a general computing para-
digm, computation outsourcing is widely employed in vari-
ous practical applications and in distributed computing
applications. In the financial industry [1], companies can
outsource their computations on the anticipation of the eco-
nomic developments, such as tax rate, inflation rate, stock
price, etc. In the energy industry [1], companies can also
outsource their huge computation to a third party. The com-
putation may try to find where there is some oil or some
new energy material in a certain area. The data is so huge
that the computation is quite time-consuming and requires
special software. In distributed computing projects such
as SETI@QHOME [2], FOLD@HOME [3], the large-scale
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computation is also divided into a lot of parts and out-
sourced to some distributed parties. In sensor networks, a
sensor node may also outsource its computation to a more
powerful node, such as the sink [4].

The reasons why computation outsourcing is needed
include, from the client’s perspective, low computation
power, lacking special software, and high cost to carry out
the computation locally. Suppose a financial company run-
ning a business has a computation intensive task, e.g. com-
putation on some economic models. If the company chooses
to carry out the computation on its own, it may take a lot
of time due to limited economical computing resources,
such as CPU, memory, network, etc. This will incur slow
response to the market, which means the company possibly
cannot make money and survive. Moreover, it requires a lot
of human resources and computing resources to maintain
its own data center and computing facilities, which implies
a high maintenance cost. Therefore, outsourcing the compu-
tation to a third party, e.g. a cloud, is a better choice. These
reasons also serve as the motivation for cloud computing.

However, there are a lot of challenges in this computing
paradigm. The most important one is the privacy issue,
including the client’s input/output data privacy. The data
of the client is often so valuable that the client doesn’t want
a third party to get a meaningful sense of the data. This is
because the data may be the proprietary asset of the com-
pany, and leaking out the data may decrease the advantage
of the company in the competitive market. Thus, a protocol
that can fulfill computation outsourcing and protect the pri-
vacy of the data simultaneously is highly expected. The sec-
ond challenge is the verification of the result returned by
the third party. Sometimes, a third party may be lazy in the
computation and just return a random false answer to the
computation outsourced. This may be due to accidental and
intentional reasons. In some cases, the third party may have
some hardware and software faults when carrying out the
computation. These failures will result in a wrong computa-
tion. In other cases, the third party may intentionally returns
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back a false answer. Although the third party has more
computation resources than the client, it also has limited
resources and has the financial incentive to focus all its
resources to those clients who pay more. It may also want to
get some useful knowledge of the client’s data by returning
an incorrect answer. This implies that the protocol handling
the computation outsourcing needs to have a way to detect
whether the returned computation result is correct or not.
Another challenge is efficiency. In order to protect the pri-
vacy, the original computation problem needs to be trans-
formed in some way and this requires time. The time is
expected to be smaller than the time needed if the client
chooses to carry out the computation locally. Therefore, a
computation outsourcing protocol should satisfy four con-
ditions: it is correct, secure, verifiable and efficient.

LINEAR REGRESSION. To study the problem of secure and
efficient computation outsourcing, we consider the linear
regression task outsourcing to a cloud as an example. Linear
regression is a common engineering computation used
everywhere in practice. In machine learning [5], linear
regression is used as a model to do training and prediction
on a data set. For example, it can be used to predict the sales
of a new book according to past experiences, e.g. the
author’s publication record, the reader’s reading habit, the
publication press, etc. In sensor networks, this model can
also help a sensor node to locate itself in a two-dimensional
or three-dimensional space according to the information it
collects from its neighbors. In financial applications, the
model can help predict the price of a stock according to the
past and recent trends of similar stocks.

Linear regression is also a computation-intensive task if
the data set is large. It involves a lot of matrix operations
such as inversion, multiplication, etc. When the matrix is
large, memory is often a bottleneck for fast computation.
Thus, a client can outsource such computation to a cloud. A
secure and efficient protocol that enables linear regression
outsourcing is helpful in practice, especially in the age of
cloud computing.

OUR WORK AND CONTRIBUTION. We motivate and formulate
the problem of secure and efficient linear regression out-
sourcing to the cloud. Based on a model of linear regression,
we design two protocols that can outsource this kind of
computation to the cloud in a correct, secure, verifiable and
efficient way. The key idea of the protocols is to employ
some efficient linear transformations on the input data. The
transformations not only protect the privacy of the input
data, but also help mask the output data. The transforma-
tions serve as the secret key of the client. To recover the
computation result, the client performs some other transfor-
mations on the returned answer using the secret key and
checks whether the cloud cheats. Theoretical analysis and
experimental results show that the protocols can be used
immediately in practice. To summarize, our contributions
include the followings:

e We identify a common engineering task, i.e. linear
regression, motivate and formulate the problem of
linear regression outsourcing for the first time.

e We design two protocols that can enable outsourcing
linear regression computation to a cloud. The two
protocols are designed for different applications,
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Fig. 1. LR outsouricng system model.

which feature different security and efficiency
requirements. From technical perspective, we dis-
cuss several potential design approaches and finally
target one approach which we believe the best. These
potential techniques can serve as the foundation for
other secure protocol designs.

e We analyze our protocols both theoretically and
experimentally, which validates the practicibility of
the protocols. All the experimental results can be
reproduced.

