
1

Secure Redactable Blockchain with Dynamic
Support

Di Zhang, Junqing Le, Xinyu Lei, Tao Xiang, Senior Member, IEEE, and Xiaofeng Liao, Fellow, IEEE

Abstract—Blockchain is extensively applied to many fields as an immutable distributed ledger. However, the immutability contradicts
regulations such as the GDPR ruling “the right to be forgotten” of data. Besides, numerous emerging blockchain-based applications
call for elastic data management. To erase some data, redactable blockchains are proposed for breaking the immutability in a
controlled way. Unfortunately, the prior solutions may suffer from poor security and centralized control of the redaction privilege. They
cannot support dynamic nodes, where the departure of participators will result in a single point of failure. This paper proposes a novel
dynamic and decentralized attribute-based chameleon hash (DACH) to make blockchain history mutable, achieving a securely and
dynamically redactable blockchain (SDR-chain) in a decentralized setting. We first propose the formal definition, security models, and
concrete construction of our DACH. Meanwhile, we design a delegation algorithm of DACH to support a dynamically changing
committee, where participators can freely and securely leave and join the network. Then, the transactions of the SDR-chain are
redacted by computing DACH collisions. The security is analyzed in the random oracle model. Finally, theoretical analysis and
experimental evaluation demonstrate that our SDR-chain is superior to the prior solutions in terms of security and functionality.

Index Terms—Blockchain, GDPR, Chameleon hash, Attribute-based encryption, Delegation.

✦

1 INTRODUCTION

B LOCKCHAIN [1], regarded as an ingenious and rev-
olutionary technique, has captured the attention of

academia, government, and industry. It has been widely
applied to various applications, such as supply chain [2]
healthcare [3], and smart grid [4]. A recent study shows
that the worldwide spending on blockchain solutions is
estimated to reach 4.1 billion dollars by 2020 and will
continue to grow to an estimated 19 billion dollars by 2024
[5].

A blockchain is an increasing list of blocks that links to-
gether through a hash chain. Each block contains a previous
block hash as a reference to link the previous block. The
block records a set of transaction data (such as cryptocur-
rency [6] and smart contract [7]) that are usually hashed and
organized in a Merkle tree (MT). Blocks and transactions are
broadcast and verified in a peer-to-peer (P2P) communica-
tion network. Nodes of the P2P network eventually agree
on a unified view of the blockchain (i.e., consistency). In
addition, the traditional blockchain is resistant to modifica-
tion of its data (i.e., immutability), which facilitates the data
auditing process.

Recently, numerous researchers argue that it is signifi-
cant to redact blockchain in strictly specific circumstances
[8–18]. The two main reasons are explained as follows. (i)
The requirement for redacting data in blockchains has been stimu-
lated by regulations. The European General Data Protection

• Di Zhang, Junqing Le, Tao Xiang, and Xiaofeng Liao are with Key
Laboratory of Dependable Services Computing in Cyber Physical Society-
Ministry of Education and College of Computer Science, Chongqing
University, Chongqing 400044, China.
E-mail: {zhangdiii, lejunqing}@163.com, {txiang, xfliao}@cqu.edu.cn

• Xinyu Lei is with the Department of Computer Science, Michigan Tech-
nological University, Houghton, MI 49931, USA.
E-mail: xinyulei@mtu.edu
(Corresponding authors: Junqing Le and Xiaofeng Liao)

Regulation (GDPR) [19] has ruled that data should have
a “right to be forgotten”. Users should be able to erase
their personal data and copies anytime in the network. At
present, blockchians have been used to store the personal
data for malicious purposes immutably. For instance, Bitcoin
blockchain has stored cross-site scripting attack code [20],
and data referred to child pornography [21]. Therefore, eras-
ing data from blockchains evolves an important and impera-
tive requirement. (ii) An immutable ledger is not appropriate for
all emerging blockchain-based applications, and a certain degree of
flexibility for read and write operations is called for. For example,
erasing stale data from blockchain to save the storage space
of edge nodes in the IoT [22, 23]. Becasuse the ever-joining
devices and the ever-generating data cause edge nodes
to face the risk of running out of storage space with the
growing size of the blockchain. Besides, some blockchain-
based applications such as storage [24, 25], sharing [26],
and authentication [27] may need to correct objects (e.g.
updating/amending contract) in time to provide superior
quality services. To sum up, it is imperative to develop
techniques to redact data in blockchain under some strict
constraints.

The previous solutions roughly fall into non-cryptogra-
phy-based [8–11] and cryptography-based [12–17]. The
main idea of non-cryptography-based solutions is that a
new version block/transaction is generated to replace the
original one by voting. These solutions [8–11] have three
major drawbacks. (1) They have a huge cost for every
redaction because of the generation and broadcast of the
new version block/transaction. (2) They cannot handle high
frequent redaction requests and have low scalability because
they have to spend a long time agreeing on each new
version to ensure system security. (3) They do not satisfy the
historic security because the historic versions can be recon-
structed easily. Besides, the solutions (e.g., [12–17]) are based

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

2

TABLE 1
Advantages of SDR-chain over the Prior Solutions

Performance
Schemes

[8–11] [12] [13–16] [17] SDR-chain

Fine-Grained Control # #
Decentralized Redaction G# #
Dynamic Support # #
Scalability G#
Historic Security #
Backward/Forward − # # #
* : Yes. #: No. G#: Partially. −: not applicable.

on cryptographic primitives, where the block/transaction
is modified by computing chameleon hash (CH) [28] col-
lisions. These solutions also suffer from some limitations.
Specifically, literature [12] achieves redactions in a coarse-
grained way. In [13–16], redactions are controlled by a fully
trusted central authority. Literatures [12–17] cannot satisfy
the backward/forward security. Literatures [13–17] cannot
satisfy the dynamic support. They will suffer from the single
point of failure when any one of authorities controlling
redactions is offline.

We aim to propose a novel hash function to make
blockchain redactable, and the redactable blockchain should
satisfy the following design goals (as shown in TABLE
1). (1) Fine-Grained Control. It should control what data
can be redacted and who can perform redaction in a fine-
grained way. (2) Decentralized Redaction. It should have
high degree of decentralization, i.e., redaction is controlled
by multiple semi-trusted nodes instead of a single full
trusted node. (3) Dynamic support. It should support that
nodes participating in redaction can free join and leave the
blockchain P2P network. (4) Scalability. It should support
large scale redaction requests. (5) Security. It should satisfy
the following two security requirements. (a) Historic security.
After redaction, the historic original data cannot be recon-
structed from the redacted data. (b) Backward/forward secu-
rity. After any participator leaves, its keys cannot be used
for future redaction. For any newly joining participator, its
keys should be able to redact the previous transactions.

We start by developing a customized chameleon hash
(i.e., dynamic and decentralized attribute-based chameleon
hash, denoted as DACH). Then, we apply DACH to make
blockchain redactable, achieving a securely and dynamically
redactable blockchain (SDR-chain). There are two major
technical challenges. (i) How to achieve a decentralized con-
trol of the redaction operation. To address this challenge, we
design a decentralized method to manage the secret key of
redactions by taking advantage of a decentralized attribute-
based encryption (DCP-ABE) [29] scheme. In DCP-ABE, the
policy encoded over attributes determines who can redact
the transaction, which controls the redaction privilege and
prevents abuse of redaction operations. Illegitimate users
are hard to perform malicious redactions to break the se-
curity and stability of blockchain ecosystems. Besides, the
trapdoor key is managed by a group of attribute authorities
(AAs) based on DCP-ABE. The redaction operation is not
controlled by a single full trusted center, which achieves a
high degree of decentralization. (ii) How to achieve dynamic
support. Once any one of participators (i.e., AAs) leaves the

network, redaction process will terminate i.e., the single
point of failure. To address this challenge, we employ the
concept of re-encryption to design a delegation algorithm of
DACH. Based on the delegation algorithm, the offline AA
can securely delegate its role to a new AA. Furthermore,
the new AA can issue valid keys to help redactors modify
transactions and make the keys of the offline AA invalid for
future redaction. Thus, DACH can support a dynamically
changing redaction committee.

TABLE 1 shows the advantages of our SDR-chain over
the prior solutions. SDR-chain considers more adversary
models than other solutions. In summary, our contributions
are three-fold.
• We propose a novel chameleon hash primitive DACH

for achieving controlled and decentralized redaction in
blockchain. Based on DACH, the redaction operation
can be performed in a secure and high degree decen-
tralized way.

• We design a delegation algorithm of DACH to sup-
port a dynamically changing redaction committee. The
delegation algorithm satisfies the backward/forward
security.

• We theoretically prove the security of DACH in the
random oracle model, and then we apply the DACH
to make blockchain such as Bitcoin redactable. From
the analyses, we achieve a redactable blockchain with
security, dynamic support, scalability, and fine-grained
control in the decentralized setting, achieving the de-
sign goals.

The remaining part of this paper is organized as follows.
The following Section 2 defines the preliminary and Section
3 provides an overview of our SDR-chain. In Section 4,
we design our DACH function including formal definition,
security model, and concrete construction. Then, we present
our DACH-based SDR-chain in Section 5 and analyze the
correctness, security, and design goals in Section 6. After
that, Section 7 evaluates performance theoretically and ex-
perimentally. Section 8 reviews some related work. Finally,
Section 9 gives a conclusion for this paper.

2 PRELIMINARY

In this section, we review some notations and cryptographic
building blocks, which are the ingredients to construct our
DACH function.

2.1 Notations
Let κ ∈ N be the security parameter and it is assumed to be
an implicit input of algorithms. Let M be a message space
and message m ∈M. For a set X , x R←− X denotes the oper-
ation of picking an element x from X uniformly at random,
and |x| represents the length of x. Let w ← A(x) denote that
a algorithm A is run with the input x and then it outputs
w. By setting w ← AO(x), it is indicated that A has black-
box access to oracles O. All algorithms in this paper are as-
sumed to run in probabilistic polynomial time (PPT) unless
otherwise specified, i.e., their running time can be bounded
by a polynomial poly(|x|). Let Pr[E] be the probability that
an event E occurs. A function f is negligible if ∀c ∃N
∀κ > N : f(κ) < κ−c. Let (N, p, q, e, d)← RSAKGen(1κ) be

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

3

a key generation algorithm of RSA. On input parameter κ,
the algorithm RSAKGen outputs two distinct large primes p
and q, a modulus N = pq, a constant e, and a modular mul-
tiplicative inverse d of e, i.e., ed ≡ 1 mod φ(N), where φ(·)
is Euler’s totient function. Let (p,G,GT , ê, g) ← G(1κ) be
a pairing group generation algorithm. On input parameter
κ, the algorithm G outputs two multiplicative cyclic groups
GT and G =< g > of prime order p with a bilinear map
ê : G×G→ GT .

