
2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

1

SecEDMO: Enabling Efficient Data Mining with
Strong Privacy Protection in Cloud Computing
Jiahui Wu, Nankun Mu, Xinyu Lei, Junqing Le, Di Zhang, and Xiaofeng Liao Senior member, IEEE

Abstract—Frequent itemsets mining and association rules mining are among the top used algorithms in the area of data mining. Secure
outsourcing of data mining tasks to the third-party cloud is an effective option for data owners. However, due to the untrust cloud and the
distrust between data owners, the traditional algorithms which only work over plaintext should be re-considered to take security and privacy
concerns into account. For example, each data owner may not be willing to disclose their own private data to others during the cooperative
data mining process. The previous solutions are either not sufficiently secure or not efficient. Therefore, we propose a Secure and Efficient
Data Mining Outsourcing (SecEDMO) scheme for secure outsourcing of frequent itemsets mining and association rules mining over the joint
database (i.e., database aggregated from multiple data owners) in the paradigm of cloud computing. Based on our customized lightweight
symmetric homomorphic encryption algorithm and a secure comparison algorithm, SecEDMO can ensure strong privacy protection and low
data mining latency simultaneously. Moreover, the well-designed virtual transaction insertion algorithm can hide the information of the original
database while still preserving the cloud’s ability to perform data mining over the obfuscated data. By evaluation of a numerical experiment
and theoretical comparisons, the correctness, security, and efficiency of SecEDMO are confirmed.

Index Terms—Data mining, frequent itemsets mining, association rules mining, privacy protection, cloud computing.

F

1 Introduction
1.1 Motivations

Discovering the association relationships among the frequent
itemsets from a given dataset is called association rules mining,
which leverages the frequent itemsets mining process as a sub-
routine. Association rules mining (along with frequent itemsets
mining) is one of the most important algorithms in the field of
data mining. For example, the classical association rules mining
algorithm (i.e., Apriori [1]) is identified as a top 3 algorithm in
data mining [2]. It is widely utilized in many fields including
market supervision and management [3], web browsing preference
prediction [4], intrusion detection [5], health-care services [6], to
just name a few. The traditional algorithms for frequent itemsets
mining and association rules mining mainly consider how to mine
on plaintext domain, so they lack security and privacy concerns.
However, the privacy-preserving property is strongly required in
many scenarios. One typical setting is that there are multiple data
owners wishing to learn association rules or frequent itemsets
from their joint data, which is outsourced and stored in the public
cloud. The security problem becomes a critical concern in this
service model. First, the data owners may be unwilling to disclose
their own data to other owners. For example, some data owners’

• This work is supported by National Key Research and Development
Program of China (Grant no. 2016YF-B0800601), National Natural Sci-
ence Foundation of China (Grant no. 61472331, 61772434, 61403121,
61806169) and Fundamental Research Funds for the Central Universities
(Grant no. XDJK2018D005). (Corresponding author: Liao Xiaofeng)

• J. Wu, N. Mu, J. Le, and D. Zhang are with the College of Elec-
tronic and Information Engineering, Southwest University, Chongqing
400715, China, and Chongqing Key Laboratory of Nonlinear Circuits and
Intelligent Information Processing. E-mail: wjh2015@email.swu.edu.cn;
nankun.mu@qq.com; lejunqing@163.com; zhangdiii@163.com

• X. Lei is with the Department of Computer Science and Engineer-
ing, Michigan State University, East Lansing, MI 48824, USA. E-mail:
leixinyu@msu.edu

• X. Liao is with the college of computer, Chongqing University, Chongqing
400044, China. E-mail: xfliao@cqu.edu.cn

data may have commercial value and they want to keep secret.
Second, the public cloud cannot be fully trusted. These third-
party clouds may have financial incentives to collect or infer their
customer sensitive information. Moreover, these public clouds
may be compromised and all of the stored information maybe
further leaked by hackers. Therefore, we focus on developing a
scheme to enable privacy-preserving frequent itemsets mining and
association rules mining with multiple data owners in the cloud
computing model.

1.2 Problem Formulation

• Frequent Itemsets Mining & Association Rules Mining. Fre-
quent itemsets mining refers to finding frequent patterns (including
itemsets, sequences, substructures) that occur frequently in data
sets. Support1 represents how frequently the pattern appears in
the data sets. With a pre-defined adjustable count threshold (i.e.,
minimum support), the aim of the mining algorithm is to find
all itemsets with the count/support greater than or equal to the
minimum support. And the motivation of association rules mining
is to find out the frequently occurred association relationships
between frequent itemsets. Therefore, association rules mining
algorithm mainly consists of two steps: (1) find all frequent
itemsets from the dataset (by using the frequent itemsets mining);
(2) generate association rules from these frequent itemsets.

More concretely, let I represent the collection of data items and
D represent the database that consists of a set of transactions. In
general, a rule has the form of X ⇒ Y , where X,Y ⊆ I. The rule
X ⇒ Y with support s, i.e., (X ⇒ Y).sp = s, implies the occurrence
count that X and Y co-occur in the database. The rule X ⇒ Y with
confidence c, i.e., (X ⇒ Y).cf = (X ∪ Y).sp/Y.sp = c, implies
that the probability of Y’s occurrence given X’s occurrence is c.
We denote the minimum support and the minimum confidence as
Ts and Tc, respectively. A rule X ⇒ Y with support no less than

1. To facilitate the subsequent operation in this paper, we denote the support
of a pattern as its count number.

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

2

Ts and confidence no less than Tc, is identified as an association
rule. Note that the thresholds Ts and Tc are configurable by data
owners.
• Privacy-Preserving Data Mining. We consider the privacy-
preserving frequent itemsets mining and association rules mining
problem by taking advantage of cloud computing. The cloud can
achieve on-demand high-quality data mining and reduces storage
cost at the same time. To achieve privacy-preserving data mining,
each data owner needs to encrypt their data before outsourcing to
the untrusted cloud. The cloud should be able to perform mining
over the encrypted data and then return the mining results (in
encrypted form) to the data owners for decryption.
• Horizontally Partitioned Database. We consider horizontally
partitioned databases in this paper. The horizontally partitioned
database means that data outsourced by different owners are all
in the same format. The other type of database is vertically
partitioned, which means that outsourced data of distinct data
owners are in different formats. For example, consider that the data
owners A and B have databases with items I = {bread, milk, egg}
and the data owner C has a database with items I = {pearl, agate},
then we have the database aggregated by A and B is horizontally
partitioned and the database aggregated by A and C is vertically
partitioned.

1.3 Limitation of Prior Art

The previous solutions for secure frequent itemsets mining or
association rules mining suffer from three limitations as described
below.
• Some schemes [7]–[11] are built based on public-key homo-

morphic encryption (HE) algorithms (e.g., elliptic curve-based
ElGamal, Paillier encryption). Since the current HE lacks effi-
ciency, these schemes suffer from high running time.

• Some schemes perform privacy-preserving data mining over
a number of distributed servers (e.g., [10], [12], [13]). These
schemes have a large number of communication rounds.

• Some symmetric key encryption-based schemes (e.g., [14])
can achieve low pruning time and low communication cost.
However, they have a weak threat model, and therefore, they
possess poor anti-attack capabilities (as analyzed in [15]).

Therefore, we believe that there is a critical need to develop a
secure and effective association rules mining scheme on multi-
owner databases with high-efficiency in a strong threat model.

1.4 Technical Challenges

There are three technical challenges that SecEDMO shall deal
with.
• The first challenge is how to realize strong privacy-preserving,

low data mining latency, and low communication complexity
simultaneously. It is challenging to strike a well-balanced trade-
off between them.

• The second challenge is how to design an effective algorithm
to obfuscate some data for a large-sized database while still
preserving the cloud’s ability to perform data mining over the
obfuscated data.

• The third challenge is how to prevent privacy leakage from
encrypted databases and mining results in a strong threat model.
It is desirable that (1) each data owner should not deduce
other owners’ data; (2) the scheme should be able to deal with
attacks from a corrupted owner and multiple collusive owners;

(3) the scheme should be able to resist attacks from an outside
adversary.

1.5 Main Contributions

In this paper, we design SecEDMO to address the above
challenges. The comparison between SecEDMO and the previous
schemes is illustrated in Figure 1, where the red area represents
the optimal solution in both security and performance (i.e., an
ideal solution). SecEDMO (in green area) is the closest scheme
to the optimum compared with other schemes. It is shown that
our SecEDMO strikes a better trade-off between security and
performance than the prior art. Moreover, SecEDMO can be
applied in other secure data computing solution such as secure
data aggregation (presented in Appendix B). In summary, this
paper makes the following contributions.
• We design a customized symmetric HE algorithm and a secure

comparison algorithm to address the secure association rules
mining problem. The designed algorithms ensure strong privacy
preserving and low data mining latency.

• We propose a virtual transaction insertion algorithm to obfuscate
the support of each item in the original database. The proposed
algorithm can hide the information of the original database
while still preserving the cloud’s ability to perform data mining
over the obfuscated data.

• We design the scheme in a strong threat model. Various coun-
termeasures (including secret-key dividing, ciphertext charac-
terizing and mining share) are adopted to resist different kinds
of attacks from the data owners, the cloud, and the outside
adversary.

Optimum

SecEDMO

Security

Pe
rf

or
m

an
ce

Low High

Lo
w

H
ig

h

Scheme
[13]

Schemes
[8], [11], [12]

Schemes
[6]–[9]

Classic
Solutions

Fig. 1. Comparison between SecEDMO and the previous
schemes in terms of performance and security.