The following of the paper proceeds as follows. Section 2
formulates the linear regression outsourcing problem and
presents a framework to solve the problem. A formal model
of linear regression is also presented. Section 3 designs two
protocols for secure and efficient linear regression computa-
tion outsourcing according to the framework in Section 2. A
lot of design details and subtleties are also presented. Secu-
rity analysis of our protocols follows immediately and is
shown in Section 4, together with some further discussions
on our protocols. Section 5 shows experimental results of
the most efficient protocol. Section 6 discusses related work
on computation outsourcing. Finally, the paper is concluded
in Section 7.

2 PROBLEM FORMULATION

In this section, we define the linear regression outsourc-
ing problem that we are going to investigate. In order to
solve this problem, a framework is employed, which
divides the problem into several parts. Each part can be
individually solved. The framework is inherited from [6],
[7], [8]. To handle the linear regression outsourcing prob-
lem, we need to focus on a detailed linear regression
model and such a model is also presented. The model
helps in our protocol design.

2.1 System Model, Design Goals, and Framework

Setur. We consider the cloud computing application sce-
nario and the system model is shown as in Fig. 1. A client
with low computation power has an engineering problem,
where a linear regression model is employed. So the client
needs to solve the LR problem. Since the limited computa-
tion resource the client possesses, the client wants to out-
source the computation to a cloud service provider, who
has a more powerful computation power and special
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software. However, at the same time, the client doesn’t
want the cloud to get meaningful knowledge about the
data. Thus, the client chooses to encrypt the original LR
problem @ using a secret key K to get an encrypted prob-
lem ®g. Later, the encrypted problem is given to the cloud
for a solution. Once the cloud receives the problem, the
computation is carried out with some software; then the
cloud sends back the answer of @ to the client. The cloud
also sends back a proof I' that tries to show the returned
answer is indeed a correct answer and the cloud doesn’t
cheat. On receiving the returned answer, the client
decrypts the answer using the secret key K to get an
answer to the original problem ®. The client checks
whether this answer is correct; if yes, accept the answer; if
no, just reject it.

AssumpTioNs. We model the cloud as malicious. On one
hand, the cloud may try to learn some useful information
about the client’s data. This is because the client’s data may
contain valuable commercial information. On the other
hand, the cloud may also cheat in the computation. The
cloud may just return a random answer to the client, instead
of carrying out the computation to get a true answer. This
saves the cloud’s computing resources. The reason is that
the cloud may expect the client not to check the correctness
of the returned answer. Even the cloud is not malicious, the
returned answer could also be false because of the software
and hardware failures in the cloud. Thus, result verification
is a must. We also assume the cloud is computationally
bounded, i.e. it can only work on polynomial time computa-
tions. For those NP problems, the cloud cannot get a solu-
tion in a reasonable time.

DesiGN GoaLs. Once the problem is clear, we need to
design a protocol to solve the problem. An efficient and
secure linear regression outsourcing protocol is expected to
have the following properties:

e  Correct. The protocol can fulfill the task of LR compu-
tation outsourcing. In other words, if the client and
the cloud both follow the protocol honestly, the LR
problem can indeed be solved by the cloud and the
client gets a correct answer to the LR problem.

e  Secure. The protocol can protect the privacy of the cli-
ent’s data. On one hand, the cloud cannot get mean-
ingful knowledge of the client’s input data, which is
called input privacy. On the other hand, the correct
answer of the original problem is also hidden from
the cloud, which is called output privacy.

e [Efficient. The computation, memory and communica-
tion cost of the client should be as small as possible.
The sum of the time of transforming the original
problem to an encrypted one and the time of verify-
ing whether a returned answer is correct should be
strictly smaller than the time that is needed to solve
the LR problem on the client’s own. Otherwise, there
is no motivation for outsourcing the computation
problem.

e  Verifiable. The client should have a way to figure out
the correctness of an answer. The cloud cannot cheat.

e  Suitable for immediate practical uses. The protocol
should be able to be deployed immediately in
practice.

FraMEWORK. Syntactically, a secure and efficient linear
regression outsourcing protocol should contain four algo-
rithms (KeyGen, ProbTransform, ProbSolve, ResultVerify) as
follows:

e KeyGen(1" ). On input a security parameter ), the
client uses this algorithm to generate an encryption
key K. This key will be used to transform the origi-
nal problem and to decrypt the returned answer.

e ProbTransform(®; K ). On input the original prob-
lem ® and the secret key K, the client uses this algo-
rithm to transform the original problem to an
encrypted problem ® to protect the client’s data.

e ProbSolve(®x). On input the encrypted problem
®y, the cloud uses this algorithm to solve ®x. Then,
the cloud returns the answer g back, together with a
proof I showing that the returned answer is correct.

e ResultVerify(8,I'; K ). On input the returned answer
B,1" and the secret key K, the client decrypts to get
an answer for the original LR problem. The client
also checks whether the answer is correct. If the
answer is true, then accept the answer; otherwise,
reject the answer.