2.2 Cryptographic Building Blocks

Definition 1 (LSSS). A linear secret sharing scheme (LSSS) [30]
over a finite field Zp satisfies that:

1) The shares for each party form a vector over Zp.
2) There exists a share-generating matrix Ak×l encoding a

monotone access structure A over attributes subset U.
For all x ∈ [k], the xth row of A is labeled by ρ(x),
where the function ρ maps row numbers to attributes, i.e.,
ρ : [k] → U. During the generation of shares, a column
vector v = (s, a2, ..., al) is generated, where s ∈ Zp is the
secret to be shared and a2, ..., al

R←− Zp. Then the vector of
k shares of the secret s is computed by λ = A · v ∈ Zk

p . The
share λx belongs to the attribute ρ(x).

Assume that the vector (1, 0, .., 0) is in the span of rows
of A labeled by ρ(x), denoted as (1, 0, .., 0) ∈ span(Ax).
There exist constants {Cx ∈ Zp} such that

∑
x Cxλx = s.

The pair (A, ρ) describes the policy of the access structure A.
Lewko and Waters [31] have described a general algorithm
to convert the Boolean formula including AND and OR
operators into the LSSS matrix.

Definition 2 (DCP-ABE). A decentralized ciphertext-policy
attribute-based encryption (DCP-ABE) scheme [29] is a tuple of
five PPT algorithms (GSetup, AASetup, Enc, KGen, Dec):
GSetup(1κ). On input a security parameter κ, the global setup

algorithm GSetup outputs the public parameter pp.
AASetup(pp). On input the public parameter pp, the authority

setup algorithm AASetup outputs a key pair (pk, sk) for an
attribute i.

Enc(m, (A, ρ), {pk}). On input a message m, an access ma-
trix (A, ρ), and a set of public keys {pk}, the encryption
algorithm Enc outputs a ciphertext ct.

KGen(GID, i, sk). On input a global identity GID, the at-
tribute i, and the secret key sk, the key generation algorithm
KGen outputs a key SKi,GID for this attribute.

Dec({SKi,GID}, ct). On input a collection of keys {SKi,GID}
corresponding to the attributes of the same identity and
the ciphertext ct, the decryption algorithm Dec outputs a
message m if the collection of attributes satisfies the access
matrix. Otherwise, this algorithm returns ⊥.

Lewko and Waters have proved that the DCP-ABE
scheme with prime order groups in the full version of [31] is
IND-CCA2 secure for any PPT algorithm A. The advantage
of A winning the IND-CCA2 experiment is negligible, i.e.,
AdvIND−CCA2

A,DCP−ABE = |Pr[b∗ = b]− 1
2 | ≤ f(κ).

Definition 3 (CHET). A chameleon hash with ephemeral trap-
doors (CHET) scheme [32] consists of five PPT algorithms
(PPGen, CHKey, CHash, CHVer, CHAdapt) such that:

Fig. 1: The system model. Based on a critical component
DACH, SDR-chain supports transactions (Txs) redaction
and provides elastic data management for various emerging
applications.

PPGen(1κ). On input the security parameter κ, the algorithm
PPGen outputs the public parameter pp.

CHKey(pp). On input the public parameter pp, the algorithm
CHKey outputs a long-term key pairs (pk, sk).

CHash(pk,m). On input a message m and the public key pk,
the algorithm CHash outputs a hash h, randomness r, and
ephemeral trapdoor etd.

CHVer(pk,m, h, r). On input a public key pk, message m, hash
h and randomness r, the algorithm CHVer outputs a bit
b ∈ {0, 1} indicating the validity of hash h.

CHAdapt(sk, etd,m, h, r,m′). On input the secret key sk,
ephemeral trapdoor etd, message m, hash h, randomness
r and a new message m′ ∈ M, the algorithm CHAdapt
outputs a new randomness r′.

It has been proved that CHET in [32] is secure under
the RSA-like assumption, i.e., CHET is indistinguishable,
publicly collision-resistant, and privately collision-resistant.
The detailed analysis has been presented in Appendix E.1
and F.2 of the full version.

3 OVERVIEW

In this section, we present an overview of our DACH-
based SDR-chain, including system model, thread model,
and main phases.

3.1 System Model
The system model, as shown in Fig. 1, is constructed
by attribute authorities (AAs), sender, and redactor.
Senders/redactors generate/redact transactions based on
our DACH function with the help of a group of AAs in
the data layer. Then, the generated/redacted transactions
are broadcast and verified in the consensus layer. Finally,
DACH-based SDR-chain provides elastic data management
for various applications.

1) Attribute Authorities (AAs). AAs are selected from nodes
in the P2P network. They are semi-honest entities that
honestly generate parameters to help sender/redactor
generate/ redact transactions but they may try to re-
cover the keys to get redaction privilege.

2) Sender. It is an honest entity that generates transactions
with a valid access policy in the network.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

4

3) Redactor. It is an entity that redacts transactions in the
network. It may try to make a profit by requesting
malicious redactions.

3.2 Threat Models

We consider the PPT adversaries who may try to reconstruct
the keys of DACH function for redactions. Their goals are
to abuse the redaction such as faking redactions by launch-
ing attacks. Assume that the point-to-point communication
channel is secure and the PPT adversaries can not break
the standard cryptographic primitives and assumptions.
According to the ability of adversaries, we consider three
types of threat models as follows.

1) Inside adversary. It can be a semi-trusted AA owning
one of the secret keys corresponding to attributes of
the redaction policy. It honestly executes processes but
it would take advantage of its abilities to recover the
trapdoor key used to redact transactions. A majority of
AAs may collude with each other. Besides, the goal of
the colluding AAs is to modify transactions while they
do not know the trapdoor key. The insider adversary
can access oracles DKGen and DAdapt of the DACH
function.

2) Outside adversary. It can be a redactor owning some
attributes, which cannot satisfy the redaction policy. It
can access the oracle DAdapt and tries to recover the
trapdoor key to modify transactions. Besides, it may
request a malicious redaction to launch attacks such as
the collusion attack and the double-spending attack.

3) Adaptive adversary. It can be both an insider and outsider
adversary adaptively. It can adaptively access oracles
DKGen and DAdapt and has some attributes which do
not satisfy the policy.

3.3 Main Phases

The proposed SDR-chain includes four phases as follows.
1) AAs selection. AAs are selected from nodes for the

parameters generation and keys distribution.
2) Redactable transaction generation. Senders generate the

redactable transactions based on DACH. The redactable
transactions are recorded in blocks and then blocks
build the SDR-chain after broadcast and verification.

3) Transaction redaction. A redactor is allowed to modify
the transaction if the redactor can efficiently compute a
DACH collision for the modified transaction.

4) Delegation. Any leaving AA can securely delegate its
role to other nodes to ensure redaction execution.

4 DESIGNED DACH FUNCTION

The DACH function is the critical component of the pro-
posed SDR-chain. In this section, we introduce the formal
definition, security model, and concrete construction of our
DACH function.

4.1 Formal Definition

Definition 4 (DACH). A dynamic and decentralized attribute-
based chameleon hash (DACH) function with message space M

Fig. 2: The process of recovering the trapdoor key. Users
obtain the secret keys corresponding to attributes from a
group of AAs. Any AA can delegate its role to other nodes,
as an example of AA4 and AA∗4 shows.

consists of seven PPT algorithms ΠDACH = (PPGen, AASetup,
DKGen, DHash, DVer, DAdapt, Delegate) such that:
PPGen(1κ). On input the security parameter κ, the algorithm

PPGen outputs the public parameter pp.
AASetup(pp). On input the parameter pp, the algorithm

AASetup outputs keys pk ← (mpk, spk) and sk ←
(msk, ssk).

DKGen(GID, sk, S). On input a global identity GID, secret
key sk, and attributes S, the algorithm DKGen outputs a
secret key SKi for the attribute i ∈ S and SKS = {SKi|i ∈
S}.

DHash(pk,m,A). On input a message m, the key pk, and
access structure A ⊆ 2U, the algorithm DHash outputs a
hash h, randomness r and auxiliary information ct.

DVer(pk,m, h, r). On input a public key pk, message m, hash
h and randomness r, the algorithm DVer outputs a bit b ∈
{0, 1} to indicate whether the hash h is valid.

DAdapt(SKS,m, h, r, ct,m′). On input the key SKS, message
m, hash h, randomness r and a new message m′ ∈ M, the
algorithm DAdapt outputs a new randomness r′.

Delegate(pk, SKi, i, ct). On input the public key pk, key SKi,
attribute i ∈ S, and auxiliary information ct, the algorithm
Delegate outputs a new secret key ˜SKi and a new auxiliary
information c̃t if SKi is valid. Otherwise, Delegate outputs
⊥.

Correctness. The correctness of DACH requires that for all
κ ∈ N, for all A ⊆ 2U, for all S ∈ A, for all i ∈ S, for
all pp ← PPGen(1κ), for all (pk, sk) ← AASetup(pp), for
all GID ∈ {0, 1}∗, for all SKS ← DKGen(GID, sk, S),
for all m,m′ ∈ M, for all (h, r, ct) ← DHash(pk,m,A),
for all (˜SKi, c̃t) ← Delegate(pk, SKi, i, ct), there is r′ ←
DAdapt({SKS, ˜SKi},m, h, r, {ct, c̃t},m′) such that 1 =
DVer(pk,m, h, r) = DVer(pk,m′, h, r′).

4.2 Security Model

The security models of our DACH by following the games
between a challenger and an attacker are presented as
follows.
Indistinguishability. It is hard for any PPT adversary A
to distinguish whether the randomness was obtained via
DHash or DAdapt, i.e., the adapted hashes are indistinguish-
able from the fresh one. Thus, DACH is indistinguishable if
the advantage of A winning the following experiment is
negligibly, i.e., |Pr[ExpInd

A,DACH(κ) = 1]− 1
2 | ≤ f(κ).