1.6 Paper Organization

The remainder of this paper is organized as follows. Section 2
gives a formal description of our system model, threat model,
and design goals. Section 3 introduces the preliminaries of the
requested cryptographic knowledge. Section 4 presents the designs
of HE, secure comparison, and virtual transaction insertion. In
Section 5, the design of SecEDMO is elaborated. Section 6
performs correctness and security analysis of SecEDMO and com-
pares its security with several other schemes. Section 7 presents
performance evaluation of SecEDMO. Related work is described
in Section 8, followed by conclusion in Section 9.

2 System Model, Threat Model, and Design goals
In this section, we introduce the adopted system model, threat

model, and design goals of SecEDMO.

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

3

2.1 System Model

Figure 2 shows the system model, which consists of three
entities: an administration server, multiple data owners, and a
cloud. To enable that distinct owners have distinct individual
secret keys, a trusted administration is introduced to distribute
keys to each owner separately. The administration server responds
to a request of the concerted data owners to distribute secret
keys and parameters. After obtaining secret keys and parameters,
each data owner separately encrypts his own database and then
outsources the encrypted database to the cloud. The cloud connects
the received horizontally partitioned databases from multiple data
owners and then mines frequent itemsets or association rules
according to the requests of data owners. The returned mining re-
sults consist of frequent itemsets, association rules, and threshold
comparisons’ results. All of the returned results are ciphertexts in
encrypted form. Upon receiving the returned ciphertexts from the
cloud, the data owner decrypts them to obtain the corresponding
mining results in plaintext.

..
.

p
ro

cessin
g

encrypt

individual

databases

decrypt

mining

results

Administration

Server

Data owners’
requirements

Parameters

and secret keys

Data Owners Side

raw

databases

association

rules

Types of attack:

Reason secret keys

Tamper ciphertexts

Corrupt a data owner

Collude data owners and the cloud

Corrupted

Owner

Outside

Adversary

joint databases

mining results

Honest but

Curious Cloud
A

lg
o
rith

m
 1

:

d
ata m

in
in

g

Attacks

Fig. 2. System model of privacy-preserving data mining for the
joint database.

2.2 Threat Model

We consider the possible threats of the system come from three
entities: the cloud, the data owners, and the outside adversary, as
depicted in Figure 2.
• Cloud. The cloud who performs data mining task over encrypted
joint databases is assumed to be honest-but-curious [8], [14],
[16]. That is, the cloud follows the designed scheme honestly but
attempts to deduce the private information of encrypted databases,
frequent itemsets, and association rules. Such an assumption of un-
trusted cloud server better approaches the real-world applications
because most of the cloud service providers are commercial third
parties. We have also noted that there is an alternative security
model in which the cloud is assumed to be trusted [17].
• Data Owners. We consider two types of data owners. The
first type of data owner is treated as a collaborative but curious
entity. They honestly follow the scheme but are curious about
other owners’ private information. The second type of data owner
is assumed to be corrupted. By corrupted data owners we mean
that the adversary may deviate from the scheme specifications
and attempt to deduce the other owners’ private information (e.g.,
tamper the other owners’ ciphertexts).
• Outside Adversary. We consider the outside adversary who has
the capabilities of (1) eavesdropping and tampering the ciphertexts
in the communication channel between the data owners and
the cloud, (2) corrupting a data owner, and (3) colluding with

the corrupted data owners and the cloud. With the above three
capabilities, the adversaries can launch a variety of attacks (e.g.,
attacks on reasoning secret keys, tampering ciphertexts, corrupting
a data owner, and colluding with data owners or the cloud). These
attacks are described and analyzed in detail in Section 6.

2.3 Design Goals

SecEDMO should achieve the following design goals.
• Correctness. If both data owners and cloud follow the SecED-

MO honestly, the data mining tasks can be indeed performed
by the cloud, and the data owners can get the correct mining
results.

• Security. (1) Data owners’ databases should be confidential to
one another. (2) The mining results should be secret to the cloud.
(3) SecEDMO should resist attacks from an outside adversary
with various capabilities.

• Efficiency. SecEDMO should have low computational complex-
ity, communication traffic, storage cost, and end-to-end latency
to guarantee the efficiency of secure association rules mining.

• Accommodate lightweight client. SecEDMO should keep as less
as workload on the client side (i.e., the data owner side) and
accommodate lightweight client.

3 Preliminaries
In this section, we introduce the background knowledge of

homomorphic encryption, virtual transactions, and mathematical
notations.
• Homomorphic Encryption. Homomorphic encryption was first
proposed by Rivest et al., closely after the creation of RSA [18],
[19]. HE satisfies the homomorphism property so that the algebraic
operations on the plaintext can be performed on the corresponding
ciphertext, which prevents the plaintext from being cracked. In
general, an HE algorithm includes four algorithms: (GenKey, Enc,
Dec, Eva) [20], which represent the key generation algorithm, the
encryption algorithm, the decryption algorithm, and the evaluation
algorithm, respectively.

We denote an operation on ciphertexts (Eva algorithm) as F,
whereas a required operation on plaintext as f . Enc is homomor-
phic, if F(c1, · · · , cn) = EncK(f (m1, · · · ,mn)), where K is a set
of secret keys generated by GenKey, and mi, ci (i = 1, · · · , n) are
plaintexts and ciphertexts respectively. Its underlying meaning is:
f is expected to act on owners’ plaintexts but instead of operating
f , the corresponding ciphertexts are outsourced to an untrusted
third party and implement F(c1, · · · , cn). Then f (m1, · · · ,mn) can
be obtained by decrypting F(c1, · · · , cn) – the third party works
for the owners, but knows nothing about the operative plaintexts.
• Virtual Transactions. Virtual transactions, also known as fake
or fictitious transactions in [14], [21], are extra and nonexistent
transactions inserted into the original database. They are often
used to obfuscate the privacy of the real database when the
database tends to be outsourced to the cloud. Conversely, without
insertion of virtual transactions, the original database can be easily
attacked by the cloud using the statistical attack although it is
encrypted by a 1-1 substitution cipher. In general, after being
inserted with virtual transactions, the database adds a tag attribute
for each transaction which records the real transaction as 1 and
the virtual transaction as 0. Table 1 gives an example of a database
inserted with virtual transactions. The tag values of T1,T3 are 1
and T2,T4 are 0, that is, T1,T3 are real transactions and T2,T4 are
virtual transactions.

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

4

TABLE 1. Database with inserted virtual transactions.
TID bread milk apple banana Tag

T1 0 0 1 0 1
T2 1 1 0 1 0
T3 0 0 1 1 1
T4 0 1 1 1 0

• Mathematical Notations. Table 2 summarizes mathematical
notations and their semantic meanings used throughout this paper.

TABLE 2. The notations and their semantic meanings.
Notations Meanings

DB Database
I A set of items (item labels) in DB
Ti The ith transaction in DB, i ≥ 1
TID Transaction ID
X ∪ Y The union of itemsets X and Y
X ⇒ Y A rule that X and Y co-occur in DB
X.sp The support of the itemset X
(X ⇒ Y).cf The confidence of the rule X ⇒ Y
li The number of T in the ith database, 1 ≤ i ≤ n
nt , nv The number of real and virtual T in DB, respectively
n The number of data owners
nI The number of items in I
NT , nT The number of total and real T in joint database, respectively
λ A security parameter
k, d, ε,N Positive integers
r′, r Random positive integers
ṙ A random real in [0,1]
Fp A finite field of integers modulo p
Z∗p A cyclic group under the multiplicative operation modulo p
ei The element in Fp1 , 1 ≤ i ≤ n
K Key set
Nd The maximum denominator of Tc

GenKey Key generation algorithm
Enc, Dec Encryption and decryption algorithms
Eva Evaluation algorithm
HE Homomorphic encryption
f (·), F(·) Functions operated on plaintexts and ciphertexts, respectively
H(·) Hash function

4 Proposed HE, Secure Comparison, and Virtual Trans-
action Insertion Algorithms

In this section, we present a symmetric HE, a secure compari-
son, and a virtual transaction insertion algorithms for data privacy
protection. The three algorithms are the subroutines of SecEDMO
and are designed as follows.

4.1 Symmetric HE Algorithm Design

4.1.1 HE Design Goals
Before designing HE, we clarify its design goals corresponding

to secure association rules mining.
• In frequent itemsets and association rules mining, it is neces-

sary to calculate supports and confidences of transactions. For
privacy-preserving consideration, the confidentiality of supports
and confidences should be ensured. Supports and confidences
are worked out mainly using addition, subtraction and threshold
comparison. Therefore, we design an HE algorithm to satisfy
homomorphism of addition, subtraction, and scalar multipli-
cation at the same time to secure the operation in calculating
supports and confidences.

• Almost all privacy-preserving data computation based on HE
cannot resist the chosen attacks (a class of attacks on reasoning
secret keys) due to properties of HE, thus a secure HE against
the chosen attacks should be designed.

• In order to prevent ciphertexts encrypted by HE from being
tampered arbitrarily, these ciphertexts need to be characterized,
so that an invalid modification on ciphertexts will lead to a
failure in decrypting and sound an intrusion warning.

• Multi-owner joint data mining is to mine target information in
the joint database of all the agreed owners, so all the owners’
databases should be included in the mining, otherwise, the
mining results will be biased. Therefore, a scheme that detects
if all the joined databases are included before mining should be
considered.

• In the process of data mining, in order to prevent attacks from
a corrupted owner and multiple colluded participants (including
the data owners and the cloud), the mining processing should
be performed correctly only when all the owners’ databases
are combined together. Thus a corrupted owner only or several
colluded participants cannot obtain the plaintexts of mining
results.