Everytime the client has an LR problem, the client will
run the above protocol. The key point is that the KeyGen
will be run every time when there is an LR problem to be
outsourced, which means the protocol is similar to the one-
time pad encryption scheme. Indeed, a one-time encryption
scheme is the most secure one. Once we have the frame-
work, we just need to work out the details of these four
algorithms, which will be shown in Section 3.

2.2 Linear Regression

MopbkEL. Linear regression model is employed a lot in various
applications [9], e.g. machine learning, finance, and statis-
tics. A typical linear regression model is as follows:

y = X8, 1)

where y is an m x 1 vector in R™, X is an m X n matrix in
R™*", B is an n x 1 vector in R" and most importantly
m > n. In practical applications, y is called the output vari-
able, which is a linear function of the input variable X. The
coefficient of the linear function is B. Normally, we can
observe a lot of input-output pairs in practice; however, we
don’t know the coefficient . A natural choice to find 8 is to
employ a least squared error method to find a good approx-
imation of 8 according to the many samples in practice.
This method yields an solution for $ as follows [9]:

B=X"X)"'X"y. o)

In practice, we just need to solve this equation to get a good
value for . Now the task of LR computation outsourcing is
to find this g without letting the cloud know the input data
X,y and the true value of . The basic idea is to have some
encryption on the client’s data. Details will be shown in the
next section.

RELATION WITH LINEAR EQUATION SOLVING. The linear regres-
sion model is quite similar to a system of linear equations
solving problem. However, we want to point out some sig-
nificant differences. The main difference lies in the input
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data X which is not a square matrix. There is a lot of
redundancy in the number of linear equations. A correct
solution minimizes the squared error of the whole system.
However, for a system of linear equations with invertible
X, a solution is much easier to find. Another difference lies
in the algorithm to solve the underlying problem. To find a
solution for linear regression requires more effort than that
is needed to find a solution for a system of linear equa-
tions. More importantly, researchers have proposed proto-
cols for linear equation outsourcing [10], [11] while linear
regression outsourcing remains open, to the best knowl-
edge of the authors’.

3 PROTOCOLS FOR SECURE LINEAR
REGRESSION OUTSOURCING

In this section, we detail the design of our protocols for
secure and efficient linear regression outsourcing. First, we
show our basic idea on handling this problem, i.e. trans-
forming the original LR problem linearly to get a new LR
problem. Then, we design special techniques for the prob-
lem transformation, which helps protect the privacy of the
client’s data. Several possible techniques are discussed and
then the best is chosen. Following this, the verification algo-
rithm and key generation algorithm are presented. Nor-
mally, more security can be obtained if we add more
complexity in the protocol design. However, we aim at
designing highly efficient protocols with sufficient security.
Once all the basic ingredients are well prepared, we finally
present our protocols.

3.1 Basicldea

Our protocols aim at immediate practical uses for the lin-
ear regression outsourcing problem. Although there may
be a few possible choices for secure outsourcing, we adopt
the linear transformation approach because of the effi-
ciency issue. For other approaches, please refer to Section
6. The basic idea is as follows: Given a linear regression
problem as in Eq. (1), denote this problem as ® = (X,y)
and its solution as B. We carefully design some linear
transformations on the client’s data to get a new LR prob-
lem using a secret key K, denoted as ®x = (X',y’). The
new LR problem is in the exact same form as in Eq. (1).
Thus, from the viewpoint of the cloud, the original prob-
lem and the new problem are the same. In this way, the
privacy of the input data is protected from the cloud. How-
ever, we need to solve the original LR problem, which
requires that the solution of the new LR problem has some
relation with the original solution. Using the secrete key,
the client can transform the answer of the new LR problem
B returned from the cloud to get an answer B to the origi-
nal LR problem. In this way, the privacy of the output data
is also protected from the cloud since the cloud only has
an answer to the encrypted LR problem. For verification, it
seems easy because of the special structure of the LR prob-
lem. We just need to check whether the residual error
|IXB —y| is small.

Note that we need to implement these ideas in detailed
protocols. A protocol should contain four algorithms
(KeyGen, ProbTransform, ProbSolve, ResultVerify).  When
the above ideas are applied, the secret key of the client is

generated in the KeyGenalgorithm. The client transforms the
original LR problem ® = (X,y) to get a new LR problem
®y = (X', y’) using the secret key in the ProbTransform algo-
rithm; then the client sends @ to the cloud. The cloud solves
®g to get an answer f' and sends it back to the client in the
ProbSolve algorithm. The client recovers the original answer
B and checks the correctness in the ResultVerify algorithm.