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

5

Experiment ExpInd
A,DACH(κ):

pp← PPGen(1κ), (pk, sk)← AASetup(pp)
b← {0, 1}, b∗ ← AO(pk, sk)

where O ← {DHash,DAdapt} and DHash, DAdapt on input
m,m′, S,A :

(h′, r′, ct′)← DHash(pk,m′,A)
(h, r, ct)← DHash(pk,m,A)
SKS ← DKGen(GID, sk, S)
r′′ ← DAdapt(SKS,m, h, r, ct,m′)
if r′ =⊥ ∨ r′′ =⊥ ∨m′ /∈ M, return ⊥
if b = 0, return (h′, r′, ct′)
if b = 1, return (h, r′′, ct)

return 1, if b∗ = b; else, return 0.

Outsider Collision Resistance. It requires that it is hard
for any PPT adversary A adaptively accessing to the oracle
DAdapt to find collisions for messages which is not queried
to DAdapt. Thus, DACH is outsider collision-resistant if for
A the probability of the following experiment returning 1 is
negligibly, i.e., Pr[ExpOCR

A,DACH(κ) = 1] ≤ f(κ).
Experiment ExpOCR

A,DACH(κ):
pp← PPGen(1κ), (pk, sk)← AASetup(pp)
Q,M← ∅, k ← 0
(m0, h0, r0, ct0,m

′
0, r

′
0)← AO(pk)

where O ← {DKGen,DKGen′,DAdapt,DAdapt′}
and DKGen on input sk, S :

SKS ← DKGen′(·, sk, S)
Q← Q ∪ {(k, SKS)}, k ← k + 1

and DAdapt on input m,h,m′, (j, SKS), ct:
return ⊥, if DVer(pk,m, h, r) ̸= 1 ∨ (j, SKS) /∈ Q
return r′ ← DAdapt′(SKS,m, h, r, ct,m′)
M← M ∪ {m,m′}

return 1, if DVer(pk,m0, h0, r0) = 1 ∧ DVer(pk,m′
0, h0, r

′
0) = 1 ∧

m0 /∈ M ∧m0 ̸= m′
0

else, return 0.

Insider Collision Resistance. Assume that any PPT adver-
sary A can adaptively access to oracles DKGen and DAdapt,
and A holds some attributes which can find collisions for
some hashes. It is hard for the adversaryAwhose attributes
cannot satisfy the policy encoded in the attacked hash to
find collisions. Thus, DACH is insider collision-resistant if
for A the probability that the following experiment returns
1 is negligibly, i.e., Pr[ExpICR

A,DACH(κ) = 1] ≤ f(κ).
Experiment ExpICR

A,DACH(κ):
pp← PPGen(1κ), (pk, sk)← AASetup(pp)
Q,V,H← ∅, k ← 0
(m0, h0, r0, ct0,m

′
0, r

′
0)← AO(pk)

where O ← {DKGen,DKGen′,DHash,DAdapt}
and DKGen on input sk, S :

SKS ← DKGen(·, sk, S)
V← V ∪ {S}

and DKGen′ on input sk, S :

SKS ← DKGen′(·, sk, S)
Q← Q ∪ {(k, SKS)}, k ← k + 1

and DHash on input m,A :

(h, r, ct)← DHash(pk,m,A)
H← H ∪ {(h,m,A)}

and DAdapt on input m,h,m′, (j, SKS), ct:
return ⊥, if (j, SKS) /∈ Q
return r′ ← CHAdapt(SKS,m, h, r, ct,m′)
if (h,m,A) ∈ H, let H← H ∪ {(h,m′,A)}

return 1, if DVer(pk,m0, h0, r0) = 1 ∧ DVer(pk,m′
0, h0, r

′
0) = 1 ∧

(h0, ·,A) ∈ H, where m0 ̸= m′
0 ∧ A ∩ S = ∅ ∧ (h0,m0, ·) /∈ H

else, return 0.

Backward/Forward Security. A delegation algorithm is se-
cure if the algorithm satisfies with: (1) Backward Security. It
is hard for any PPT adversary to find collisions for messages
which are not queried to oracle DAdapt with the keys of
AA left from the network. (2) Forward Security. After the
previous AA delegates its role to a new AA, the new AA
can issue new keys to help efficiently compute collisions of
previously published hashes. Meanwhile, it is hard for any

PPT adversaries who are delegated and collude with each
other to find collisions for messages which are not queried
to oracle DAdapt.

4.3 Concrete Construction of DACH
A scalable and secure instantiation of DACH is presented
in Fig. 3. In particular, the notations are the same as those
introduced in Section 2.

The construction of our DACH consists of the LSSS,
DCP-ABE, and RSA-based CHET. As shown in Fig. 3,
the system is initialized according to the algorithm pp ←
PPGen(1κ) and AA joins the system by running the algo-
rithm (pk, sk) ← AASetup(pp). Data m is hashed with an
access policy A via the algorithm DHash. Based on the LSSS
scheme, policy A encoded by a set S of attributes is repre-
sented as an access matrix (A, ρ). After running the algo-
rithm DHash, the hash tuple (h, r, ct) of data m is obtained,
where h is the hash value, r is the randomness, and ct is
the auxiliary information. Then, any user can obtain a set of
keys corresponding to its attributes via algorithm SKS ←
DKGen(GID, SK, S) from different AAs, where GID is the
global identity of the user. Next, if user’s attributes can
satisfy the policy A, the user’s keys SKS can recover the
correct key etd and effectively compute a collision for new
data m′ via algorithm r′ ← DAdapt(SKS,m, h, r, ct,m′).
The new randomness r′ can map m and m′ (m ̸= m′)
into the same hash value h. Finally, any AA can delegate
its role to a new AA via the algorithm Delegate. The new
AA distributes the new auxiliary information c̃t and key
˜SKi,GID corresponding to the attribute i to help the users

compute collisions.

5 DACH-BASED SDR-CHAIN

In this section, we apply our DACH to make blockchain
mutable, called SDR-chain. We first present the main phases
and then take the Bitcoin blockchain as an example to
present how DACH integrates with blockchain.

5.1 Main Phases
We present the main phases of applying DACH to SDR-
chain, including AAs selection, redactable transactions gen-
eration, transaction redaction, and delegation. Notice that
the core components of SDR-chain including consensus pro-
tocol and block propagation follow the original immutable-
blockchain except the block proposal/validation.
AAs selection. AAs are selected from nodes and in charge of
keys distribution. How to select AAs is important. In order
to ensure the redaction controlled by a majority of honest
nodes, AAs are selected on the basis of their contributions
in the blockchain system. The more contributions the node
makes, the higher probability the node is selected with.
The contributions are estimated by tow components. The
first component is measured by the ratio of the number of
blocks that the node generates in the main chain, denoted as
NB . The second component is measured by the ratio of the
number of valid redactions that the node achieves, denoted
as NR. Then, the probability is denoted as the weighted
sum of two contributions, i.e., Prc = ζNB + ηNR, where
0 ≤ ζ, η ≤ 1. The parameters ζ and η may have an impact

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

6
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

PPGen(1κ). On input security parameter κ:
1) Generate parameters of bilinear group (N,G,GT , ê, g)← G(1κ).
2) Choose a large prime e0 > N1, where N1 = max{N ′|(N ′, ·, ·, ·, ·)← RSAKGen(1κ)}.
3) Choose two hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Z∗nn′ , an encoding algorithm encode :
{0, 1}∗ → GT , a decoding algorithm decode : GT → {0, 1}∗.

Return public parameters pp← {N,G,GT , g, e0}.
AASetup(pp). On input the public parameters pp:

1) Each authority AAi controls an attribute i ∈ S. For the attribute i ∈ S, the authority chooses αi, βi
R←− ZN and

computes spk ← {ê(g, g)αi , gβi} where ssk ← {αi, βi}.
2) Run (n, p, q, ·, ·)← RSAKGen(1κ) and let msk ← (p, q).
Return pk ← (n, spk) and sk ← (msk, ssk).

DKGen(GID, sk, S). On input GID, secret key sk, and attribute S:
Create a secret key SKi,GID = gαiyβi corresponding for each attribute i ∈ S of GID, where y = H1(GID).
Return SKS ← ({SKi,GID|i ∈ S},msk).

DHash(pk,m, (A, ρ)). On input public key pk, message m, monotone span program (Ak×l, ρ) of access structure A:
1) Run (n′, p′, q′, ·, ·)← RSAKGen(1κ), where gcd(n, n′) = 1 and etd← encode(p′, q′). Let etd keep secret and
publish n′.

2) Choose r R←− Z∗nn′ and compute h = H2(m)re0 mod (nn′).
3) Choose s, (a2, ..., al), (b2, ..., bl)

R←− ZN to generate vectors v = (s, a2, ..., al) and w = (0, b2, ..., bl). Compute
λx = Ax · v and ωx = Ax · w. For the xth row Ax of A, choose rx

R←− ZN , then compute

ct← {c0 = etd · ê(g, g)s, c1,x = ê(g, g)λx ê(g, g)αρ(x)rx , c2,x = grx , c3,x = grxβρ(x)gωx}.
Return (h, r, ct).

DVer(pk,m, h, r). On input public key pk, message m, hash value h, and randomness r:
Verify whether tuple (h, r ∈ Znn′) satifies h = H2(m)re0 or not.
Return b ∈ {1, 0}.

DAdapt(SKS,m, h, r, ct,m′). On input keys SKS = ({SKi,GID|i ∈ S},msk), message m, tuple (h, r, ct), and new
message m′:
If the attribute set S of GID satisfies the access structure A:
1) Recover etd = c0/

∏
x
(Dx)

Cx , where coefficients {Cx ∈ ZN} satisfy
∑
x CxAx = (1, 0, ..., 0), and

Dx = c1,x · ê(H1(GID), c3,x)/ê(SKρ(x),GID, c2,x) = ê(g, g)λx ê(y, g)ωx .

2) Compute d0 s.t. e0d0 ≡ 1 mod ϕ(nn′) with msk and decode(etd).
3) Compute a new randomness r′ for the new message m′, i.e., r′ = (hH2(m

′)−1)d0 mod (nn′).
4) Check the verification by invoking the algorithm DVer. If 1← DVer(pk,m′, h, r′), return r′.
Return r′ and ⊥ otherwise.