4.1.2 HE Design
An HE algorithm generally includes four algorithms: (GenKey,
Enc, Dec, Eva). Each of them in our designed HE is given below.
• GenKey(λ, l1, · · · , ln): Generate secret keys and parameters of n

parties. λ is a security parameter and li(i = 1, · · · , n) represents
the number of transactions provided by the ith data owner.
s1: Generate three big primes p1, p2, p3 and a small positive

integer d. p3 depends on the security parameter. p1 �

p2 � p3, and the scope of the three large primes is further
described in Section 4.3.

s2: Randomly choose a number s ∈ Z∗p3
, an expansive factor

k � p1, and n positive integers e1, e2, · · · , en ∈ Fp1 with∑n
i=1 liei mod p1 = 0.

s3: p1, p3, d are distributed as public parameters, (s, p2, k) as
public secret keys across the n data owners, and ei(i =

1, · · · , n) as an individual private key of the ith owners.
• EncK(T): HE algorithm for a constant value U ∈ Fp2 .

s1: Select a random number r.
s2: Generate the corresponding ciphertext CU :

CU = EncK(U) = sd(rp2 + kU) mod p3. (1)

• Encei
K(mi j): HE algorithm for mi j which is the jth data of the ith

data owner (j = 1, · · · , li; i = 1, · · · , n).
s1: Check if the plaintext kmi j ∈ Fp1 .
s2: Select a random number ri j.
s3: Generate the ciphertext of mi j:

ci j = Encei
K(mi j) = sd(ri j p2 + kmi j + ei) mod p3. (2)

• Eva(c1, · · · , cn): Evaluation on owners’ ciphertexts.

s1: Evaluate all the ith owner’s ciphertexts ci j(j = 1, · · · , li) as

ci = Eva(ci1, · · · , cili) =
∑li

j=1
Encei

K(mi j)

, sd(ri p2 + kmi + liei) mod p3.
(3)

s2: Evaluate all the n owners’ ciphertexts ci(i = 1, · · · , n) as:

c = Eva(c1, · · · , cn) =
∑n

i=1
sd(ri p2 + kmi + liei)

, sd(rp2 + km + εp1),
(4)

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

5

where ε is an integer.
Equations (3) and (4) present the addition homomorphism prop-
erty of the designed HE. Subtraction and scalar multiplication
homomorphism of the HE are presented as Equations (5) and
(6) respectively.

((c1 − · · · − cn) − 2l1Z1) mod p3

= sd((r1 p2 + km1 + l1e1) − · · · − (rn p2 + kmn + lnen)

− (2r′p2 + 2l1e1)) mod p3

, sd(rp2 + k(m1 − · · · − mn) − εp1) mod p3,

(5)

where Z1 = Ence1
K (0) is a public available value issued by the

owner of number 1.

(N ×CU) mod p3

= (N × sd(rp2 + kU) mod p3) mod p3

, sd(rp2 + kNU) mod p3,

(6)

where N is a positive integer.
• DecK(CU): Homomorphic decryption algorithm to decrypt ci-

phertexts of constant values.
s1: Compute d1 = (CU × s−d mod p3) mod p2.
s2: If d1|k (i.e., d1 can be divisible by k), the plaintext of CU

can be obtained by calculating U = DecK(CU) = d1/k.
• DecK(c): Homomorphic decryption algorithm for the evaluated

value c in Equation (4).
s1: Compute d1 as follows:

d1 = ((c × s−d mod p3) mod p2) mod p1

= ((rp2 + km + εp1) mod p2) mod p1 = km.

s2: If d1|k, the plaintext of c can be obtained by calculating
m = DecK(c) = d1/k.

In the designed HE, we only decrypt the ciphertexts whose o-
riginal plaintexts are constant values (i.e., plaintexts are encrypted
by Equation (1)) or who are evaluated values of all the n own-
ers’ ciphertexts (i.e., ciphertexts are evaluated by Equation (4)).
Therefore ci, the evaluated ciphertext of the ith owner, cannot be
decrypted. Such design we call mining sharing, analogous to secret
sharing, is to ensure that the ciphertexts can be decrypted only
when all owners’ individual ciphertexts are combined together and
individual ciphertexts are of no use on their own. In association
rules mining, supports of itemsets are counted as HE evaluated
values of all n owners’ ciphertexts c, thus, the decryption of these
evaluated values should be effective.

4.1.3 Discussion

We next discuss how the customized HE algorithm meets the
design goals.
• Before encrypting, the plaintexts are characterized by multiply-

ing an expansion factor k, so that the valid ciphertext margin
takes up only part of the numerical space. This measure can
prevent arbitrary tampering of ciphertexts.

• The confidentiality of supports and confidences in cloud-aided
mining phase are ensured, because the designed HE owns
properties of homomorphic addition and scalar multiplication
at the same time.

• A mining sharing method analogous to secret sharing is intro-
duced to (1) detect if all the agreed databases are included before
mining and (2) prevent corruption and collusion attacks. It
ensures that distinct data owners have distinct individual secret
keys (ei for the ith owner), and the encrypted mining results can

be correctly decrypted only when the joint database is stitched
by databases of all involved owners. Otherwise, an intrusion
warning is sounded. Through this, a corrupted owner does not
know the other owners’ secret keys and thus cannot obtain
privacy from the ciphertexts, and a joint database of partial data
owners cannot be successfully mined by the cloud. Therefore,
mining in all the agreed databases can be proceeded normally
to get the correct results in response to the joint mining, while
mining in partial databases cannot be implemented to prevent
the partial owners from deriving the other owners’ privacy.

• The designed scheme can resist attacks on reasoning secret
keys, because the underlying HE algorithm is a probabilistic
encryption algorithm, and distinct owners have distinct individ-
ual secret keys.
The detailed analysis of how the designed HE algorithm resist

the distinct types of attacks is presented in Section 6.

4.2 Secure Comparison Algorithm Design

Based on the above HE algorithm, we design a secure compari-
son algorithm. In general solutions of association rules mining, it
is necessary to compare supports and confidences with their corre-
sponding thresholds. In our privacy-preserving solutions, the cloud
performs the above comparisons in the joint database encrypted
by the HE and is required to be unknown with the supports, the
confidences, and the comparison results (i.e., the mining results).
The secure comparison algorithm works as follows.
• First, the cloud receives a ciphertext CV = EncK(V) from data

owners, where V is a big number (V > NT and V + NT < p1,
where NT is the number of transactions in the joint database)
provided by the trusted administration.

• Second, the cloud calculates C = (CV +cα−cβ) as the comparison
result, where cα and cβ are two ciphertexts (encrypted by
Equation (4)) to be compared, and α, β ≤ NT < V are the
original plaintexts.

• Third, the comparison result (i.e., the mining result) in plain for-
m is α− β = (C × s−d mod p3 mod p2 mod p1)|k−V , calculated
by the data owners.

Correctness. CV is in the form of Equation (1). Two ciphertexts
cα, cβ are in the form of Equation (4). Then the comparison result
is

C = (CV + cα − cβ) = sd(rp2 + k(V + α − β) + εp1),

and its decrypted form is

(C × s−d mod p3 mod p2 mod p1)|k − V

= (k(V + α − β))|k − V

= α − β.

A concrete example of the comparison algorithm utilized in fre-
quent itemsets and association rules mining is shown in Section 6.

4.3 Discussion of HE Parameters

Proper HE parameters are needed to ensure that the encrypted
comparison results (mining results) of the joint database can be
successfully decrypted by data owners. According to the con-
struction of the HE algorithm and the comparison algorithm, the
HE parameters p1, p2, p3 can be limited by the following three
requests. First, the maximum evaluation value

∑
TID Enc(m) should

be decrypted successfully, where
∑

TID aggregates all transactions
in a joint database. Second, since V is the maximum plaintext,

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

6

Enc(V) should be decrypted successfully. Third, to effect the se-
cure comparison, the scalar multiplication Nd

∑
TID Enc(m) should

be decrypted successfully, where Nd
2 is an integer.

All the above three requests can be satisfied when Enc(V) +

Nd
∑

TID Enc(m) can be successfully decrypted.

Enc(V) + Nd

∑
TID
Enc(m)

= sd(r′p2 + kV) + Nd

∑
TID

sd(rp2 + ei + km)

= sd(r′p2 + kV + Nd(p2

∑
r +
∑n

i=1
liei + k

∑
m))

< sd((NdNT + 1)rmax p2 + NT Nd p1 + k(NdNT + V)).

(7)

Equation (7) can be successfully decrypted when the following
inequalities hold.

p1 > k(NdNT + V),

p2 > NT Nd p1 + k(NdNT + V),

p3 > (NdNT + 1)rmax p2 + NT Nd p1 + k(NdNT + V).
(8)

Since V > NT , Equation (8) can be simplified as

p1 > kV(Nd + 1),

p2 > VNd p1,

p3 > rmaxVNd p2.

(9)

Thus, the parameters of HE should meet Equation (9) to ensure
that comparison results (mining results) in our scheme can be
successfully decrypted.

4.4 Virtual Transaction Insertion Algorithm Design

4.4.1 Design Goals
Before outsourcing individual databases to the cloud, data own-

ers insert virtual transactions into their raw databases to obfuscate
the real transactions. Each item in the inserted database should
be uniformly distributed, and the order of the transactions should
be confused so that the plaintext database itself can conceal real
information of all transactions in the original database.

4.4.2 Insertion Algorithm
We assume that the number of the raw database’s transactions

and the inserted transactions are nt and nv respectively, and a
random decimal is ṙ ∈ [0, 1]. A transaction is known to contain
multiple items, and each item has a value of 1 or 0. This algorithm
generates each item in a virtual transaction independently, and the
generation of an item X in the ith virtual transaction contains two
steps: First, count the support of X and denote it as X.sp; second,
calculate the virtual value of X in the nth virtual transaction by the
following equations.