3.2 Protecting Input Privacy and Output Privacy
Here we show how to design these linear transformations to
protect the privacy of the client’s data. For an LR problem
® = (X,y), its solution is g = (XTX)AXTy. The privacy of
(X,y) is called input privacy; the privacy of 8 is called out-
put privacy. To hide the original problem @, a natural
choice is to do some efficient and secure linear transforma-
tions on the data (X,y) to get a new LR problem ®x =
(XL y).

Artempr 1. Notice that g = (X' X) 'X”y. This reminds
us to transform X into a matrix X' = AX. Now we have
B =XTX)'XTy = (X"ATAX)'XTATy. However, the
original solution is g = (XTX)AXTy. In a try to relate f
and p, this gives a hit that A should be an orthogonal
matrix, ie. ATA = I In this case, we have g = (X' X)!
XT ATy, which is much similar to 8. Now it seems still hard
to relate the two values g’ and B. Besides, we also need to
protect the privacy of y. This suggests to transform y in
some way. There are several choices:

1) A first think indicates we should transform y into
y' = Dy using a matrix D. This yields g = (X" X) ™
XTA"Dy. The annoying term A’D prevents us
from linking 8’ and B.

2) To deal with the annoying term, we may try
y = ADy. Now we have g = (X'X)'X7TAT
ADy = (X"X) 'X"Dy. This form is much closer to
p=X"X)"'XTy. Although having tried for a
while, we cannot find a way to establish a useful
relation between g’ and B.

3) To eliminate the matrix D, we can just transform y
into y = Ay. This results in g = (X’ X) 'X"AT
Ay = (X'X)'X"y, which means g = B. We have
successfully linked the two solutions of the original
LR problem and the transformed new LR problem.
However, a new trouble emerges since ' = B leaks
the output to the cloud! We may need to turn to
some other directions.

ATTEMPT 2. Although we got stuck, attempt 1 indeed
gives some inspiration on how to handle the privacy
problem. A second thought shows we may split y into a
series of y,’s such that y =) y,. In this case, we can
send several transformed LR problems to the cloud
®y; = (AX,Ay,). Suppose the answer to ¥y, is .
Then, we have =3 B;. This seems a possible solution
if the detailed protocol is hidden from the cloud, i.e. the
cloud does not know the original problem is separated
into a series of sub-problems. But this is not a plausible
assumption. Besides, this solution incurs much more
computation and communication cost for the client and
the cloud. We need to find other solutions.
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AttemrT 3. After thinking about attempts 1 and 2 for a
while, we find that we could transform the original problem
in this way: X’ = AXD and y’ = Ay. This yields that

ﬂ/ _ (XITX/)flx/Ty/ _ (DTXTATAXD)leTXTATAy
- D '(X"X) (D) 'D'X"y =D '8,

3)
where A is an orthogonal matrix in R™ and D is an
invertible matrix in R"*". There is also a relation between g’
and B. Then, the matrix A and D will serve as the secret key
of the client.

ATTEMPT 4. A natural question is whether we can do bet-
ter. Notice that if we restrict A and D to some special forms,
e.g. diagonal, we can have some computational gains. Thus,
for the matrix D, we can require it be diagonal. For the
orthogonal matrix A, we can restrict it be diagonal. But this
will imply all the entries of A be 1 or —1. Thus, we relax a
little bit on the orthogonality of A. Let k be a real number
and the diagonal matrix A be ATA = k’L In other words,
all entries of A are k or —k. Now the transformed problem
is®r = (X',y') = (AXD, Ay) and the relation of ' and B is

13/ _ (X/TX/)—IX/Ty/ _ (DTXTATAXD)_IDTXTATAY
_ D_l(k‘2XTX)71X_Tk2y _ D—lﬂ7
(4)

i.e. remaining unchanged. The special A and D improve the
efficiency; however, there is a trade-off between the security
and the efficiency.

Remark 1. We note that the random matrix A as in [12], [13]
cannot work well for the linear regression outsourcing
problem here since we need A" A = I. For the diagonal
matrix D, the monomial matrix can also be applied here.
For streaming data, a diagonal matrix requires less com-
putation than a monomial matrix; however, a monomial
matrix provides more security. Thus for applications
demanding more strict security, a monomial matrix is a
good choice. We also note that the inference attacks in
[13] for linear programming do not apply for linear
regression because of the redundant equality constraints.
Further, the input X over real numbers cannot be recov-
ered from X' easily using greatest common divisor
attacks, which can work over integers. It is then recom-
mended that the input X should be disturbed with noises
before outsourcing the computation.

We will next construct two protocols based on attempts 3
and 4. One is more secure; the other is more efficient. We
will detail the security issue in Section 4.

3.3 Key Generation and Correctness Verification

Note that for the original LR problem ® = (X,y), the trans-
formation is X’ = AXD and y’ = Ay. The matrices A and
D are the client’s secret key. In order to generate such matri-
ces, we need a truly random number string, and then pack
the truly random numbers to get A and D. However, it is
normally quite hard to generate such truly random strings
in practice [14]. Instead, we will use cryptographic pseudo-
random number generators [14], [15], [16] to generate such

a string of numbers, which looks like the same as a truly
random one. The advantage is that the key will be much
smaller, normally 128 or 256 bits; while the security remains
almost unchanged.