Delegate(pk, SKi,·, i, ct). On input public key pk, secret key SKi,· = gαiyβi1 for ρ(x) = i, auxiliary information ct:
1) Compute Ki ← (u1, u2), where u1 = gαi , u2 = grxβi , and y1 = H1(·).
2) Verify Ki by

ê(SKρ(x),·, c2,x)
?
= ê(u1, c2,x) · ê(y1, u2).

3) If holds, choose α′i, β
′
i
R←− ZN and α′i 6= αi, β′i 6= βi to create a new auxiliary information c̃t, i.e.,

c̃t← {c̃0 = c0, c̃1,x = c1,x · ê(c2,x, gα
′
i)/ê(c2,x, u1), c̃2,x = c2,x, c̃3,x = c3,x · (c2,x)β

′
i/u2}.

4) Invoke ˜SKi,GID ← DKGen(GID, (α′i, β
′
i), i) for GID.

Return (ĉt, ˜SKi,GID) and ⊥ otherwise.

Fig. 3: Concrete construction of DACH.

on the performance of the blockchain system, which is an
interesting topic and will be researched in our future work.
Redactable Transaction Generation. As shown in steps 1−
3 of Fig. 4, the sender generates a redactable transaction
Tx based on DACH, and the transaction Tx is broadcast
and verified to generate a new block in the network. The

detailed algorithms are invoked as follows. First, the system
initializes to generate parameters by invoking algorithms
ΠDACH.PPGen and ΠDACH.AASetup. Next, the sender hashes
transaction Tx with a policy A by invoking the algorithm
ΠDACH.DHash, i.e., (h, r, ct) ← DHash(pk,Tx,A). The hash

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 4: The process of redaction.

Fig. 5: The structure of DACH-based blockchain, where H
is hash function such as SHA256. If Tx0 is redacted, DACH
function ensures that the inputs of H is invariant.

value h is signed by using the algorithm ECDSA. Then, the
transaction Tx is broadcast and verified in the P2P network.
nodes verify the hash value h by invoking the algorithm
ΠDACH.DVer besides the regular validation process of the
transaction. If the algorithm outputs 1, Tx is valid and its
h is integrated into a Merkle tree to create a new block, as
shown in Fig. 5.
Transaction Redaction. As shown in steps 4 − 6 of Fig. 4,
the redactor gets a set of key SKi,GID corresponding to its
attributes by interacting with a group of AAs who invoke
the algorithm ΠDACH.DKGen. Then, the redactor recovers the
trapdoor key to find a collision of the redacted transaction
Tx′ by invoking the algorithm ΠDACH.DAdapt. Specifically, a
new randomness r can be computed such that the original
transaction Tx and the redacted transaction Tx′ are mapped
to the same hash value h. Notice that the data required to
redact should have no impact on related transactions/blocks
in the past and future, such as the data stored in the field
OP RETURN of the transaction. After that, the redacted
transaction Tx′ is braodcast and verified in the work.

An example is given to present the above process.
Assume that the transaction Tx is recorded in block #i
of the chain C. Let the redacted transaction be Tx′ and
let the redaction policy be A ∧ (B ∨ C) ∧ D. As shown
in Fig. 2, the redactor U1, holding a set of attributes
S = {A,B,D}, interacts with a group of AAs. Then, the
redactor gets keys SKS = {SKA,1, SKB,1, SKD,1} from
{AA1, AA2, AA4}, respectively. These keys are used for
computing the collision for Tx′ by invoking algorithm r′ ←
DAdapt(SKS,Tx, h, r, ct,Tx

′,). Notice that the redactor can
compute a valid randomness r because the attributes of the
redactor can satisfy the policy. After that, Tx′ is broadcast
and verified in the work. Nodes check r′ by invoking the al-
gorithm DVer(pk,Tx′, h, r′) besides the regular transaction
verification. If both of them are valid, nodes update their
local chain by replacing Tx with transaction Tx′.
Delegation. Any AA can delegate its role to other nodes
by running the algorithm ΠDACH.Delegate in our SDR-chain.
Delegation is bootstrapped by two cases. (1) A node requests

to be the AA. The probability of the node being successfully
delegated is also estimated by Prc. (2) The AA who wants
to leave the system requests delegation by announcing a
delegation message in the network. The nodes who want
to become authorities interact with the AA and they are
selected according to their probability Prc. Note that each
AA is allowed to control an attribute per policy, and each
attribute is allowed to be controlled by multiple AAs. For
the attribute that is used multiple times, it should be labeled
with a fresh value j, denoted as Att : j.

An example is shown in Fig. 2, where the pol-
icy is defined as A ∧ (B ∨ C) ∧ D. Assume that AA4

delegates its role (corresponding to the attribute D)
to AA∗4. AA∗4 runs the algorithm Delegate to gener-
ate new auxiliary information c̃t and new secret keys
SK∗D,3. The redactor holding attributes {A,C,D} gets keys
{SKA,3, SKC,3, SK

∗
D,3} from AA1, AA3, and AA∗4, respec-

tively. Then the redactor can recover the correct trapdoor
key from {c0, c1,A, c2,A, c3,A, c1,C, c2,C, c3,C, c̃1,D, c̃2,D, c̃3,D}.
That is, the new AA∗4 can issue valid keys to execute
redactions, which improves the functionality of the SDR-
chain.

5.2 Integrating with Blockchain
This section presents how DACH integrates with Bitcoin
blockchain. The block propagation and consensus protocol
follow the Bitcoin blockchain. Blocks are broadcast in the
P2P network and the longest proof of work chain is always
chosen. In the phase of block proposal/validation, there are
some differences from the Bitcoin.
block proposal/validation. After transactions are generated
and hashed by invoking ΠDACH.DHash, they are broadcast
in the P2P network. As shown in Fig. 5, the additional
data r is recorded in the non-signed part of transactions.
Miners collect valid transactions to propose new blocks
by verifying the DACH values of transactions besides the
regular processes, where the verification algorithm invokes
ΠDACH.DVer.

In summary, our DACH acts as a data preprocessing
layer on the Bitcoin blockchain. There are two additional
steps required. (1) The DACH value (h, r) of the transaction
needs to be checked in transaction verification. (2) The
transaction needs to record the additional data r besides
the regular fields, which may increase the length of the
transaction. However, it has a tiny impact on the throughput
of the blockchain system because the length of r is short
and the throughput is mainly determined by the consensus
mechanism.

6 ANALYSIS

The SDR-chain is built on the DACH function to perform
redactions. Thus, we first analyze the correctness and secu-
rity of the DACH and then analyze the design goals of the
SDR-chain in this section.

6.1 Correctness
In this section, we analyze the correctness of the DACH
which determines the correctness of redactions in the SDR-
chain.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

8

Correctness of the DACH. It requires that (1) the DAdapt
algorithm allows the one whose attributes satisfy the access
policy to find a valid collision correctly and (2) the algorithm
Delegate allows the one who leaves the network to delegate
the role to another correctly. The processes are described as
follows in detail.

(1) Given S satisfying the policy (A, ρ), h ←
DHsh(·,m, ·), for m′ ̸= m, if there is h′ ← DHsh(·,m′, ·)
such that DVer(·,m′, h′, r′) = 1 and h = h′. Run the
DKGen and DKGen algorithms for the attributes in S and
output the new randomness r′ = (hH2(m

′)−1)d mod (nn′)
for the new message m′, where ed ≡ 1 mod φ(nn′). Then,
a hash value h′ is easily computed, i.e., h′ = H2(m

′)r′e and
h′ = H2(m

′)
(
(hH2(m

′)−1)d
)e

= h. That is, the value r′ can
make DVer(·,m′, h′, r′) = 1 and h = h′ hold. Hence, the
one whose attributes satisfy the access policy can correctly
find a valid collision.

(2) AAj runs the algorithm Delegate for an attribute
k ∈ S. Given the new auxiliary information c̃t ←
{c̃0, ˜c1,k, ˜c2,k, ˜c3,k}, the new key of AAj should be valid to
recover the trapdoor key etd with the cooperation of other
AAs who control other attributes in S. Assume that the key
{SKi,· : i ∈ S/k} for other attributes i ∈ S/k and the values
{Dρ−1(i)} are also given. The key for the attribute k of AAj

is denoted as SKk,· = gα
′
kyβ

′
k . Let the attribute ρ(x) = k,

then the new auxiliary information c̃t associated with k can
be denoted as:

c̃0 = c0 = etd · ê(g, g)s

˜c1,x = c1,xê(c2,x, g
α′

i)/ê(c2,x, u1) = ê(g, g)λx ê(g, g)α
′
krx

ˆc2,x = grx (1)

ˆc3,x = c3,x(c2,x)
β′
k/u2 = grxβ

′
kgωx .

Thus, we can get

Dρ−1(k) = ˜c1,x · ê(H1(·), ˜c3,x)/ê(SKk,·, ˜c2,x)

= ê(g, g)λx ê(y, g)ωx .

With the keys {Dρ−1(k)} ∪ {Dρ−1(i) : i ∈ S/k}, we can
compute the correct coefficients {Cx} such that

∑
x CxAx =

(1, 0, 0, ...) to compute
∏

x∈ρ−1(S)
(Dx)

Cx = ê(g, g)s.

Next, we can recover the valid etd from c0 = etd · ê(g, g)s.
Given (p′, q′) ← decode(etd) and msk, we can easily com-
pute a constant d such as ed ≡ 1 mod φ(nn′). It is easy to
find a collision as the description of (a). Thus, based on the
Delegate algorithm, AAj can help the redactor recover the
trapdoor key correctly. In summary, our DACH is correct.

6.2 Security Analysis

In this section, we analyze the security of the DACH and
the SDR-chain in detail.

6.2.1 Security of the DACH

We analyze the security of the DACH constructed as Fig. 3
in the random oracle model.

Theorem 1. For all PPT adversaries, the DACH scheme is
strongly indistinguishable if it is based on a strongly indistin-
guishable CHET scheme.