If i < nv,

Xi =

0, ṙ < X.sp
nt

1, ṙ ≥ X.sp
nt

(10)

otherwise,

Xi =

0, ṙ < 0.5
1, ṙ ≥ 0.5

(11)

Each item value in the ith transaction is generated according to
Equations (10) and (11). If the number of items in the generated
transaction is greater than the maximum item number nI in the

2. Nd in this scheme represents the maximum denominator of Tc =
Tc1
Tc2

,
where Tc1 ,Tc2 are integers. Nd ≥ max(Tc2) is usually set to be 100 for that the
maximum denominator of confidence is 100.

original database, the transaction is then randomly divided into
several sub-transactions with item numbers not exceeding nI .
We generate all nv transactions by repeating this process. This
insertion algorithm is designed to balance the support of each item
as far as possible, and therefore the algorithm can obfuscate items’
values of transactions in individual databases. After inserting with
the virtual transactions, the algorithm confuses TIDs by using a
pseudo-random number sequence as in [22]. The randomness of
each item in a database including virtual transactions is analyzed
in Section 7.

5 SecEDMO Scheme Design
Referring to the mining model of a database with the virtual

transaction in [14], SecEDMO is presented using the HE algorith-
m, secure comparison algorithm, and virtual transaction insertion
algorithm proposed in Section 4 as building blocks.

5.1 Overview of SecEDMO

Figure 2 illustrates the proposed process of multi-user joint
association rules mining. The process consists of three principal
parts, i.e., an administration server, data owners and a cloud server,
which mainly focus on parameter setting, data privacy processing,
and data mining respectively. The entire process of SecEDMO
contains five stages:
• Owner request stage: n data owners collate their data, insert

virtual transactions and denote the number of transactions in
their processed database as li(i = 1, · · · , n) separately, prior to
requesting the administration server.

• Key generation stage: The administration server receives the
request from data owners and executes GenKey(λ, l1, · · · , ln)
algorithm, represented in Section 4 to breed encryption keys
and parameters.

• Data privacy preserving stage: After receiving secret keys and
parameters from the administration server, the data owners
encrypt item labels using a typical hash function like SHA-
X [23], tag the virtual transactions in the joint database with
0 and the real with 1, and encrypt the tag values with HE
(the encrypted tag values are denoted as ETVs). Section 5.2
introduces the detail of the data privacy preserving.

• Secure data mining stage: The cloud receives the owners’
encrypted databases and then mines association rules using Al-
gorithm 1 to output the mining results to the owners afterward.

• Result acquisition stage: The owners decrypt the mining results
to obtain the ultimate plaintexts of frequent itemsets or associa-
tion rules.
Owner request and key generation stages are the preparation

of privacy-preserving data mining. Next, we elaborate on the
processing of our privacy-preserving data mining, i.e., data privacy
preserving and secure data mining.

5.2 Data Privacy Preserving

Data in our horizontally partitioned databases include finite item
labels and transaction contents which record whether the items
occur or not. In order to protect the privacy of the transaction
contents and ensure the correctness of the data mining, hash
function, virtual transaction, and the HE algorithm are used for
the following reasons.
(1) Replace item labels with their hash values: Item labels in
all the horizontally partitioned databases are the same, and can

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

7

be known to anyone (e.g., item labels in supermarkets are their
commodity codes and are public). We replace them with their
hash values to conceal the content of items in databases.
(2) Obfuscate real transactions by inserting virtual transaction:
The contents of the real transactions are 1 or 0, which means a
certain item occurs or not. To prevent adversaries from knowing
the real contents, some virtual transactions are inserted to obfus-
cate the raw database, so that the adversaries cannot differentiate
whether a certain transaction is real or not.
(3) Encrypt tag values with HE: The adversaries cannot tell which
are the real transactions in the obfuscated database, and neither
can the cloud. This makes it impossible for the cloud to mine the
correct results based on real databases. To address this problem,
two tag values (0 and 1) are used to differentiate the virtual and
real transactions respectively, so that the cloud can eliminate the
virtual one when executing data mining. But the tag values of
the transactions should be unknown to the adversaries, thus the
tag values are encrypted by the HE. Therefore, the encrypted tag
values can not only resist attacks from the adversaries but also
ensure that the cloud can directly calculate the correct mining
results (in their encrypted form) without distinguishing which
transactions are real.

5.3 Secure Data Mining

5.3.1 Data Mining on the Cloud

Algorithm 1 presents the general process of secure mining.
Steps 2-4 are secure frequent itemsets mining and steps 5-6 are
secure association rules mining.

In Algorithm 1, data owners provide their own threshold Td. As
the support threshold is encrypted before sending to the cloud, the
cloud has to retain all comparison results between each itemset’s
support and the Enc(Ts). In order to receive as little unsatisfactory
comparison results from the cloud as possible, data owners send
their own threshold Td ≤ Ts to the cloud to cut off partially
undesired results. The confidence threshold is Tc = Tc1/Tc2 , where
Tc1 ,Tc2 are integers and Tc2 ≤ Nd. The maximum value of Tc2 is
100.

Algorithm 1 Secure association rules mining in cloud
Input: All n data owners’ processed databases, Enc(Ts), Tc1 , Tc2 ,
Td.
Output: Encrypted mining results RFIs/ARs, ECSs and ECCs.
1: Stitch all of the databases horizontally to form a joint database.
2: Calculate all frequent itemsets in the joint database with

the support Td and denote the set of these itemsets as FIs
which contains all of the frequent itemsets and partial of the
infrequent itemsets.

3: Obtain all of the real frequent itemsets in FIs using Equa-
tion (12) and denote them as a set RFIs.

4: Compare frequent itemsets in RFIs with the encrypted support
Enc(Ts) using Equation (13) and denote the comparison results
as ECSs.

5: Calculate all the association rules in RFIs and denote them as
a set ARs which contains all real association rules and partial
of false rules.

6: Compare all association rules in ARs with Tc = Tc1/Tc2 using
Equation (14) and denote the comparison results as ECCs.

Enc((H(X1), · · · ,H(Xt)).sp)

=
∑B

DB=A
ETV(H(X1) == 1& · · ·&H(Xt) == 1)

+
∑

A
(H(X1) == 0| · · · |H(Xt) == 0) · ZA

+
∑

B
(H(X1) == 0| · · · |H(Xt) == 0) · ZB,

(12)

where & and | represent logic “and” and “or” operators respec-
tively. Considering an itemset X ∈ RFIs, its encrypted comparison
result of support is calculated as

ECSs = Enc(V + X.sp − Ts)

= (Enc(V) + Enc(X.sp)) − Enc(Ts)) mod p3.
(13)

For the rule H(X) ⇒ H(Y), the cloud computes its encrypted
comparison result of confidence (ECCs) as

Tc1CV − (Tc1 H(X).sp − Tc2 (H(X) ∪ H(Y)).sp) + Tc1 Ze

= Tc1 sd((r1 p2 + kV) − (r2 p2 + kX.sp + ε1 p1)) mod p3

+ Tc2 sd(r3 p2 + k(X ∪ Y).sp + ε2 p1)) mod p3

+ Tc1 sd(r4 p2 + NT p1) mod p3

, sd(rp2 + k(Tc1 (V − X.sp) + Tc2 (X ∪ Y).sp) + εp1)

mod p3,

(14)

where ε = Tc1ε1 + Tc2ε2.

5.3.2 Results Acquisition by the Data Owners
After receiving the encrypted mining outputs from the cloud

(outputs in Algorithm 1), the owners process these ciphertexts to
acquire real frequent itemsets and association rules.
• Frequent Itemsets Acquisition. The data owners decrypt the
ECSs and determine whether inequality Dec(ECSs)−V ≥ 0 holds.
If so, itemsets in RFIs are encrypted real frequent itemsets, which
are then decrypted to recover the real plaintext frequent itemsets.
• Association Rules Acquisition. For an association rule X ⇒ Y
in ARs, the data owners firstly decrypt the support of H(X)∪H(Y)
in ECSs to determine whether the itemset is a real frequent itemset.
If so, the owners then decrypt the confidence comparison result of
rule H(X)⇒ H(Y) in ECCs as

D = (((ECC × s−d mod p3) mod p2) mod p1)|k − Tc1 V

= Tc2 (X ∪ Y).sp − Tc1 X.sp.

If

D ≥ 0⇒ Tc2 (X ∪ Y).sp − Tc1 X.sp ≥ 0

⇒
(X ∪ Y).sp

X.sp
≥

Tc1

Tc2

= Tc,

the rule X ⇒ Y is a real association rule and then the owners
decrypt its corresponding ciphertext in ARs to obtain its plaintext.

6 Correctness and Security Analysis
In this section, we first present attacks for secure data compu-

tation, and then under these attacks, we analyze the security of
SecEDMO and some comparison schemes.

6.1 Correctness Analysis

We introduce a numerical example to present how SecEDMO
scheme works correctly. The database A and B in Table 4 are
respectively the original database of the data owners. The joint
database in Table 5 is horizontal stitching of processed databases

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

8

TABLE 3. List of involved values in the numerical example
Item Owner A Owner B

Owner request Size of database l1 = 6 l2 = 8
Individual secret key e1 = 1647 e2 = 836

Key Public secret key s = 1245, p2 = 248569, k = 10
generation Public parameters p1 = 1657, p3 = 372853501, d = 2

Constant values V = 15,Nd = 10
Ciphertext of V CV = sd(p2 + 15k) mod p3 = 363001442

Database Ciphertext of 0 ZA = EncK(0)|r=3 = 334409744 ZB = EncK(0)|r=4 = 233179122
privacy Random values r1 = [8, 1, 10, 9, 6, 2] r2 = [5, 8, 2, 4, 1, 10, 6, 9]

preserving ETVs of A [256691452,88914610,129333085,14335643,353049319,219412302]
ETVs of B [84041855, 118181680,80902530,326397664,323258339, 6323563,214539547,248679372]

Threshold Threshold Td = 4,Ts = 4,Tc = 55/100
setting Encrypted support CTs = EncK(Ts)|r=5 = 285835059

of A and B. The following process is to determine whether X1 ⇒

X2 in the joint database is an association rule.