Generally, verification is not an easy problem. However,
we can employ the special structure of the linear regres-
sion problem to verify whether an answer is correct. Sup-
pose B=(X"X)'X"y is a solution to an LR problem
® = (X,y). For the ith element in the vector y — X8,
define its absolute value as its residual error, and define
all possible residual errors as its error range. Then, the
residual error of each element in y — X8 should be small.
A client is possible to have a prior experience on the error
range. After the client receives the returned answer from
the cloud, the client can decrypt the answer using the
secret key; then the client can compute the residual error
for each element of the vector y — Xg. If the error is in the
reasonable range, accept the answer; if it is out of the
range, reject the answer. This approach is effective for
many practical problems. On one hand, the linear regres-
sion model assumes theoretically that the error in each
constraint of the linear regression problem satisfies some
normal distribution. Thus, the length of the error vector is
small and can be obtained using background information
and previous experimental data. On the other hand, many
practical applications also have a small error vector. Cur-
rently, we only figure out this approach for result verifica-
tion. There could also be some other better verification
methods; we leave it for future research.

3.4 Detailed Protocols
Now we present two protocols that can securely and effi-
ciently outsource linear regression computation to the
cloud. Protocol 1 is more secure while protocol 2 is more
efficient. They can be chosen according to the security and
efficiency requirements of different applications. The only
difference of protocols 1 and 2 lies in the key generation
algorithm.

ProtocoL 1. Our protocol for secure LR outsourcing con-
tains four algorithms (KeyGen, ProbTransform, ProbSolve,
ResultVerify) as follows:

e KeyGen(1"). On input a security parameter ), the cli-
ent generates an orthogonal matrix A and a diagonal
matrix D. The matrices are packed from a crypto-
graphic pseudo-random number generator. Denote
K =(A,D).

e ProbTransform(®; K). On input the original LR
problem ® = (X,y) and the secret key K, it gener-
ates a new LR problem ®; = (AXD, Ay), and sends
@y to the cloud.

e ProbSolve(®y). On input the encrypted problem
@, the cloud solves @ using an LR solver to get an
answer f'. Then, the cloud returns 8 and an empty
proof I to the client.

e ResultVerify(#/,T; K). On input the returned answer
BT and the secret key K, the client decrypts g to
get p = Dg for the original LR problem. The client
also checks whether the residual error of each ele-
ment in y — Xg is small. If yes, then accept the
answer; otherwise, reject the answer.
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TABLE 1
Theoretical Performance of Our Protocols for Secure Linear Regression Outsoucing
Client Cloud
KeyGen ProbTransform ResultVerify Communication ProbSolve
A D m?n +mn + mor 2mn +m mn +m X',y n’m +n3 +mn + n?

Protocor 2. This protocol is almost the same as protocol 1
except that A is not orthogonal. Now A is a diagonal matrix
and AT A = K’I. The entries of A is randomly set to be k or
—Fk according to the cryptographic pseudo-random number
string. As normal, A and D are also packed from
the pseudo-random number string. This protocol is more
efficient than protocol 1 since the problem transformation is
much simpler. In protocol 1, the problem transformation
involves a matrix multiplication; while protocol 2 simplifies
this computation because of the special form of A. We show
the analysis of the two protocols in the next section.

4 ANALYSIS AND FURTHER DISCUSSION

In this section, we analyze the security properties and
performance of the proposed protocols. Furthermore, we
also want to ask and partially solve the question: Can we
do better?

4.1 Analysis of the Proposed Protocols

CorrecTNEss. If the client and the cloud both follow the pro-
tocol honestly, the task of linear regression outsourcing can
indeed be done correctly. Egs. (3) and (4) show indeed the
client can recover the correct answer by g = Dg/, where g is
the retuned answer from the cloud and B is the true answer
of the original LR problem.

Privacy. We follow previous work, e.g. [7], [8], [10] etc.,
in this area for the security analysis. First, we want to
remind that our protocols are similar to the one-time pad
encryption scheme. A new secret key is used every time the
protocol is run. Thus, there is no know-plaintext attack or
chosen-plaintext attack. Now we discuss the privacy issue
of the two protocols one by one. Suppose the original LR
problem is ® = (X,y) and the encrypted problem is
®x = (X', y') where X’ = AXD and ' = Ay. Let B and #
be solutions to ® and g, respectively.