Proof. Let A and B be the adversary against the schemes
DACH and CHET, respectively. A runs the experiment
ExpInd

A,DACH(κ). For the oracle DHash and DAdapt of A, B
internally uses the oracle CHash and CHAdapt of scheme
CHET. That is, B queries challenger to get (h, r, etd) by
access to oracle CHash and returns (h, r, ct) to A, where
ct ← ΠDCP−ABE.Enc(etd, ·, ·). Then, B recovers etd ←
ΠDCP−ABE.Dec(·, ct) and gets the randomness r′′ by query-
ing challenger access to oracle CHAdapt. After that, B
returns r′′ to A. As soon as A outputs its guess b, B
returns b to the challenger. Obviously, the probability of
A winning is the same as B winning. Besides, the CHET
scheme is indistinguishable based on the one-more RSA-
inversion assumption [33]. Thus, Theorem 1 holds.

Theorem 2. For all PPT adversaries, the DACH scheme is
outsider collision-resistant if it is based on a publicly collision-
resistant CHET scheme.

Proof. Let A and B be the adversary against the schemes
DACH and CHET, respectively. A runs the experiment
ExpOCR

A,DACH(κ). For the oracle DAdapt ofA, B internally uses
the oracle CHAdapt of scheme CHET. B recovers etd from ct
and queries challenger access to oracle CHAdapt. B returns
valid r′ for m′ to A. For any messages {m0,m

′
0} that was

not queried, the possibility of B finding a valid collision
tuple (h0,m0, r0,m

′
0, r
′
0, ct0) is the same with that of A.

Moreover, according to the RSA assumption, B cannot ef-
fectively compute r′0 without the valid etd0. Thus, Theorem
2 holds.

Theorem 3. For all PPT adversaries, the DACH scheme is
insider collision-resistant if it is based on a privately collision-
resistant CHET scheme and an IND-CCA2 secure DCP-ABE
scheme.

Proof. Let B be the adversary against the private collision-
resistance of scheme CHET and let C be the adversary
against IND-CCA2 security of scheme DCP-ABE. Let Pr[Gi]
be the success probability of the adversary in Game i and
the number of queries to DAdapt be denoted as q. Consider
the following sequence of games.
Game 0. It is the original insider collision resistance experi-
ment ExpICR

A,DACH(κ).
Game 1. As Game 0, but adversary A who does not have
enough attributes makes kth query (h0, r0, ct0,m0,m

′
0),

where m0 and m′0 are fresh and the oracle DAdapt is in-
ternally queried to CHAdapt. What A outputs is the output
of B. If A finds a valid collision, the game aborts. Therefore,
the winning probability is the same as that of Game 0, unless
an abort happens, i.e., Pr[G1] = Pr[G0] · 1q .
Game 2. As Game 1, but etd0 is directly used to compute
collision instead of decrypting ct0. The winning probability
is the same as that of Game 1, i.e., Pr[G2] = Pr[G1].
Game 3. As Game 2, but the oracle DHash is internally
queried to CHash, where C encrypts 0 instead of the real
etd0, i.e., ct0 ← ΠDCP−ABE.Enc(0, ·, ·), and the oracle DKGen
is internally queried to KGen. Game 2 and Game 3 are

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

9

indistinguishable under the IND-CCA2 security of scheme
DCP-ABE, i.e., |Pr[G3]− Pr[G2]| ≤ AdvIND−CCA2

C,DCP−ABE(κ).
Game 4. As Game 3, but the game aborts, if A finds a valid
collision and returns (h0, r0, ct0,m0,m

′
0, r
′
0). Then, B uses

this attack to break the strong private collision-resistance
of CHET. Finally, B also finds the collision. The winning
probability of Game 4 is the same as that of Game 3.
Moreover, there is Pr[G4] ≤ AdvPrivateCR

B,CHET (κ).
As the above games show, the advantage of A in the

original game is bounded by Pr[G0] ≤ q(AdvPrivateCR
B,CHET (κ) +

AdvIND−CCA2
C,DCP−ABE(κ)), which is negligible. Thus, the DACH

scheme is insider collision-resistant, i.e., Theorem 3 holds.

Note that DACH can resist the outsider and insider colli-
sions so that it also satisfies key-exposure freeness, meaning
that given a collision for a message, no PPT adversary
can efficiently extract the secret key to find collisions [34].
Because key-exposure freeness is weaker than the outsider
collision resistance.

Theorem 4. The DACH scheme is collusion-resistant.

Proof. The DACH scheme is collusion resistant if it can resist
two kinds of collusion attacks. Assume that the redaction
policy is coded over attributes S = {S1, S2, ..., Si}. (1)
Consider the collusion between redactors whose attributes
cannot pass the policy alone. After collusion, they can get a
set of attributes which can pass the policy. Let the colluded
attributes be S. Then, the colluding redactors, owning the
global identities {GID1, ..., GIDj}, aims at recovering the
valid trapdoor key etd to compute valid collisions. Redac-
tors get the secret keys {SKSi,GIDj

} from AAs and compute
values {Dx = ê(g, g)λx ê(yj , g)

ωx |x ∈ ρ−1(S)}. It is obvious
that the component yj = H1(GIDj) of each SKi,GID is
different, so the values {Dx} is blind. After combining
{Dx}, the shares ωx of 0 in the exponent with different
base ê(yj , g) cannot be canceled out. Thus, the trapdoor key
computed by collusion attacks is still blind and invalid.

(2) Some AAs, who can issue the secret keys SKS′ cor-
responding to the attributes S′ which cannot satisfying the
policy, may collude to recover the trapdoor key. Intuitively,
it is hard to compute a correct Dx because the components
y1 in the key SKi,· of each AA is different. That is, the
collusion of AAs cannot recover the trapdoor key unless
all AAs collude. However, it contradicts the threat model.
In summary, Theorem 4 holds.

Theorem 5. For all PPT adversaries, the algorithm Delegate of
the DACH is secure.

Proof. As the previous definition, the algorithm Delegate is
secure if it satisfies backward security and forward security.
Assume that AAj who is in charge of attribute i wants
to leave the network and delegate the information about
attribute i to AAk. Then, AAk runs Delegate algorithm
on input of a secret key Ki = (gαi , grxβi) of AAj . The
algorithm Delegate returns new c̃t as shown in formula (1).

Backward Security: Given c̃t, spk′, ssk, SKi,GID, if an ad-
versary holding the attribute i cannot compute the cor-
rect Dρ−1(i) then the algorithm Delegate satisfies back-
ward security. Obviously, c̃t is associated with the se-
cret key ssk′ = (α′, β′) of AAk. Due to α′ ̸= α and
β′ ̸= β, the target value Dρ−1(i) is blind by a value

ê(g, g)(αi−α′
i)rρ−1(i) ê(y, g)(βi−β

′
i)rρ−1(i) . That is, the adver-

sary cannot compute the correct Dρ−1(i).
Forward Security: Given c̃t, spk′, ˜SKi,GID, if a redactor

can correctly recover Dρ−1(x) with the new key of AAk, then
the algorithm Delegate satisfies forward security. According
to the correctness analysis of algorithm Delegate described
in Section 6.1, it is effective for the redactor to recover
Dρ−1(x).

In summary, the algorithm Delegate of the DACH
scheme is secure, i.e., Theorem 5 holds.

Theorem 6. For all PPT adversaries, the DACH scheme is secure
if it is correct, indistinguishable, outsider collision-resistant, in-
sider collision-resistant, and attribute authority delegation secure.

6.2.2 Security of SDR-chain

The generic security properties and common attacks of SDR-
chain are analyzed as follows.
Consistency. In the traditional blockchain, redacting trans-
actions will result in breaking links between transactions
(blocks) and making blockchain inconsistent. However, our
scheme ensures that the hash of the redacted transaction is
the same as that of the original transaction, meaning that the
links between transactions (blocks) are maintained. Honest
nodes can fast agree on a unified view of blockchain history
based on our scheme, i.e., the consistency is satisfied.
Consensus Delay. The consensus is affected by the network
connectivity, forks, and mining strategy [35], and a consen-
sus delay will undermine the security. The delay occurs
when miners cannot agree on a final state of the chain. In
the SDR-chain, the redacted transaction is broadcast to the
network and verified by nodes. If it is valid, the honest
nodes approve it and update their local chain. Finally,
an honest redaction will efficiently be approved since the
majority of nodes are honest in the network. Therefore, our
redactable blockchain does not suffer from consensus delay.
Collusion Attacks. According to Theorem 4, our DACH is
collusion resistant. Therefore, we mainly discuss if a single
malicious AA or multiple colluding AAs abuse the redaction
by manipulating the delegation function. We consider two
cases. (1) A single malicious AA manipulates the delegation
function and may delegate its secret key to multiple nodes. In
this case, the multiple delegated nodes may also collude.
However, their collusion can only get information about
the same secret key. Because an AA only owns a secret
key corresponding to one of the attributes of the redaction
policy. Their collusion cannot recover the trapdoor key for
redacting. Thus, this collusion cannot abuse the redaction.
(2) Multiple colluding AAs manipulate the delegation function
and may collude with each other. In our threat model, the
collusion of all AAs is not allowed. Besides, if the multi-
ple colluding AAs cannot pass the policy, they cannot get
any information about the trapdoor key intuitively. If the
colluding AAs can pass the policy, they still cannot recover
the trapdoor key. Because their each keys corresponding
to each attribute is blind by the different global identity
GID. The colluded keys cannot cancel out the component
ωx of Dx, as described in Theorem 4. Hence, it is hard for
multiple colluding AAs to abuse the redaction. In summary,
our Delegation algorithm is collusion resistant.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