(1) Owner Request and Key Generation: Owners A and B request
an administration server to generate secret keys and parameters,
whose assumed values are listed in Table 3.

(2) Database Privacy Preserving: The two owners respectively
perform database privacy preserving with their own secret keys
and parameters. The processed values of the databases are listed
in Table 3. ZA,ZB are ciphertexts of digital 0 in Equation (12), en-
crypted by A and B respectively. Finally, the encrypted databases
are received by the cloud and then are horizontally connected, as
shown in Table 5.

(3) Secure Data Mining: The cloud finds out all frequent itemsets
under support Td. H(X1).sp = 7,H(X2).sp = 8,H(X1)H(X2).sp = 4
are all in the selection. The cloud calculates the encrypted
real support of H(X1),H(X2) and H(X1) ∪ H(X2) as CX1.sp =

(
∑

TID(TX1 ETV) + 3ZA + 3ZB) mod p3 = 320354872 and CX2 .sp =

12662363,CX12.sp = 174356930 respectively and compares the
encrypted real support of H(X1) ∪ H(X2) with Enc(Ts) by cal-
culating Cs1 = (CV + CX12.sp − CTs) mod p3 to obtain the ECS of
itemset H(X1) ∪ H(X2). The comparison of confidence between
X ⇒ Y and Tc is calculated as CX12 .cf = (Tc1CV − (Tc1 H(X1).sp −
Tc2 (H(X1) ∪ H(X2)).sp))) + TC1 Ze = 99364546. The cloud then
sends H(X1)⇒ H(X2),CX12.sp and CX12.cf to the data owners.

(4) Result Acquisition: The data owners receive the comparison
results and decrypt them to obtain DX12 .sp−V = 0 and DX12 .cf−V =

−1 < 0 which mean that X1∪X2 is a frequent itemset but X1 ⇒ X2

is not an association rule.

TABLE 4. Original Databases of A and B.
DB TID X1 X2 X3 X4

A

T1 0 0 1 0
T2 1 1 0 1
T3 0 0 1 1
T4 0 1 1 1

B

T1 1 1 0 0
T2 0 1 0 1
T3 0 1 1 0
T4 1 0 1 1
T5 0 1 0 1

TABLE 5. The Joint Database of A and B.
DB TID H(X1) H(X2) H(X3) H(X4) ETV

A
T1 0 0 1 0 Enc(1)
T2 1 1 0 1 Enc(1)

with T3 1 1 1 0 Enc(0)
ZA T4 0 0 1 1 Enc(1)

T5 1 0 0 0 Enc(0)
T6 0 1 1 1 Enc(1)

B

T1 1 1 1 0 Enc(0)
T2 1 1 0 0 Enc(1)
T3 0 1 0 1 Enc(1)

with T4 0 0 1 1 Enc(0)
ZB T5 0 1 1 0 Enc(1)

T6 1 0 1 1 Enc(1)
T7 1 0 1 0 Enc(0)
T8 0 1 0 1 Enc(1)

6.2 Security Analysis

This subsection first gives various attacks and then analyses
the security of the SecEDMO and the comparison schemes under
these attacks.

6.2.1 Attack Categories

The various attacks which refer to Li et al.’s, Lin et al.’s
and Vinodha et al.’s schemes [14], [24], [25], are adopted and
modified to match our mining scheme. According to the threat
model presented in Section 2, we divide these attacks into four
different types as follows.
Type-I: Reasoning Secret Keys. An adversary attempts to reason
secret keys (or equivalent keys) of an encryption scheme so that he
can crack arbitrary encrypted data. Keys’ security of an encryption
scheme can be qualified by this type of attacks, which is made up
of four attacks.

(1) Ciphertext-only-attack. An adversary has only ciphertexts and
tries to deduce secret keys.

(2) Known-plaintext-attack. An adversary has some plaintexts
along with their corresponding ciphertexts and tries to deduce
secret keys.

(3) Chosen-plaintext-attack. The access of the encryption oracle
is fetched by an adversary. Therefore he can encrypt certain
plaintexts to obtain the corresponding ciphertexts before de-
ducing secret keys.

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

9

(4) Chosen-ciphertext-attack. The access of the decryption oracle
is fetched by an adversary. Therefore he can decrypt certain
ciphertexts to obtain the corresponding plaintexts before de-
ducing secret keys.

Type-II: Tampering Ciphertexts. Assuming an adversary does not
possess the ability to reason secret keys, he then attempts to gen-
erate format-valid ciphertexts to tamper the original ciphertexts.
Attacks in Type-II are just the response to the ability of ciphertexts
tampering.
(1) Unauthorized-mining-attack. An adversary tries to generate

format-valid ciphertexts to replace the cloud mining results;
whereafter the forged results are received by data owners.

(2) Malleability-attack. An adversary tries to modify the contents
of owners’ ciphertexts (by adding a numeric value to a real
ciphertext, appending a forged ciphertext to the raw encrypted
database, or deleting partial ciphertexts in the encrypted
database3), and ensure that all the modified ciphertexts are
format-valid.

Type-III: Corrupting a Data Owner. With a corrupted data owner,
an adversary knows the shared knowledge (e.g., shared secret
keys) among all the data owners and thus owns stronger capa-
bilities to tamper ciphertexts and obtain the other owners’ private
information. The following attacks are all in the premise that a
data owner has been corrupted.
(1) Unauthorized-encryption-attack. With knowing the shared

knowledge, the adversary attempts to imitate the other owners
to encrypt their respective data into format-valid ciphertexts,
so as to deviate the mining results.

(2) Unauthorized-decryption-attack. With knowing the shared
knowledge, the adversary attempts to decrypt the other own-
ers’ ciphertext, so as to obtain their private information.

Type-IV: Colluding Data Owners and the Cloud. This type rep-
resents the attacks of collusion between the data owners and the
cloud. The colluders are generally more powerful to deduce the
other owners’ secrets.
(1) Owners-collusion-attack. An adversary corrupts more than

one data owner, and then these data owners collude with each
other in an attempt to infer the secrets of the uncorrupted
owners.

(2) Cloud-owners-collusion-attack. An adversary corrupts one or
more data owners and the cloud, and then the owners and
the cloud collude with each other in an attempt to infer the
secrets of the uncorrupted owners. Note that the cloud is still
only curious about the information and executes instructions
sincerely.

6.2.2 Comparison under the Given Attacks

Based on the above-given attacks, we analyze the security
of SecEDMO and some comparison schemes. The comparison
schemes are three secure data mining schemes on horizontally
partitioned databases (SDMHP), one secure data mining scheme
on virtually partitioned databases (SDMVP), and one secure data
aggregation scheme (SDA). SDMVP and SDA whose underlying
encryption algorithms are HE are chosen to compare with SecED-
MO. We elaborate on the anti-attack performance of these schemes
separately below.

3. As a special case, when all the ciphertexts in a database are deleted, this
is equivalent to the owner of the database refuses to participate in the data
mining.

• Secure Data Mining Schemes on Horizontally Partitioned
Databases (SDMHP) [10], [12], [13]. These three schemes are all
distributed multi-site association rules mining for horizontally par-
titioned data. Their underlying cryptosystems are asymmetric HE,
Pohlig-Hellman encryption, and hash-based sum, respectively. HE
generally cannot resist the chosen-ciphertext-attack [24]; Pohlig-
Hellman encryption cannot resist the known-plaintext-attack (the
proof is given in Appendix A); the hash-based sum is non-
probabilistic and its security lies in mask values which can be
easily deduced by comparing several plaintext/ciphertext pairs.
Therefore, scheme in [10] is vulnerable to Type-I (4), and schemes
in [12], [13] are vulnerable to attacks of Type-I (2-4). All the
three schemes cannot resist attacks in Type-II and Type-III (1),
because the forms of their ciphertexts are unrestricted, namely,
any ciphertext generated by an adversary is format-valid; the three
schemes are all distributed and own different secret keys, and thus,
without considering other attack means, the three schemes are
secure under Type-III (2). Collusion attacks in Type-IV in these
three schemes are cooperative between sites. The scheme in [12]
is resilient against the collusion attacks when the number of the
non-collusive sites is more than one, or else, the secrets of the non-
collusive site can be cracked. Schemes in [10], [13] cannot resist
the collusion attacks for that a collusion between the (i + 1)th site
and the (i − 1)th site can reveal the ith site’s support value.
• Secure Data Mining Scheme on Virtually Partitioned
Databases (SDMVP) [14]. This scheme is designed for mining
association rule on vertically partitioned databases. The underly-
ing encryption algorithm is a probabilistic symmetric HE and all
the involved data owners share the same secret keys. No adversary
can deduce secret keys with only ciphertexts, thus, the schemes
are tight to the only-ciphertext-attack. The scheme is proved to
be insecure [15] under the known-plaintext-attack and is breached
utilizing only three arbitrary pairs of plaintext/ciphertext owing
to some internal logic between its parameters. Thus, the scheme
cannot resist the attacks of Type-I (2-4). The format of data
owners’ ciphertexts and encrypted mining results in this scheme
is unrestricted, and any value produced by an adversary has the
corresponding plaintext. Thus, the scheme cannot resist attacks
in Type-II. When it comes to corruption attacks, presented in
Type-III, an adversary owns only what the corrupted owner has,
and can deduce the other owners’ information because all owners
share the same secret keys. Therefore, the scheme cannot resist
Type-III attacks. In collision attacks in Type-IV, the scheme can
resist the owners-collusion-attack when there are more than one
non-collusive data owners. This makes sense: with accomplices’
databases and the mining results, the adversary cannot deduce
the other two or more non-collusive owners’ information. But
when the cloud collaborates with an owner, the scheme cannot
sustain the security of other owners’ information because the
adversary has both secret keys and the other owners’ encrypted
individual database, so the scheme is vulnerable to the cloud-
owners-collusion-attack.
• Secure Data Aggregation Scheme (SDA) [24]. This scheme
is designed for concealed data aggregation in wireless sensor
networks utilizing a probabilistic asymmetric HE. The scheme is
tight to the attacks of Type-I (1-3) but is vulnerable to Type-I (4)
for the same reason that [10] has. The scheme is secure to all of
the attacks in Type-II and Type-III except Type-III (1) [24]. Two
attacks in Type-IV in there respectively represent that more than
one aggregators are compromised and one or more aggregators are
compromised along with BS. Under these compromised scenarios,