For protocol 1, A is an orthogonal matrix and D is a diag-
onal matrix. The goal of input privacy is to protect (X,y)
from the cloud. In the viewpoint of the cloud, the only infor-
mation is (X' = AXD,y’' = Ay). Given X/, for any X, there
are some matrices A and D such that X' = AXD. This
implies that X’ gives no information about the input X since
A and D is the secret key of the client and the cloud has no
idea of what they are. Given y’, for any y, there is also some
matrix A such that y’ = Ay. Thus, y’ gives no information
about the input y. However, the pair (X' = AXD,y’ = Ay)
together does leak some information about (X,y). But we
argue that the cloud still has a great uncertainty about the
client’s data as follows.

Given the pair (X', y’), there are a lot of choices for the
secret key A € R™*™ and D € R™". Suppose each entry of
the matrix is an [-bit number. Since A is an orthogonal

matrix, there are roughly im?l bit information for A. In

another way, there are 2l possibilities for the choice of A.
Similarly, there are ol possible choices for D. Thus, given

(X',y’), there are 25m°!+n! possibilities for the client’s data.
But notice that the protocol generates a new secret key
whenever the protocol is run. Therefore, the cloud cannot
find meaningful knowledge about the client’s data even for
a computationally unbounded cloud.

For output privacy, 8 = DB'. Given 8, for any g, there is
a diagonal matrix D such that 8 can be obtained by DA'". In
other words, any g is possible. Thus, the output of the cli-
ent’s data is also well protected.

For protocol 2, similar analysis also applies. The differ-
ence now is about the secret matrix A. Note that now A is
diagonal and the entries of A is randomly set to be k or —k,
where k is a random [-bit number. There are 2" possible
choices for A. In this case, the cloud knows that the client’s
data is among the 2"+ possibilities, which is an exponen-
tial number on m and n. Therefore, the cloud still cannot
gain significant knowledge about the client’s data.

We remark that both our security analysis here and anal-
ysis in previous work are heuristic ones. The spirit is similar
to the symmetric encryption algorithm designs, e.g. DES,
AES, etc. The algorithm is very efficient, but a formal prov-
able security argument still remains open although
researchers have found methods to protect the algorithms
from differential and linear cryptoanalysis. Note that there
are provable security encryption algorithms based on vari-
ous hard number-theoretic problem, e.g. RSA-OAEP [17].
However, symmetric encryption algorithms are employed
in practice to encrypt large volume data to achieve high effi-
ciency. We also believe that it is an interesting work to
investigate whether the protocols in this paper and previous
work can be proven secure based on some hard problems.
We leave it as a future work.

THEORETICAL PERFORMANCE ANALYSIS. The theoretical analy-
sis is shown in Table 1. If we don’t outsource the LR compu-
tation, we need to calculate g = (X' X) 'X"y. To compute
XTX takes time n?m; then inversion takes time n?; later
X"y takes time nm; finally multiplying (X"X)™" and X"y
takes time n?. The total time is n’>m + n® + mn + n?, which
is also the same for the cloud. For the client who chooses to
outsource the LR problem, the cost can be divided into com-
putation cost and communication cost. In the key genera-
tion process, protocol 2 requires little time since A and D
are both diagonal. However, a naive implementation of pro-
tocol 1 takes much more time since we need to generate an
orthogonal matrix using a Gram-Schmit algorithm. Note the
Gram-Schmit algorithm takes a substantial time. To solve
this, we can pre-compute a group of orthogonal vectors and
pile them up in a pool. Whenever a new orthogonal matrix
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TABLE 2
Performance of Secure Linear Regression Outsoucing
Benchmark Original Problem Transformed Problem Client Speedup Cloud Efficiency
# Dimension toriginal Leloud teustomer toriginal / teustomer toriginal / teloud
1 50 x 30 0.00093801 0.00010415 3.2875 x 1079 28.533 9.006
2 100 x 60 0.0004385 0.00043542 6.6164 x 1075 6.6275 1.0071
3 200 x 120 0.0027623 0.0027577 0.00018262 15.126 1.0017
4 400 x 240 0.011791 0.011756 0.00088963 13.253 1.003
5 768 x 10 0.014934 0.009961 0.00055599 26.86 1.4993
6 800 x 480 0.076318 0.075454 0.0090261 8.4553 1.0114
7 1,600 x 1,000 0.7169 0.71541 0.041492 17.278 1.0021
8 4,000 x 3,000 12.554 12.528 0.38685 32.451 1.002

is needed, we can pick some orthogonal vectors in the pool
and then generate constant (e.g. 2 or 3) new random orthog-
onal vectors. Thus, key generation takes little time. For the
problem transformation algorithm, the client needs to com-
pute X' = AXD and y' = Ay. For protocol 2, this takes
time 2mn + m since A and D are both diagonal. However,
for protocol 1, to compute AX takes m?2n time, which is
quite large. For the result verification algorithm, we just
need to compute ||y — Xg||, which takes time mn + m. The
communication cost is to send X', y’ to the cloud. Compared
with the cost of not outsourcing, the total cost for protocol 2
is 3mn+ 2m, which is strictly smaller than n’m + n+
mn + n®. However, the total cost for protocol 1 is m?n+
2mn + 2m, which is only smaller than n?*m + n® + mn + n?
if m is not too larger than n, e.g. n < m < 1.5n. Note that if
m > 2n, the cost of the client is larger and then there is no
computational saving. The point is that for one hand, if m is
not too large, the computation cost for protocol 1 is indeed
smaller. If m is indeed large, the more efficient protocol 2 is
more recommended. For the other hand, protocol 1 pos-
sesses more security while protocol 2 possesses more
efficiency and sufficient security. The applications can
choose protocol 1 or protocol 2 according to the specific
requirements.