10

Double Spending Attacks. Let us track some transactions
Tx1 → Tx2 → Tx3 appended on blockchain, where the
funds of Tx1 flow to Tx3. Let Addi(i = 0, 1, 2, 3) be users’
addresses. Let Add1 → Add2 denote that Add1 pays Add2
in Tx2. A malicious user may launch the double-spending
attack by requesting to modify transactions’ outputs. (1)
Consider the first case where the transaction has already
been spent. Let the spent transaction Tx2 (Add1 → Add2)
be maliciously modified as Tx2∗ (Add1 → Add∗2). If Tx2∗ is
confirmed by honest nodes, the attack succeeds. Obviously,
Tx2∗ makes Tx3 invalid and conflicts with Tx2, so it cannot
be approved by honest nodes. Therefore, the attack fails.
(2) Consider the second case where the transaction is not
spent. Let the unspent transaction Tx3 (Add2 → Add3)
be modified as Tx3∗ (Add2 → Add∗3). Meanwhile, an
transaction Tx4∗(Add∗3 → Add∗4) is issued. If the attacker
can double spend the funds of Add2, the attack succeeds.
Obviously, the conflicting transactions Tx3 and Tx3∗ cannot
be accepted by miners in the same block. If Tx3∗ is ap-
proved by honest nodes, Tx3∗ will replace Tx3 and Tx4∗

will be confirmed, meaning that Tx3 is erased from the
blockchain. Nodes agree with the view of funds flow on
Add0 → Add1 → Add2 → Add∗3 → Add∗4. If Tx3∗ is not
approved by honest nodes, Tx3 remains intact and another
transaction Tx4 (Add3 → Add4) will be confirmed. The view
of funds flow is Add0 → Add1 → Add2 → Add3 → Add4.
In either case, the funds of Add2 are spent once, i.e., the
attack fails. In summary, the malicious user cannot double-
spend transactions by requesting redaction operations.
Security Properties. The proposed SDR-chain is proposed
by applying our DACH to an immutable blockchain and its
behavior is exactly like the immutable blockchain before the
transaction redaction happens. The immutable blockchain
should satisfy three security properties defined in [36],
including chain growth, chain quality, and common prefix.
We discuss whether redacting on SDR-chain damages the
properties or not. If redacting does not damage the security
properties, the SDR-chain satisfies the security properties.
(1) Chain growth. The SDR-chain redacts data at the transac-
tion level and does not allow deleting blocks from the chain,
so the redaction operations do not reduce the length of the
chain. That is, the redaction operations do not damage the
chain growth. (2) Chain quality. According to the security
analyses, DACH is resistant to inside and outside attacks.
It is infeasible for adversaries to perform a maliciously
redacted transaction successfully. Thus, it is hard to corrupt
an honest block by redaction operations. The proportion of
malicious blocks in the chain is not increased, meaning that
the chain quality is not broken. (3) Common prefix. The SDR-
chain does not suffer from the consensus delay, and honest
miners can efficiently agree on an honest redaction. That is,
honest nodes do not generate alternative chains as a result of
the redaction operations. The common prefix of the chains
of any two honest nodes is maintained. In summary, the
redaction operations do not damage the chain growth, chain
quality, and common prefix, so the SDR-chain satisfies the
security properties.

6.3 Analysis of Design Goals
We discuss whether the SDR-chain achieves the design goals
in this section.

Fine-Grained Control. In the SDR-chain, redaction is per-
formed in trsaction level. Each transaction is hashed with
an access policy encoding over attributes. According to
the correctness of DACH, anyone who cannot pass the
access policy cannot effectively find a valid collision for the
redacted transaction. That is, redaction is controlled by the
policy in a fine-grained way. Beside, the ability to perform
redaction is held by a group of users whose attributes can
satisfy the policy. Even though one of them may perform an
invalid or even incorrect redaction, others can redress the
redaction. This way avoids abusing the redacting power in
some degree.
Decentralized Redaction. SDR-chain controls redactions by
managing the trapdoor key based on the DCP-ABE. Thus,
we discuss the potential centralities of using DACH to
indicate the decentralization of the redaction.

On the one hand, the trapdoor key used to redact trans-
actions is encrypted and shared among a group of AAs,
which are selected from nodes and dynamically changing.
Transaction redaction and validation need the help of AAs
and miners, and there are no requirements for any central-
ized decision-making in the phase of redacting. Therefore,
it is hard for any AA to control redaction in the centralized
way unless it can collude the rest of AAs.

On the other hand, the redaction policy is determined
by the data owner. That is, the policy of each transaction
is independently set. The policy structure and attributes are
predefined in the phase of initialization, which may require
some centralized decision-making. In order to enhance the
decentralization and security, DCP-ABE requires that each
attribute of the policy structure is controlled only once by
the AA. If the attribute is used multiple times, it is labeled
with a fresh value j, i.e., Att : j. Thus, the attributes of
the policy structure are controlled in a decentralized way,
differing from the traditional way where all attributes are
controlled by a single trust AA. Besides, the one-use rule
also preserves the AAs from tampering with data unless all
AAs collude. In summary, SDR-chain achieves a high degree
of decentralized control of the redaction.
Dynamic Support. Based on the algorithm Delegate, no
matter what role the node plays in the network, (s)he can
delegate the role to others when (s)he leaves. Moreover,
any node running the blockchain protocol can play the
delegated role. Due to the algorithm Delegate satisfying the
backward/forward security, the generation and redaction
are not affected by nodes leaving in the SDR-chain. Thus,
the SDR-chain can support dynamic nodes.
Scalability. The SDR-chain neither requires to re-compute
the PoW puzzle of the redacted block nor waits for a long
voting period. A valid redacted transaction is required to be
broadcast as the regular transaction. SDR-chain can support
a large scale redaction requests, so it is scalable.
Historic Security. In the proposed SDR-chain, DACH is
applied to hash the transactions. The historic security of
transactions is affected by the indistinguishability of DACH
directly. As the description in Theorem 1, the DACH sat-
isfies the indistinguishability. It is hard for adversaries to
distinguish the adapted hash from the fresh hash. That is,
the original transaction and the redacted transaction are
indistinguishable in SDR-chain which is based on DACH.
Besides, DACH is collision-resistant as the descriptions of

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

11

TABLE 2
Complexity Comparison of Algorithms

Schemes
KeyGen Hash Verify Adapt

GExp GMul BP H GExp GMul BP H SE GExp GMul H GExp GMul BP H SE

PCH [13] 24 16 - 12 7 + 6l + 9k 4 + 3l + 6kl - 3 + 6l + 6k 1 2 2 2 7 + 6i+ 6l + 9kl 10 + 6i+ 6l + 6kl 6 3 + 6l + 6k 1
DPCH [17] 4 2 2 3 3 + 6l 3 + 2l 1 + 2l l + 2k 1 2 2 2 3 + i+ 6l 3 + 4i+ 2l 1 + 3i+ 2l 4 + 2l + 2k 1

DACH 2 1 - 1 2 + 5l 2 + 2l 1 + 2l 1 - 1 1 1 1 + i 1 + 2i 2i 1 -
* The complexity is evaluated by the number of various operations in group. GExp: group exponentiation; GMul: group multiplication; BP: bilinear pairing operation; SE: symmetric encryption; H: hash; l: the rows of the access matrix;
k: the columns of the access matrix; i: the number of attributes satisfying the access policy and i ≤ l.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

0 50 100

Attributes

0

0.1

0.2

0.3

0.4

T
h

e
 r

u
n

n
in

g
 t

im
e

(s
)

Setup

DACH

DPCH

0 50 100

Attributes

0

0.5

1

1.5
T

h
e

 r
u

n
n

in
g

 t
im

e
(s

)
Key Generation

DACH

DPCH

0 50 100

Attributes

0

0.5

1

1.5

T
h

e
 r

u
n

n
in

g
 t

im
e

(s
)

Hash

DACH

DPCH

0 50 100

Attributes

0.015

0.02

0.025

0.03

0.035

T
h

e
 r

u
n

n
in

g
 t

im
e

(s
)

Verify

DACH

DPCH

0 50 100

Attributes

0

0.5

1

1.5

2

T
h

e
 r

u
n

n
in

g
 t

im
e

(s
)

Adapt

DACH

DPCH

0 50 100

Attributes

0

0.5

1

T
h

e
 r

u
n

n
in

g
 t

im
e

(s
)

Delegate

DACH

Fig. 1: The running time of our DACH and the compared DPCH.Fig. 6: The running time of our DACH and the compared DPCH [17]. Both of them are decentralized solutions.

TABLE 3
Size Comparison with Prior Schemes

Schemes
Key Size Hash Size Ciphertext Size
G G1 Z∗

N G G1 GT Z∗
N

PCH [13] 3(i+ 1) 3 4 3l 3 2 -
DPCH [17] 2i - 4 3l - 1 + l 1

DACH i - 2 2l - 1 + l -
* The size of keys, hashes, and ciphertexts is evaluated by the number of elements

in groups G, G1, GT , and Z∗
N , where the size of an element of G1 is 3 times

that of G. l: the rows of the access matrix; i: the number of attributes satisfying
the access policy and i ≤ l.

TABLE 4
Increment Size of the Redacted Transactions

Name Block ID Transaction ID
Deletion
L Bytes

Increment
∆ Bytes

Tx1 268060
d29c9c0e8e4d2a9790922af73f0b8d51

f0bd4bb19940d9cf910ead8fbe85bc9b
983 −855

Tx2 251768
59bd7b2cff5da929581fc9fef31a2fba

14508f1477e366befb1eb42a8810a000
95 +33

Tx3 475199
be0f09e9a66715208082afdad71c4c94

45328788b49a6475e1301bab5345126b
0 +128

* The data required to delete is stored by OP RETURN of Bitcoin transactions.

Theorem 2 and Theorem 3, so it is hard for adversaries to re-
construct any information about the history of the redacted
transaction. Moreover, the adversaries cannot deduce other
collisions to tamper with transactions even though the col-
lision is public. In summary, these properties ensure the
historic security of SDR-chain.
Backward/Forward Security. In the terms of backward/for-
ward security, SDR-chain is inherited from DACH. As the
description of Theorem 5, the algorithm Delegate satisfies
the backward/forward security. After nodes leave from the
network, redaction can be securely performed in SDR-chain.

To sum up, SDR-chain satisfies the defined design goals.
It can achieve controlled, scalable, decentralized, dynamic
support, and secure redactions.

7 EVALUATION

In this section, we implement our scheme and evaluate the
performance of our scheme by comparing with the previous
work.

7.1 Performance Comparison
As shown in TABLE 2, we compare our DACH with the
previous PCH [13] and DPCH [17], which are policy-based
chameleon hash functions. We mainly compare the complex-
ity of their group operations because operations on group
are significantly expensive. The comparison results show
that our DACH has lower complexity than PCH and DPCH,
where the complexities of algorithm KeyGen are evaluated
for each attribute. Besides, the complexity of algorithm
Delegate of our DACH is 4GExp+ 3GMul+ 4BP+ H.