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

10

TABLE 6. Comparison of anti-attack performance of different schemes, where
√

means well defense,
⊗ means partial defense, and × means no defense

Type Attack SDMHP [10] SDMHP [12] SDMHP [13] SDMVP [14] SDA [24] SecEDMO

I

(1) Only-ciphertext-attack
√ √ √ √ √ √

(2) Known-plaintext-attack
√

× × ×
√ √

(3) Chosen-plaintext-attack
√

× × ×
√ √

(4) Chosen-ciphertext-attack × × × × × ⊗

II
(1) Unauthorized-mining-attack × × × ×

√ √

(2) Malleability-attack × × × ×
√ √

III
(1) Unauthorized-encryption-attack × × × × ⊗

√

(2) Unauthorized-decryption-attack
√ √ √

×
√ √

IV
(1) Owners-collusion-attack

× ⊗ ×
⊗ × ⊗

(2) Cloud-owners-collusion-attack × × ⊗

the scheme is insecure, since an aggregator can aggregate arbitrar-
ily collected data, as long as the aggregation times are maintained.
• Our SecEDMO. The underlying HE of SecEDMO is to dispose
of n owners’ horizontally joint data, and its homomorphic proper-
ties are only adapted to the counted terms which are an addition
of n owners’ ETVs. Next, we describe the attack resistances of the
HE algorithm under the given attacks.

• Attacks in Type-I: Suppose ci = Enc(mi) = sd(rp2 + kmi +

ei) mod p3 is a ciphertext from ith owner, where s, p2, k are
the public secret keys and ei is the individual secret key of
the ith owner, an adversary want to crack the ciphertext by
reasoning secret keys (or equivalent keys). Since distinct owners
have distinct individual secret keys, there are n distinct encryp-
tion/decryption oracles. We assume the adversary can access
all the n encryption oracles. Since the underlying encryption
algorithm of SecEDMO is probabilistic and is designed as a
mining share form which ensures that a ciphertext from a single
encrypted plaintext cannot be decrypted. Thus, the adversary
cannot crack ci although with n oracles’ accesses. That is to say,
SecEDMO can resist the chosen-plaintext-attack and weaker
attacks such as the only/known-plaintext-attack. For the chosen-
ciphertext-attack, the adversary can access the decryption or-
acle. Assuming that the adversary knows li, l j (the number of
transactions in the ith and the jth databases respectively) and a
pair of plaintext/ciphertext of the jth owner as m j, c j, he calcu-
lates c = lici + l jc j = sd(rp2 + k(limi + l jm j) + liei + l je j) mod p3.
The adversary then obtains m through decrypting c with the
help of decryption oracle. If the number of total data owners
is two, the adversary can obtain mi = (m − l jm j)|li, or else, c
cannot even be decrypted by the oracle and hence mi cannot
be cracked. Thus, SecEDMO can resist the chosen-ciphertext-
attack partially.

• Attacks in Type-II: An adversary attempts to modify either the
ciphertext of mining results in the cloud (unauthorized-mining-
attack) or the encrypted tag values (ETVs) of data owners
(malleability-attack). The mining results provided by the cloud
are formed as cc = sd(rp2 + km + εp1), and can be decrypted by
the data owners only when (((ccs−d mod p3) mod p2) mod p1)
is exactly divisible by the secret key k. Thus, the modified
mining results in Type-II (1) cannot be decrypted by the data
owners, thus the data owners cannot be successfully tricked but
warned of an intrusion. The owners’ ciphertexts are formed as
cd = sd(rp2+km+ei). Once any one of the ciphertexts is changed
in data owners side, ε in cc will take away part of km or leave
the rest of itself to km. In either case, km is distorted, so it

can not be decrypted by the owners, instead, it is a warning of
intrusion. Therefore, Type-II (2) is also unadapted to cracking
the HE algorithm.

• Attacks in Type-III: For attack Type-III (1), when a data owner
is corrupted by an adversary, the owner’s secret keys along with
its database are compromised. The adversary attempts to forge
a format-valid ciphertext to modify the data in the compromised
database. If the forged ciphertext is appended to the database,
the transaction number in the database will be changed which
leads to

∑
liei , εp2, then cc cannot be decrypted but warns the

owners of an intrusion. If the forged ciphertext is added to a raw
ciphertext in the database, the condition is just the same due
to the homomorphic addition property. Since distinct owners
possess distinct individual secret keys, the compromised keys
cannot help the adversary to reckon the other owners’ secrets,
that is to say, the scheme can resist Type-III (2-3).

• Attacks in Type-IV: An adversary in this type of attacks can
only reckon the secret keys of one real data owner while the
other n − 1 owners are all corrupted, otherwise, the scheme
is tight to the owners-collusion-attack and the cloud-owners-
collusion-attack.
Table 6 shows the results of the anti-attack performance of the

analyzed schemes. In all of the above anti-attack analyses, we have
assumed that the various types of adversaries are irrelevant to each
other, for example, adversaries in Type-II, Type-III and Type-IV
will not compare plaintext/ciphertext pairs to analyze secret keys,
which is an attack in Type-I. However, adversaries who have the
abilities to corrupt data owners and the cloud, definitely own pairs
of plaintext/ciphertext and can make an attempt to reason secret
keys. Therefore, the scheme that cannot resist the known-plaintext-
attack in Table 6 will actually suffer the attacks in Type-III and
Type-IV.

7 Performance Evaluation
This section presents performance evaluations of the proposed

virtual transaction insertion and HE algorithms, compares Se-
cEDMO with other schemes on computation and communication
complexity and storage cost, and analyzes end-to-end latency from
owner to cloud.

7.1 Randomness of the Inserted Virtual Transaction

In order to clearly demonstrate the randomness of virtual
transactions, a small dataset “chess.dat” (prepared by Roberto
Bayardo from the UCI datasets and PUMSB [26]) which has 3196

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

11

TABLE 7. Support (support
100 nt

%) of different items before and after inserting virtual transactions.
The items “59, 47, 2, 58” are chosen from 3,196 items in the raw DB for that their percenta-
ges of the supports to the total transaction number are 0%, 20.0%, 47.8%, 100%, respectively.

nv (δ) item “59” “47” “2” “58”

0 (0%) 1 (0.0%) 640 (20.0%) 1527 (47.8%) 3195 (100%)
792 (25.0%) 447 (11.3%) 1009 (25.5%) 1764 (44.5%) 3196 (80.7%)
1972 (57.2%) 1316 (25.6%) 1673 (32.4%) 2227 (43.1%) 3196 (61.8%)
2394 (74.9%) 1509 (27.1%) 1859 (33.4%) 2339 (42.0%) 3196 (57.0%)
3348 (104.8%) 1967 (30.1%) 2148 (32.8%) 2541 (38.8%) 3195 (48.8%)

transactions and 75 items is used as the experimental dataset DB.
The transaction number of DB is nt=3196. The number of inserted
virtual transaction nv is determined by data owners. Here, we insert
different numbers of virtual transactions and then calculate the
support of different items. Table 7 shows supports of items in
the database before and after the database is inserted with virtual
transactions.

In this table, δ =
nv

100 nt
% represents the percentage of the

number of the inserted transactions to the raw transactions in
DB. We select four items “59, 47, 2, 58” in the raw DB whose
percentages of the supports to the total transaction number are
0%, 20.0%, 47.8%, 100%, respectively. When we insert virtual
transactions, the percentages are gradually balanced with the
increasing of the inserted transaction number. Generally speaking,
when the number of inserted transactions reaches that of the
original transactions, the support of each item is approximately
the same. TIDs in any database in our paper are dispensable,
so the continuous 0 or 1 are not regarded as factors that affect
the randomness of items. Therefore, our insertion algorithm is
effective in obfuscating the raw items’ support.

7.2 Computational Complexity, Storage Cost, and Com-
munication Complexity

In SecEDMO, we assume there are n data owners, the number of
items and the real transactions in the joint database are nI and nT

respectively, the amount of the inserted transactions is δnT , where
δ is a small constant number, and the number of RFIs is nF which
contains all of the frequent itemsets and some of the unfrequent
itemsets. Next, we analyze the complexities of SecEDMO and the
comparison schemes.

7.2.1 Computational Complexity of SecEDMO
We present the computational complexity of data owners side

and the cloud end in SecEDMO.
• For data owners, they insert virtual transactions, encrypt items

and transaction tags using a hash function and the proposed
HE algorithm respectively, and decrypt mining results received
from the cloud. The computational complexity of inserting
one virtual transaction is O(1), and thus that of the proposed
virtual transaction insertion algorithm is O(nT) which is linear.
Since the time of encrypting each tag is roughly constant and
the number of items is fixed, the computational complexity
of encryption in owners side is O(nT). The maximum com-
putational complexity of the decryption is O(nF), where we
consider the extreme condition that all of the frequent itemsets
and association rules provided by the cloud is real. Therefore,
the overall computational complexity in owner side is linear to
ensure a lightweight client.