4.2 Further Improvements

Lower BOUND. For the efficient protocol 2, the computation
cost is 3mn + 2m. A natural question is whether we can find
out a better protocol than this one. A second thought shows
that it is possible but the improvement is not that much. To
protect the client’s data, we need to do some kind of trans-
formation on each entry of (X,y). Since there are mn +m
entries in (X,y), a computation cost mn+m is a lower
bound for any protocol that enables secure and efficient out-
sourcing of linear regression problems. Therefore, the room
for improvement is small; and we can only improve the con-
stants before mn and m.

RANDOMIZED VERIFICATION. To further improve the perfor-
mance, we can improve the result verification algorithm by
employing a randomized one. Instead of checking all entries
of |y — Xp||, we can just check c entries randomly, where ¢
is some constant. If 8 is a false answer, then it is quite possi-
ble that each entry of ||y — XA|| is larger than expected as a
normal error. This can improve the cost to be 2mn + m-+
cn + ¢, smaller than the original cost 3mn + 2m.

5 PERFORMANCE EVALUATION

In this section, we report the experimental performance
evaluation of protocol 2, which is more efficient. Theoretical
analysis of this protocol has been given in Table 1, which
shows that outsourcing indeed benefits the client. We
implement it using Matlab 2010 on a PC simulating a client
and a cloud. We want to evaluate whether a client can bene-
fit from outsourcing a linear programming problem. For cli-
ents with weak computation resources (which is also
among the targets of our protocol), the LR computation can-
not be conducted due to limited CPU and RAM. Even sec-
ondary memory (e.g. hard drive) can be leveraged to enable
the computation, moving data into ant out of the memory
costs significant time. Thus, to evaluate the performance of
our protocol more objectively, we mainly focus on the trans-
formation time on the client side and the computation time
on the cloud side. We do not take into account of the com-
munication time cost by sending the data to the cloud for
three reasons: 1) for weak clients with low RAM and sec-
ondary storage media, outsourcing the data is the only
choice; 2) moving data into and out of the memory costs sig-
nificant time; and 3) communication cannot be avoided
when cloud storage is the only choice for weak clients due
to limited local storage.

We randomly generate linear regression problem instan-
ces; first, we solve it locally; then we transform the problem
to get a new problem and ask the cloud to solve the prob-
lem. In all processes, we record the computation time.
Finally, we compute the performance gain and average it to
get a more stable performance indicator. More details can
be found in our source code for performance evaluation.
The code can be downloaded from https://sites.google.
com/site/chenfeiorange/linear-regression. Thus, all the
experimental results can be reproduced.

Our goal is to find the performance gain for the client by
outsourcing. Thus, the main performance indicator is a ratio
of the time that is needed if the computation is done locally
over the time that is needed by the client’s computation if
outsourcing is chosen. We let t,igina1 denote the time for the
client to compute the LR problem locally; let tcouq denote
the time of the cloud to compute the outsourced problem;
let toustomer denote the time of the client to transform the orig-
inal LR problem to a new LR problem. Then, the perfor-

mance gain of the client can be shown by tt""&ﬂl, we call this

custome:

client speedup. This value theoretically should be a



506 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.2, NO.4, OCTOBER-DECEMBER 2014

considerable positive number that is greater than 1, which
means there is considerable performance gain. We also con-
toriginal

sider another metric, i.e. the cloud’s efficiency, using +===

Leloud

Ideally, the problem transformation should not increase the
time to solve the LR problem. That is, the cloud’s efficiency
should be around 1. The main performance result is shown
in Table 2. We randomly generate 20 LR problems and then
measure and average their performance. We also employ a
real world data set [18], [19] as in benchmark 5 in Table 2 to
validate the proposed LR outsourcing protocol. From
Table 2, we can find that there are more than 10 times
speedup for LR problems with large dimension, which is
expected. For the cloud, its efficiency is also around 1,
except the dimension 50 x 30. This only occurs in low
dimensional problems. This exception may also be due to
some non-stable random LR instances.

We want to remark that the performance really
depends on the implementation of matrix multiplications,
problem size and the algorithm solving an LR problem.
In practice, there may be more performance gains. For
example, the cloud has more computational resources,
e.g. memory. If the scale of the LR problem becomes
large, there will be a lot of input/output operations for
matrix operations. For the client with small memory, a lot
of additional cost is needed to move data in and out of
the memory. However, the cloud can handle this problem
more easily with a large memory.