TABLE 3 shows the size comparison results of keys,
hashes, and ciphertexts, where hashes include (h, r) and
ciphertexts ct are the result of encrypting the trapdoor key.
From the comparison results, the sizes of our key, hash,
and ciphertext are much smaller than all the schemes. That
is, our DACH has lower overhead in communication and
storage than DCH [13] and DPCH [17].

The communication complexity is measured in bits sent
by honest redactors. In our protocol, the redactor needs to
communicate with the AAs for a κ bits key SKi,GID, so the
network/communication complexity is O(mκ) bits, where
m is the number of AAs. Besides, the redacted transaction
will cost the communication overhead consisting of the com-
munications to broadcast the γ bits redacted transaction, i.e,
O(n2γ) bits, where n (n > m) is the number of nodes in the
Bitcoin network. Thus, the total communication complexity
is O(n2γ +mκ) bits, i.e, O(n2).

The practical cost of applying the DACH to Bitcoin to
erase history is analyzed as follows. The cost is mainly
brought by broadcasting the redactable transaction and
the redacted transaction. In the phase of broadcasting the
redactable transaction, the redactable transaction needs to
store the randomness r, where r is 128 bytes in our exper-
iments. Let the size of the original Bitcoin transaction Tx
be |Tx| bytes. Then, the size of the redactable transaction is
|Tx| + 128 bytes. Therefore, the additional communication
cost required by a node with respect to the immutable
Bitcoin consists of the communication cost required to
broadcast the randomness r, i.e., 128 bytes. In the phase of
broadcasting the redacted transaction, the data stored in the
field OP RETURN may be deleted as shown in TABLE 4.
The size of the redacted transaction is |Tx|+ 128− L bytes,
where L is the size of the deleted data. Then, the increment

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

12

∆ of the size of the transaction caused by redaction opera-
tions with respect to the original transaction is ∆ = 128−L
bytes. For example, Tx1 is deleted by 983 bytes and stores
128 bytes r, so the increment is −855 after being redacted,
meaning that the redaction operation reduces the size of Tx1
by 855 bytes. In the worst case such as Tx3, there is no data
to be deleted, so the increment is +128 bytes, meaning that
the size of Tx3 is increased by 128 bytes. The maximum
increment size is constrained by the size of randomness r.
Therefore, the cost of broadcasting the redacted transaction
is low. In summary, applying DACH to Bitcoin will result in
minor communication costs.

7.2 Implementation

To simulate the effectiveness of our DACH, we implement
DACH and evaluate running time on a Macbook Pro laptop
with 2.4 GHz Intel Core i5, 8 GB RAM, and 512 SSD. We
compile in Python language and use Charm-Crypto 0.5 [37]
which is based on PBC library, GMP library, and OpenSSL
library for all algebraic operations and communications. In
the implementation, we use SS512 curve with a 512-bit base
field for pairing. The hash functions mapping any input to
the group are provided the Charm-Crypto framework. Fig. 6
has shown the comparison results of our DACH and DPCH
[17] in terms of running time. In the first five sub-figures,
the x-axis means the number of attributes that satisfy the
policy. In the last sub-figure, the x-axis means the number of
attributes that are delegated. Besides, the delegate algorithm
is proposed in redactable blockchains for the first time so
there is no comparison test.

8 RELATED WORK

This section reviews the related work from two categories.
Cryptography-Based. In 2017, Ateniese et al. [12] have first
argued the importance and necessity of rewriting history
in blockchain and proposed a feasible scheme based on the
chameleon hash (CH) [28]. In this scheme, the traditional
SHA256 is replaced by the CH fuction and a block-level
redaction can be performed by computing the CH collisions
for the redacted block. The trapdoor key of CH is managed
by a full trusted authority in a centralized setting or shared
among some fixed users in a decentralized setting.

To achieve a fine-grained and controlled redaction, Der-
ler et al. [13] have proposed a secure transaction-level
scheme in 2019. Based on a ciphertext-policy attribute-
based encryption (CP-ABE) [38], Derler’s scheme manages
the key used for redactions with an access policy encoded
over attributes. The user whose attributes satisfy the policy
can redact the transaction. Moreover, attributes are verified
by a full trusted authority. Huang et al. [14, 15] manage
the key of CH by associating an identity. They have built
redactable blockchains by proposing a threshold chameleon
hash (TCH) for IIoT [14] and a revocable chameleon hash
(RCH) for IoT [15], respectively. In their schemes, the redac-
tion privilege is fixed to a party holding the identity.

To achieve decentralized key management, Ma et al. [17]
have proposed a decentralized policy-based CH by applying
a multi-authority ABE scheme. The keys used for redactions
are controlled by multiple authorities. After that, Samelin et

al. [39] have proposed a policy-based sanitizable signature
(P3S) to guarantee signature validity of redacted blockchain
in 2020. According to the hash-then-sign paradigm, the P3S
scheme makes that the signature of the redacted transaction
is the same as the original one. Besides, Xu et al. [16] have
proposed a k-time modifiable and epoch-based redactable
blockchain based on CH and digital signature. This scheme
mitigates and penalizes malicious behaviors by limiting the
rewriting privilege and making a time-locked deposit.

In this work, we focus on security and functionality in
CH-based redactable blockchain. The proposed SDR-chain
achieves a fine-grained and decentralized access control of
redactions. Besides, the SDR-chain can support dynamic
and ensure forward/backward security when any authority
is offline. Thus, this work is regarded as a better solution to
blockchain redacting than the previous works.
Non-Cryptography-Based. Puddu et al. have first proposed
µchain [8] to implement redaction by issuing new version
transactions. Redaction is constrained by a time window
and the historic versions are hided by encryption. The one
holding the secret keys can recover the original transaction.
Besides, µchain needs to mutate all affected transactions
causing by modification to tackle transaction consistency.
As a result, the links between blocks are broken.

To support transaction deletion, Dorri et al. [9] have
proposed a MOF-BC scheme to flexibly manage IoT data
by issuing a removal/summary transaction. MOF-BC en-
sures blockchain consistency by recording all states of re-
moved/summarized transactions. Therefore, the bits of the
removal/summary transaction are usually much longer.

To maintain block connectivity, Deuber et al. [10] have
proposed a consensus-based voting scheme, which main-
tains links between blocks by storing the old state of the
redacted block in the block header. Nodes vote on the final
state of the redacted block on-chain during a period (1024
consecutive blocks, i.e., over a week). This scheme is appar-
ently significant in the redactable blockchain ecosystem but
it is impractical to frequently modify the block.

To make the redaction solution compatible with various
blockchains such as Bitcoin and Ethereum, Thyagarajan et
al. [11] have proposed Reparo which storing old states in a
database as a data repair layer on top of the blockchain. Li
et al. [40] have proposed a redactable blockchain protocol
supporting various network environment such as POW and
POS. Beside, the sequential works focus on local redaction
[41] and applications [42].

In this work, the proposed SDR-chain neither needs to
store the old state of the redacted block nor re-computes the
PoW puzzle for the redacted block. Without the long voting
period, the SDR-chain does not suffer from consensus delay.
Moreover, the SDR-chain achieves historic security which
prevents the modified history from being reconstructed.

9 CONCLUSION

In this paper, we have tackled the issues of redacting
transaction history in the blockchain and proposed the
SDR-chain. We first propose a dynamic and decentralized
attribute-based chameleon hash (DACH) function to make
blockchain redactable in a decentralized and controlled way.
In DACH-based SDR-chain, redactors can redact the historic

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

13

transactions by computing the DACH collisions. The redac-
tion is controlled by a group of dynamic nodes instead of
a single full trusted center. Besides, the designed delegation
algorithm of DACH achieves the functionality and security,
where any authority can leave and join the network se-
curely. According to the security and performance analysis,
our DACH is secure and has low computation complexity
and communication cost, and our DACH-based SDR-chain
satisfies the designed goals. In summary, our SDR-chain can
achieve dynamic support, scalable, and secure transaction-
level redactions in a fine-grained control and decentralized
way.

ACKNOWLEDGMENTS

This work is supported in part by the National
Key R&D Program of China (No. 2022YFB3103500), in
part by National Natural Science Foundation of China
(Grant no. 61932006, 62202071, U20A20176, 62072062),
in part by China Postdoctoral Science Foundation
(Grant no. 2022M710520, 2022M710518), in part by Nat-
ural Science Foundation of Chongqing, China (Grant
no. CSTB2022NSCQ-MSX1217, CSTB2022NSCQ-MSX0358,
cstc2022ycjh-bgzxm0031), in part by Special Foundation for
Chongqing Postdoctor, China (Grant no.2021XM2030), in
part by Sichuan Science and Technology Program (Grant no.
2021YFQ0056), and in part by Natural Science Foundation
(Grant no. CNS-2153393).

REFERENCES
[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash sys-

tem,” 2008.
[2] K. Gai, Y. Zhang, M. Qiu, and B. Thuraisingham,

“Blockchain-enabled service optimizations in supply chain
digital twin,” IEEE Transactions on Services Computing, pp.
1–12, 2022.

[3] E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and
J. Ueyama, “A survey of blockchain-based strategies for
healthcare,” ACM Computing Surveys (CSUR), vol. 53,
no. 2, pp. 1–27, 2020.

[4] K. Gai, Y. Wu, L. Zhu, M. Qiu, and M. Shen, “Privacy-
preserving energy trading using consortium blockchain
in smart grid,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 6, pp. 3548–3558, 2019.

[5] P. Taylor, “Global blockchain solu-
tions spending 2017-2024,” 2022. [Online].
Available: https://www.statista.com/statistics/800426/
worldwide-blockchain-solutions-spending/.

[6] D. Zhang, J. Le, N. Mu, and X. Liao, “An anonymous off-
blockchain micropayments scheme for cryptocurrencies in
the real world,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 50, no. 1, pp. 32–42, 2020.

[7] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and
Y. Liu, “Oracle-supported dynamic exploit generation for
smart contracts,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 19, no. 3, pp. 1795–1809, 2022.

[8] I. Puddu, A. Dmitrienko, and S. Capkun, “µchain: How to
forget without hard forks.” IACR Cryptology ePrint Archive,
vol. 2017, p. 106, 2017.

[9] A. Dorri, S. S. Kanhere, and R. Jurdak, “Mof-bc: A mem-
ory optimized and flexible blockchain for large scale net-
works,” Future Generation Computer Systems, vol. 92, pp.
357–373, 2019.