• In the cloud end, the cloud extracts all of the frequent itemsets
from the joint database and then finds out association rules
according to the frequent itemsets. The underlying frequent
itemsets mining algorithm is Apriori (FP-growth) [1], [27] and
we denote its computational complexity as O(M(nI ×nT)). After
obtaining the frequent itemsets, finding out the association rules
is a simple calculation and comparison processing which owns
computational complexity far less than O(M(nI × nT)).
Therefore, the computational complexity of the whole mining

processing containing data owners side and the cloud end is
O(M(nI × nT) + nF).

7.2.2 Storage Cost of SecEDMO
In SecEDMO, the storage cost for the cloud mainly lies in the

joint database itself and the mining results. The joint database
contains real and virtual transactions whose amount is varied and
is determined by data owners. The storage capacity of transactions
in the joint database is nI × (1 + δ)nT bits. The size of a ciphertext
encrypted by HE is O(λ), then the storage costs of encrypted ETVs
and the encrypted mining results are O(λnT) and O(λnF) respec-
tively. The total maximum storage cost is O(nI × nT + λ(nT + nF)).

7.2.3 Communication Complexity of SecEDMO
The communication rounds of SecEDMO (a centralized asso-

ciation rules mining) are constant for data owners. At the first
stage of SecEDMO, n data owners request an administration server
to obtain the necessities. The owners then send their processed
databases to the cloud who subsequently transmits mining results
to all owners at once. Obviously, the communication rounds are
fixed and will not change with the type of the database. The
maximum communication traffic is O(λnF), which is less than the
storage cost because the cloud only transmits the mining results,
not the joint database.

7.2.4 Complexities of the Comparison Schemes
Since SecEDMO is used to protect the privacy of horizon-

tally partitioned databases, the comparison schemes [10], [12],
[13] here are also designed aiming at horizontally partitioned
databases, and they are distributed among n sites. nT and nF for
the schemes are the number of all transactions and all frequent
itemsets of the n sites respectively. The computational costs of
[12], [10] and [13] are O(M(nI ×nT)×λ3× |CG(k)| ×nT),O(M(nI ×

nT) + nF × (ElG + Pai)) and O(M(nI × nT) + nF) respectively,
where |CG(k)| is a combinatorial number related to nI , and ElG
and Pai are computational complexities of elliptic curve ElGamal
and Paillier cryptography. The communication rounds of the
distributed mining systems in [10], [12], [13] are all varied with
the number of sites n. Scheme in [12] has the communication

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

12

TABLE 8. Performance comparison between SecEDMO and the previous schemes
Scheme Kantarcioglu et al. [12] Adhvaryu et al. [10] Lakshmi et al. [13] SecEDMO

Underlying cryptosystem Pohlig-Hellman asymmetric HE hash based sum symmetric HE
Type of system distributed distributed distributed centralized
and the miner multi sites multi sites multi sites a cloud

Computational complexity high high low low
Communication complexity high high high low

Storage cost high high low low

cost of O(nF × nI × λ × |CGk | × n2). Its total storage cost of
n sites is O(nT × nI + nF × nI × |CGk |). Scheme in [10] has
the communication cost of O(n2 × nF), and the storage cost of
O(2nF×(n−1)×cs) for the total n sites, where cs represents the size
of a ciphertext. Scheme in [13] has the maximum communication
cost of O(n2×nF), and the storage cost of O(2nF ×cs) for the total
n sites.

The comprehensive comparison of computational complexity,
communication complexity, and storage cost of different schemes
are shown in Table 8. High and low complexities in the table
are relative. From this table, we know that the communication
complexity of a distributed data mining system is higher than that
of a centralized system. Throughout all of the performance eval-
uations, SecEDMO is not higher than the comparison schemes in
computational complexity, communication complexity and storage
cost.

0.7 0.8 0.9
0

1

2

3

4
x 10

4

Tc

N
um

be
r

Ts=0.01
Ts=0.02
Ts=0.04

Fig. 3. The number of association rules under distinct Tc and Ts

(Td = Ts, δ = 0).

7.3 End-to-end Latency

In this subsection, a simulation experiment that three clients (the
owners) transmitting their databases to a server (the cloud) is set
up to test the end-to-end latency of our SecEDMO.

TABLE 9. Tests of the end-to-end latency.
Parameter setting Owner A Owner B Owner C

of T in original database 39,000 27,100 22,062
of T in inserted database 40,950 30,038 26,619
Size of inserted database 2.48MB 2.22MB 2.83MB
Size of encrypted tag value 2.50MB 1.88MB 1.62MB
Size of encrypted database 4.98MB 4.10MB 4.45MB
Latency of data transmission 14.845s 13.668s 12.669s
Latency One item “0” 0.189s 0.061s 0.047s
of the HE All items “0-16468” 673.774s 533.648s 581.090s

• Datasets. The experimental datasets come from a real-world
retail market basket data – “retail.dat” [26], which owns 88,162
transactions and 16,469 items. Figure 3 presents the number of

association rules with distinct support and confidence thresholds
of the dataset. To simulate three-party joint mining, we divide
the dataset into three parts which own 39000, 27100, and 22062
transactions, respectively.
• Metrics. End-to-end latency in SecEDMO mainly contains the
time taken for (1) data transmission, i.e., transmitting an encrypted
database across a network from the owner to the cloud and (2) the
HE running in the cloud.
• Implementation. The implementations of SecEDMO are
achieved by Java SE Development Kit. Three clients set up on
jdk1.8.0-201 on a personal computer are served as three data
owners, and a server set up on jdk1.7.0-80 in a desktop computer is
served as a cloud. The three databases are inserted with 5%, 10%
and 20% virtual transactions by three owners, respectively. Then
the three inserted databases own 40980, 30038 and 26619 trans-
actions with size 2.48MB, 2.22MB, and 2.83MB (uncompressed
version). The bit length of p3 in our experiment is assumed as 64
which meets the parameter requirement given in Section IV-C.
• Experimental Results. The size of the encrypted tag values
and the latency of the data transmission and the HE are listed
in Table 9. In the table, the transmission latencies within 15s
are acceptable. The HE for one item can be used to determine
whether a certain item is frequent. Its runtime is short, so real-time
identifications of frequent itemsets can be realized. The runtime of
the HE for all 16,469 items is around 10 minutes, which may mean
a long latency when obtaining all the joint database’s frequent
itemsets with real-time response. But for market basket analysis,
e.g., a supermarket gathers transactions on customer buying habits
to determine which commodities are frequently purchased together
and uses this information for marketing purposes [28], [29].
The 10 minutes’ runtime is acceptable, because the supermarket
may spend more time to reconstruct its commodity distribution
according to the mining results.

8 RelatedWork
Generally speaking, solutions for all the existing privacy-

preserving association rules mining can be classified into three
categories: data disturbance-based solutions, query restriction-
based solutions, and data encryption-based solutions [30].

8.1 Data Disturbance-based Privacy-Preserving Mining

Data Disturbance ensures that the disturbed data does not
reveal private information when they are mined. Data disturbance
algorithm in [31] proposes a random projection matrix based on
multiplication to maintain privacy in distributed data mining

8.2 Query Restriction-based Privacy-Preserving Mining

Query restriction provides restricted access to original data
to protect data privacy. A query restriction scheme in [32] is

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

13

to mine fussy association in databases which are generalized (a
general and abstract description of data) so that the certain privacy
information in the databases will not be leaked. But the mining
results considered in this type of scheme are subject to many
qualifications, e.g., an owner cannot get an association rule that
is restricted.

8.3 Data Encryption-based Privacy-Preserving Mining

Both the above privacy-preserving schemes based on data dis-
turbance and query restriction are used to mine fuzzy association
rules (thus the mining results are inaccurate) while privacy-
preserving mining schemes based on data encryption are accurate.
We present two types of data encryption schemes in privacy-
preserving data mining as follows.
• SMC-based. Secure multi-party summation between n owners
in [33] is proposed to solve collusion attacks: the owners first
randomly divide their private data into n pieces and distribute
n − 1 pieces to the other owners, then they separately calculate
the sum of the data they owned and transmit the sum to all the
other owners. Finally, the owners calculate the received partial sum
and then calculate the total. This algorithm can solve collusion
between less than n − 1 owners, but it owns a high communi-
cation cost which is O(n2) in owners’ side, which cannot meet
a lightweight client requirement. Unlike this solution, SecEDMO
owns fix communication rounds in the owners’ side and can resist
collusion attacks at the same time.
• HE-based. To realize low computational and communication
cost, multi-owners outsource their databases to a semi-trusted third
party (such as a cloud) to implement a secure mining algorithm.
Homomorphic encryptions are very adapted to secure outsourcing
computing. Li et al. [14] proposes a secure outsourcing association
rules mining scheme based on a symmetric HE and all the involved
data owners share the same secret keys. The scheme has good
performance in computational and communication complexity but
is vulnerable to most of the attacks shown in this paper. Our
SecEDMO, different from this scheme, realizes a good trade-off

between performance and security.

9 Conclusion
In this paper, we have explored the problem of privacy-

preserving association rules mining on horizontally partitioned
databases of multiple data owners in cloud computing. In contrast
to prior works, SecEDMO is secure in presence with various
attacks including secret keys attacks, ciphertexts tampering, data
owners corruption and collusion between owners or even with the
cloud. Moreover, the designed method in SecEDMO provides a
new idea of secure data computations (e.g., data aggregation) with
high efficiency and anti-attack at the same time.

References
[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules

in large databases,” in International Conference on Very Large Data
Bases, 1994, pp. 487–499.