6 RELATED WORK

The problem of computation outsourcing has attracted a lot
of interests both in the security community and the cryptog-
raphy community. The former community often tries to
give some solutions that can be used in practice immedi-
ately. They often employ one-time pad style protocols and
focus on specific problems. The latter community often
makes use of some basic cryptographic tools to form a com-
plex protocol. The secret key can be re-used for different
problem instances. The solution is normally quite elegant
and suitable for any computational problems, with a condi-
tion that these problems can be transformed into a Boolean
circuit over {0,1}. Indeed, any feasible computation on a
Turing machine can be transformed into such a circuit.
However, the solution is often far from practice. Another
challenging problem is that cryptography often focuses
computation on bits; there is a long way to go from bit com-
putations to practical computational problems, where a lot
of real numbers are involved. We review important and
recent work here.

SECURITY COMMUNITY. Atallah et al. [1] considered the prob-
lem of outsourcing of scientific computations. They identified
some useful techniques to disguise the problem and pro-
posed practical protocols for these computations. However,
the efficiency was not considerably focused and the verifica-
tion of the returned result was not discussed. Recently, Wang
et al. [7], [8] proposed two protocols for secure linear pro-
gramming and linear equation outsourcing. Their protocols
are reasonably efficient and can be deployed in practice
immediately. Their protocol enables the client to get a
remarkable speedup when using the outsourcing protocol to
solve linear programming problems. Our protocol here

handles linear regression problems, which are different from
theirs. Thus, the speedup is also different; their speedup is
better than that of this paper, but both are remarkable. This
paper also adopts their framework to work on computation
outsourcing. The transformation approach in this paper has
also been employed to conquer other outsourcing problems
[12], [13], [20], [21], [22], [23]. However, we emphasize that
our linear regression problem here is quite different from
these work in several aspects. First, the linear regression out-
sourcing problem has never been studied before while this
problem is very important. For example, linear regression is a
commonly used tool in the machine learning area. Second,
the linear transformation approach is also employed in previ-
ous work; however, the choice of linear transformations is
tricky and not straightforward for the linear regression out-
sourcing problem. The reason lies in the fact that there are
more constrains than variables in a linear regression problem,
which can also be found in our design in this paper. We tried
several approaches in order to find a good solution. Third,
we aim to construct an efficient protocol with sufficient secu-
rity. It is reasonable that adding more complexity in a proto-
col makes the protocol more secure. As mobile computation
is becoming more and more popular in recent years, there are
also a lot of applications for mobile computation outsourcing.
Ramakrishnan et al. [24] identified some interesting compu-
tational problems on mobile phones, for which outsourcing
can bring sufficient performance gains. These problems are
not well solved and thus can be explored in the future.

CRYPTOGRAPHY COMMUNITY. There are two general but
highly non-trivial protocols for outsourcing any reason-
able computations, which can be done by a Turing
machine in polynomial time, proposed in the cryptogra-
phy community [6], [25]. The first solution [6] expresses a
computation using a Boolean circuit; then mask this cir-
cuit using Yao’s gabled circuit technique [26], [27] and
encrypt the garbled circuit using a fully homomorphic
encryption algorithm [28]; later, the encrypted circuit is
sent to the cloud for solving the outsourced problem
homomorphically and the final result is returned back;
finally, the client recovers the result and checks its cor-
rectness using the secret key. The other solution [25]
employs the idea of interactive proof systems [29]. To out-
source a problem, the client prepares a few such problems
with a half being the same problem to be solved; then the
client encrypts these problems using a fully homomor-
phic encryption algorithm and sends them to the cloud
for solutions; the cloud solves these problems homo-
morphically and returns the answers back; finally, the cli-
ent decrypts to get an answer and checks its correctness.
The two solutions are quite elegant; however, they are far
from practice because of the efficiency issue. Expressing a
computational problem into a Boolean circuit is not easy
and the fully homomorphic encryption is quite compli-
cated and inefficient, which also requires to express a
computation into a circuit. Barbosa and Farshim [30]
extended two-party computation outsourcing and studied
delegable homomorphic encryption to support secure
computation outsourcing. Parno et al. [31] also built
a practical and special system to support verifiable com-
putation outsourcing based on a quadratic programme
encoding computations.
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7 CONCLUDING REMARKS

In this paper, we proposed two protocols for the secure and
efficient linear regression outsourcing problem. One is more
secure while the other is more efficient; thus, the applica-
tions can choose either one based on their requirements.
The two protocols can be deployed in practice immediately.
It is interesting to find some other new solutions to this
problem. But as discussed in this paper, there is not much
room for improvement. However, new ideas in the new
solutions are more important to the whole community.
We believe the more important future research direction
should be to identify practical problems for which outsourc-
ing can bring a lot of benefits in the mobile and cloud com-
puting age; and then propose protocols and software to
solve them. Sometimes, for specific problems, we can
employ their special structures to ease our design, which is
a huge difference from the general but extremely inefficient
solutions in the cryptography community.
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