[10] D. Deuber, B. Magri, and S. A. K. Thyagarajan, “Redactable
blockchain in the permissionless setting,” in IEEE Sympo-
sium on Security and Privacy (S&P), 2019, pp. 124–138.

[11] S. A. K. Thyagarajan, A. Bhat, B. Magri, D. Tschudi,
and A. Kate, “Reparo: Publicly verifiable layer to repair
blockchains,” in International Conference on Financial Cryp-
tography and Data Security (FC), 2021, pp. 37–56.

[12] G. Ateniese, B. Magri, D. Venturi, and E. Andrade,
“Redactable blockchain – or – rewriting history in bitcoin
and friends,” in IEEE European Symposium on Security and
Privacy (EuroS&P), 2017, pp. 111–126.

[13] D. Derler, K. Samelin, D. Slamanig, and C. Striecks,
“Fine-grained and controlled rewriting in blockchains:
Chameleon-hashing gone attribute-based.” in 26th Annual
Network and Distributed System Security Symposium (NDSS),
2019.

[14] K. Huang, X. Zhang, Y. Mu, X. Wang, G. Yang, X. Du,
F. Rezaeibagha, Q. Xia, and M. Guizani, “Building
redactable consortium blockchain for industrial internet-
of-things,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 6, pp. 3670–3679, 2019.

[15] K. Huang, X. Zhang, Y. Mu, F. Rezaeibagha, X. Du, and
N. Guizani, “Achieving intelligent trust-layer for internet-
of-things via self-redactable blockchain,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 4, pp. 2677–2686, 2020.

[16] S. Xu, J. Ning, J. Ma, X. Huang, and R. H. Deng, “K-time
modifiable and epoch-based redactable blockchain,” IEEE
Transactions on Information Forensics and Security, vol. 16,
pp. 4507–4520, 2021.

[17] J. Ma, S. Xu, J. Ning, X. Huang, and R. H. Deng,
“Redactable blockchain in decentralized setting,” IEEE
Transactions on Information Forensics and Security, vol. 17,
pp. 1227–1242, 2022.

[18] D. Zhang, J. Le, X. Lei, T. Xiang, and X. Liao, “Explor-
ing the redaction mechanisms of mutable blockchains: A
comprehensive survey,” International Journal of Intelligent
Systems, vol. 39, no. 6, pp. 5051–5084, 2021.

[19] General Data Protection Regulation. [Online]. Available:
https://gdpr-info.eu.

[20] K. Shirriff, “Hidden surprises in the bitcoin
blockchain and how they are stored: Nelson
mandela, wikileaks, photos, and python software,”
2014. [Online]. Available: http://www.righto.com/2014/
02/ascii-bernanke-wikileaks-photographs.html#ref8.

[21] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf,
D. Müllmann, O. Hohlfeld, and K. Wehrle, “A quantitative
analysis of the impact of arbitrary blockchain content on
bitcoin,” in International Conference on Financial Cryptogra-
phy and Data Security (FC), 2018, pp. 420–438.

[22] C. K. Pyoung and S. J. Baek, “Blockchain of finite-lifetime
blocks with applications to edge-based iot,” IEEE Internet
of Things Journal, 2019.

[23] Y. Lu, J. Zhang, Y. Qi, S. Qi, Y. Zheng, Y. Liu, H. Song,
and W. Wei, “Accelerating at the edge: A storage-elastic
blockchain for latency-sensitive vehicular edge comput-
ing,” IEEE Transactions on Intelligent Transportation Systems,
pp. 1–15, 2021.

[24] G. Tian, Y. Hu, J. Wei, Z. Liu, X. Huang, X. Chen, and
W. Susilo, “Blockchain-based secure deduplication and
shared auditing in decentralized storage,” IEEE Transac-
tions on Dependable and Secure Computing, pp. 1–1, 2021.

[25] K. Gai, J. Guo, L. Zhu, and S. Yu, “Blockchain meets cloud
computing: A survey,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 3, pp. 2009–2030, 2020.

[26] Y. Zhang, K. Gai, J. Xiao, L. Zhu, and K.-K. R. Choo,
“Blockchain-empowered efficient data sharing in internet
of things settings,” IEEE Journal on Selected Areas in Com-
munications, vol. 40, no. 12, pp. 3422–3436, 2022.

[27] C. Lin, X. Huang, and D. He, “Ebcpa: Efficient blockchain-
based conditional privacy-preserving authentication for
vanets,” IEEE Transactions on Dependable and Secure Com-
puting, pp. 1–1, 2022.

[28] H. Krawczyk and T. Rabin, “Chameleon signatures,” in

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

14

Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2000.

[29] A. Lewko and B. Waters, “Decentralizing attribute-based
encryption,” in Annual International Conference on the The-
ory and Applications of Cryptographic Techniques (EURO-
CRYPT), 2011, pp. 568–588.

[30] A. Beimel, “Secure schemes for secret sharing and key
distribution,” in PhD thesis, 1996.

[31] A. Lewko and B. Waters, “Decentralizing attribute-based
encryption,” in Annual International Conference on the The-
ory and Applications of Cryptographic Techniques (EURO-
CRYPT), 2011, pp. 568–588.

[32] J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin,
and D. Slamanig, “Chameleon-hashes with ephemeral
trapdoors,” in IACR International Workshop on Public Key
Cryptography (PKC), 2017, pp. 152–182.

[33] M. Bellare, C. Namprempre, D. Pointcheval, and M. Se-
manko, “The one-more-rsa-inversion problems and the
security of chaum’s blind signature scheme,” Journal of
Cryptology, vol. 16, no. 3, pp. 185–215, 2003.

[34] G. Ateniese and B. de Medeiros, “On the key exposure
problem in chameleon hashes,” in International Conference
on Security in Communication Networks (SCN), 2004, pp.
165–179.

[35] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “Modeling the
impact of network connectivity on consensus security of
proof-of-work blockchain,” in IEEE Conference on Computer
Communications (INFOCOM), 2020, pp. 1648–1657.

[36] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin
backbone protocol: Analysis and applications,” in Annual
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2015, pp. 281–310.

[37] Charm-Crypto 0.5. [Online]. Available: https://github.
com/JHUISI/charm.

[38] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in IEEE Symposium on Security
and Privacy (S&P). IEEE, 2007, pp. 321–334.

[39] K. Samelin and D. Slamanig, “Policy-based sanitizable
signatures,” in Cryptographers’ Track at the RSA Conference
(CT-RSA), 2020, pp. 538–563.

[40] X. Li, J. Xu, L. Yin, Y. Lu, Q. Tang, and Z. Zhang, “Escaping
from consensus: Instantly redactable blockchain protocols
in permissionless setting,” IEEE Transactions on Dependable
and Secure Computing, pp. 1–20, 2022.

[41] R. Matzutt, B. Kalde, J. Pennekamp, A. Drichel, M. Henze,
and K. Wehrle, “How to securely prune bitcoin’s
blockchain,” in IFIP Networking Conference (Networking),
2020, pp. 298–306.

[42] J. Xu, K. Xue, H. Tian, J. Hong, D. S. L. Wei, and
P. Hong, “An identity management and authentication
scheme based on redactable blockchain for mobile net-
works,” IEEE Transactions on Vehicular Technology, pp. 1–1,
2020.

Di Zhang received the Ph.D. degree degree in
intelligent computing and information processing
from Southwest University, Chongqing, China,
2021. From December 2018 to December 2020,
she was a visiting scholar at Virginia Polytechnic
Institute and State University. She is currently a
research assistant with the College of Computer
Science, Chongqing University. Her research in-
terests include applied crypto, cloud computing
security and blockchain.

Junqing Le received the B.S. degree in soft-
ware engineering from Southwest Jiaotong Uni-
versity, Chengdu, China, in 2014, and the M.S.
degree in signal and information processing and
Ph.D. degree in intelligent computing and infor-
mation processing from Southwest University,
Chongqing, China, in 2017 and 2021, respec-
tively. From May 2019 to May 2021, he was a
visiting scholar at George Mason University. At
present, he is a research assistant with the Col-
lege of Computer Science, Chongqing Univer-

sity. His research interests include privacy protection, privacy machine
learning, cloud computing security, and blockchain.

Xinyu Lei received the Ph.D. degree with the
Department of Computer Science and Engi-
neering, Michigan State University, East Lans-
ing, MI, USA, in 2021. He is currently an As-
sistant Professor with the Department of Com-
puter Science, Michigan Technological Univer-
sity, Houghton, MI, USA. He worked as a Re-
search Assistant with the Texas A&M University
at Qatar, Doha, Qatar, in 2013. In 2017, he
worked as a Research Intern with Ford Motor
Company, Dearborn, MI, USA. His current re-

search focuses on machine learning and cybersecurity.

Tao Xiang received the B.Eng., M.S., and Ph.D.
degrees in computer science from Chongqing
University, Chongqing, China, in 2003, 2005,
and 2008, respectively. He is currently a Pro-
fessor with the College of Computer Science,
Chongqing University. He has published over
100 papers on international journals and confer-
ences. He also served as a referee for numer-
ous international journals and conferences. His
research interests include multimedia security,
cloud security, and privacy and cryptography.

Xiaofeng Liao received the BS and MS de-
grees in mathematics from Sichuan University,
Chengdu, China, in 1986 and 1992, respectively,
and the PhD degree in circuits and systems
from the University of Electronic Science and
Technology of China in 1997. At present, he
is a professor at Chongqing University and the
Dean of College of Computer Science. He is
also a Yangtze River Scholar of the Ministry of
Education of China. From November 1997 to
April 1998, he was a research associate at the

Chinese University of Hong Kong. From October 1999 to October 2000,
he was a research associate at the City University of Hong Kong. From
March 2001 to June 2001 and March 2002 to June 2002, he was a senior
research associate at the City University of Hong Kong. From March
2006 to April 2007, he was a research fellow at the City University of
Hong Kong. Professor Liao is associate editors for IEEE Transactions
on Cybernetics and IEEE Transactions on Neural Network and Learning
Systems, and he holds 4 patents, publishes 4 books and over 300 inter-
national journal and conference papers. His current research interests
include neural networks, nonlinear dynamical systems, cryptography,
and privacy protection.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261343

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:17:50 UTC from IEEE Xplore. Restrictions apply.