[2] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
Mclachlan, A. Ng, B. Liu, and P. S. Yu, “Top 10 algorithms in data
mining,” Knowledge and Information Systems, vol. 14, no. 1, pp. 1–37,
2008.

[3] B. Yang, “Association rule mining in distributed databases for market
supervision and management,” Informatization Research, 2017.

[4] Y. Zhang and G. Chen, “A forensics method of web browsing behav-
ior based on association rule mining,” in International Conference on
Systems and Informatics, 2015, pp. 927–932.

[5] Y. Wang, “Research on the technology of association rule mining in
intrusion detection system,” Computer Science, vol. 35, no. 10, pp. 81–
84, 2008.

[6] A. Forkan, I. Khalil, A. Ibaida, and Z. Tari, “Bdcam: Big data for context-
aware monitoring - a personalized knowledge discovery framework for
assisted healthcare,” IEEE Transactions on Cloud Computing, vol. PP,
no. 99, pp. 1–1, 2017.

[7] S. Qiu, B. Wang, M. Li, J. Liu, Y. Shi, S. Qiu, B. Wang, M. Li, J. Liu, and
Y. Shi, “Toward practical privacy-preserving frequent itemset mining on
encrypted cloud data,” IEEE Transactions on Cloud Computing, vol. PP,
no. 99, pp. 1–1, 2017.

[8] X. Yi, F. Y. Rao, E. Bertino, and A. Bouguettaya, “Privacy-preserving
association rule mining in cloud computing,” in ACM Symposium on
Information, Computer and Communications Security, 2015, pp. 439–
450.

[9] M. V. Ahluwalia, A. Gangopadhyay, Z. Chen, and Y. Yesha, “Target-
based, privacy preserving, and incremental association rule mining,”
IEEE Transactions on Services Computing, vol. 10, no. 4, pp. 633–645,
2017.

[10] R. Adhvaryu and N. Domadiya, An Improved EMHS Algorithm for Pri-
vacy Preserving in Association Rule Mining on Horizontally Partitioned
Database. Springer Berlin Heidelberg, 2014.

[11] S. Zhong, “Privacy-preserving algorithms for distributed mining of fre-
quent itemsets,” Information Sciences, vol. 177, no. 2, pp. 490–503, 2007.

[12] M. Kantarcioglu and C. Clifton, “Privacy-preserving distributed mining
of association rules on horizontally partitioned data,” IEEE Transactions
on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1026–1037,
2004.

[13] N. V. M. Lakshmi and K. S. Rani, “Privacy preserving association rule
mining without trusted party for horizontally partitioned databases,”
International Journal of Data Mining and Knowledge Management
Process, vol. 2, no. 2, p. 0151, 2012.

[14] L. Li, R. Lu, K. K. R. Choo, A. Datta, and J. Shao, “Privacy-preserving-
outsourced association rule mining on vertically partitioned databases,”
IEEE Transactions on Information Forensics and Security, vol. 11, no. 8,
pp. 1847–1861, 2016.

[15] B. Wang, Y. Zhan, and Z. Zhang, “Cryptanalysis of a symmetric fully
homomorphic encryption scheme,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 6, pp. 1460–1467, 2018.

[16] S. Sharma and S. Ahuja, “Privacy preserving data mining: A review of
the state of the art,” in Harmony Search and Nature Inspired Optimization
Algorithms. Springer, Singapore, 2019, pp. 1–15.

[17] N. Paladi, C. Gehrmann, and A. Michalas, “Providing user security
guarantees in public infrastructure clouds,” IEEE Transactions on Cloud
Computing, vol. PP, no. 99, pp. 1–1, 2017.

[18] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” Foundations of Secure Computation, pp. 169–
179, 1978.

[19] R. L. Rivest, “A method for obtaining digital signatures and public-key
cryptosystems,” Communications of the ACM, vol. 26, no. 2, pp. 96–99,
1978.

[20] Gentry and Craig, “Fully homomorphic encryption using ideal lattices,”
Stoc, vol. 9, no. 4, pp. 169–178, 2009.

[21] F. Giannotti, L. V. S. Lakshmanan, A. Monreale, D. Pedreschi, and
H. Wang, “Privacy-preserving mining of association rules from out-
sourced transaction databases,” IEEE Systems Journal, vol. 7, no. 3, pp.
385–395, 2013.

[22] W. Zhang, H. Yu, Y. L. Zhao, and Z. L. Zhu, “Image encryption based on
three-dimensional bit matrix permutation,” Signal Processing, vol. 118,
pp. 36–50, 2016.

[23] C. H. Lin, Y. S. Yeh, S. P. Chien, C. Y. Lee, and H. S. Chien, “Generalized
secure hash algorithm: Sha-x,” in Eurocon - International Conference on
Computer as a Tool, 2011, pp. 1–4.

[24] Y. H. Lin, S. Y. Chang, and H. M. Sun, “Cdama: concealed data aggrega-
tion scheme for multiple applications in wireless sensor networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 7, pp.
1471–1483, 2013.

[25] D. Vinodha and E. A. M. Anita, “Secure data aggregation techniques for
wireless sensor networks: a review,” Archives of Computational Methods
in Engineering, no. 8, pp. 1–21, 2018.

[26] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets, “Using association
rules for product assortment decisions,” Knowledge Discovery and Data
Mining, pp. 254–260, 1999, http://fimi.ua.ac.be/data/.

[27] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” Acm Sigmod Record, vol. 29, no. 2, pp. 1–12, 2000.

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

http://fimi.ua.ac.be/data/

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2932065, IEEE
Transactions on Cloud Computing

14

[28] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to
knowledge discovery in databases,” AI magazine, vol. 17, no. 3, p. 37,
1996.

[29] “Data mining,” https://en.wikipedia.org/wiki/Data mining.
[30] Y. H. Liu, B. R. Yang, M. A. Nan, and D. Y. Cao, “State-of-the-art

in distributed privacy preserving data mining,” Application Research of
Computers, vol. 28, no. 10, pp. 545 – 549, 2011.

[31] K. Liu, H. Kargupta, and J. Ryan, “Random projection-based multiplica-
tive data perturbation for privacy preserving distributed data mining,”
IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 1,
pp. 92–106, 2006.

[32] I. Mguiris, H. Amdouni, and M. M. Gammoudi, “An algorithm for fuzzy
association rules extraction based on prime number coding,” in IEEE
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2017.

[33] Y. Luo, Z. Xu, and L. Huang, “Secure multi-party statistical analysis
problems and their applications,” Computer Engineering and Applica-
tions, vol. 41, no. 24, pp. 145–147, 2005.

Jiahui Wu received the B.S. degree in electronic
information science and technology from Anqing
Normal University, Anhui, China, in 2014, and the
M.S. degree in signal and information processing
from Southwest University, Chongqing, China, in
2018. At present, she is pursuing a Ph.D. degree
in intelligent computing and information processing
at Southwest University. Her research areas are
including information security, cloud computing se-
curity, and data mining.

Nankun Mu received the B.S. degree in software
engineering, the M.S. degree in computer systems
and structures and the Ph.D. degree in computer
science and technology from Chongqing University,
Chongqing, China, in 2011, 2013 and 2015 re-
spectively. His research areas including information
security, multi-agent control system, evolutionary
computation.

Xinyu Lei received the B.S. and M.S. degree
in computing science from Chongqing Universi-
ty, China, in 2010 and 2014, respectively. He
worked in Texas A&M University at Qatar and Ford
Motor company in 2013 and 2017, respectively.
He received Engineering Distinguished Fellowship
Award in Michigan State University in 2015. He is
now working toward the Ph.D. degree in Computer
Science and Engineering at Michigan State Uni-
versity, USA. His current research focuses on IoT,
blockchain, cloud computing, etc.

Junqing Le received the B.S. degree in software
engineering from Southwest Jiaotong University,
Chengdu, China, in 2014, and the M.S. degree in
signal and information processing from Southwest
University, Chongqing, China, in 2017. At present,
he is pursuing a Ph.D. degree in intelligent com-
puting and information processing at Southwest
University. His research areas are including privacy
protection, privacy machine learning, and intelli-
gent transportation systems.

Di Zhang received the B.S. degree in commu-
nication engineering from Southwest University,
Chongqing, China, in 2014. At present, she is pur-
suing the Ph.D. degree in Computational Intelli-
gence and Information Processing with the College
of Electronics and Information Engineering, South-
west University. Her research areas are including
chaos, cryptography, cloud computing security, and
blockchain.

Xiaofeng Liao received the BS and MS degrees
in mathematics from Sichuan University, Chengdu,
China, in 1986 and 1992, respectively, and the
Ph.D. degree in circuits and systems from the U-
niversity of Electronic Science and Technology of
China in 1997. From 1999 to 2012, he was a pro-
fessor at Chongqing University. At present, he is a
professor at Southwest University and the Dean of
School of Electronic and Information Engineering.
He is also a Yangtze River Scholar of the Ministry
of Education of China. From November 1997 to

April 1998, he was a research associate at the Chinese University of Hong
Kong. From October 1999 to October 2000, he was a research associate
at the City University of Hong Kong. From March 2001 to June 2001 and
March 2002 to June 2002, he was a senior research associate at the
City University of Hong Kong. From March 2006 to April 2007, he was a
research fellow at the City University of Hong Kong. Professor Liao holds
4 patents and published 4 books and over 400 international journal and
conference papers. His current research interests include neural networks,
nonlinear dynamical systems, bifurcation and chaos, information security
and cryptography. He currently serves as an associate editor for IEEE
Transactions on Cybernetics and IEEE Transactions on Neural Networks
and Learning Systems.

Authorized licensed use limited to: Michigan Technological University. Downloaded on September 26,2021 at 18:22:35 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Data_mining

