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Abstract—Minable data publication can promote data sharing
among commercial companies and further facilitate the de-
velopment of data-driven services. However, these commercial
companies are often reluctant to publish their data due to
security concerns. The published data may contain some sensitive
information that is minable by malicious entities, leading to data
privacy leakage. Therefore, it is highly demanded to develop the
technologies supporting minable data publication with privacy
protection. In this paper, we propose a privacy-preserved minable
data publication scheme (PMDP). PMDP enables selective sen-
sitive association rules hiding while supporting the association
rule mining. In PMDP, how to balance the trade-off between
data privacy and data utility is the major problem, which can
be formulated as a multi-objective optimization problem. To
tackle this multi-objective optimization problem, we develop a
customized multi-objective evolutionary algorithm (MOEA). In
the customized MOEA, the local optimum trapping issue and
slow convergence speed issue are hard to be addressed. First,
to avoid being trapped into the local optimum, we carefully
design a novel mutation method to guarantee the diversity of
solutions. Second, to accelerate the convergence speed, we present
a preprocessing method before the evolution process of the
MOEA. In addition, we introduce the elite learning strategy into
the MOEA, so the convergence speed can be further accelerated.
At last, experiments are conducted over several datasets to
demonstrate the effectiveness of PMDP.

Index Terms—Minable data publication, association rule hid-
ing, multi-objective evolutionary algorithm

I. INTRODUCTION

M INABLE data publication can promote the data sharing
among commercial companies and further facilitate

the development of data-driven services, such as E-commerce
recommendation [1], social network analysis [2], traffic flow
prediction [3] and so on. However, these commercial compa-
nies often refuse to publish their data due to the security and
privacy concerns, because the data may contain some sensitive
information. That is to say, there is a conflict between data
privacy and data utility in minable data publication. To achieve
data privacy in minable data publication, a straightforward
solution is to encrypt the data by using standard encryption
algorithms (such as AES [4] and DES [5]). However, the
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formally encrypted data is pseudo-random, and thus, it is hard
to mine useful information from the encrypted data. Intuitively,
a feasible solution is to weaken the encryption to improve the
data utility in minable data publication. Therefore, we aim to
develop the technologies supporting some mining functional-
ities while selectively protecting the sensitive information.

In this paper, we focus on association rule mining, a top 3 al-
gorithm in data mining [6]. Then, we introduce the association
rule with a simple example. Suppose there is a dataset about
the transactions of a supermarket that has a series of products
on sale. Significantly, a data miner can notice that a large part
of the transactions containing “Beer” also contains “Diapers”.
This selection pattern “Beer → Diapers” is an “association
rule” that can be discovered by the association rule mining.
However, the mining results may lead to privacy and security
threats, and the supermarket manager does not want this
rule (“Beer → Diapers”) to be leaked to the commercial
competitors. If it is leaked when the commercial competitors
pretend to offer a discount package of buying “Beer” and
“Diapers” together, and this may steal a lot of customers
from the supermarket manager. Clearly, “Beer → Diapers” is
sensitive. In this paper, we select a portion of association rules
as the sensitive association rules, the other rules are called
non-sensitive rules. To sum up, the target problem is modeled
as how to support mining non-sensitive rules while keeping
sensitive association rules hidden in minable data publication.
For brevity, this problem is named as Sensitive Association
Rules Hiding (SARH) problem in this paper.

To address the SARH problem, there are several known
methods, and each of them has some limitations. For example,
(1) Low data privacy. Some works have tackled the SARH
problem by decreasing the frequency of sensitive rules. But
these works are either weak in the privacy rate [7] or only one
sensitive association rule can be hidden at a time [8]. So, data
privacy is weak. (2) Low data utility. Some works have formu-
lated the SARH problem into a single objective optimization
problem [9]. These works only consider the minimization of
privacy leakage as the optimization goal and fail to consider
how to improve data utility [10]. Hence, data utility is low. (3)
Low efficiency. Some homomorphic encryption-based methods
are presented to address the SARH problem. One of these
methods can securely perform data mining over encrypted data
[11] and the other allows outsourcing the mining tasks to a
third-party cloud [12]. However, the computational costs of
these methods are too high to implement on a large dataset.

In this paper, we propose a privacy-preserved minable data
publication scheme (PMDP) to enable selective sensitive asso-
ciation rules hiding while support the non-sensitive association
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rules mining. To achieve a controllable balance between data
privacy and data utility, PMDP formulates the SARH problem
as a multi-objective optimization problem (MOP) with two
objectives, i.e., minimizing privacy leakage and maximizing
data utility. To efficiently solve the MOP, PMDP develops a
customized multi-objective evolutionary algorithm (MOEA).
At first, PMDP designs a preprocessing mechanism to filter
the irrelevant data so that an amount of irrelevant data can
be removed before the evolution of the MOEA. Then, PMDP
proposes a novel mutation method consisting of a random and
a directional mutation operator in the MOEA to produce the
solutions. Furthermore, PMDP introduces the elite learning s-
trategy into the MOEA to accelerate the convergence speed. In
addition, to quantify the quality of solutions, PMDP presents a
novel fitness function, in which one sub-objective function is
used to evaluate the privacy leakage and another sub-objective
function is used to evaluate the data utility.

There are two major challenges in PMDP. The first chal-
lenge is how to avoid being trapped into the local optimum.
The search direction in solution space is greatly influenced
by the evolution scheme, and an inappropriate design makes
the solutions being trapped into the local optimum [13]. To
tackle this challenge, we add a random mutation operator to
the mutation, by which a solution will be randomly generated
to improve the diversity of solutions. The second challenge
is how to accelerate the convergence speed. Ensuring that
PMDP can obtain the optimum solution while guarantee the
convergence speed is a significant problem for the design
of MOEA. Especially, the published dataset may be sparse,
which slows down the convergence speed of the MOEA. To
tackle this challenge, we present a preprocessing mechanism
to reasonably filter the dataset to reduce the search space. In
addition, we adopt an elite learning strategy, in which some
solutions are generated by learning from the elite set (i.e.,
the Pareto-optimal solutions) with a certain probability, so the
convergence speed can be improved.

The contributions of our work are summarized as follows.

1) We solve the SARH problem in minable data publication
by proposing PMDP. In PMDP, the SARH problem is
formulated as a MOP, in which minimizing privacy leak-
age and maximizing data utility are the two objectives.
Then, a customized MOEA is designed to solve the
MOP, and a controllable balance between data privacy
and data utility is realized.

2) A novel mutation method is carefully designed to avoid
the solutions of the MOEA being trapped into the local
optimum. Specifically, a random mutation operator is
added to produce the random solutions and keep the
diversity of solutions, so global search ability of MOEA
can be improved.

3) A preprocessing mechanism is proposed to reduce the
search space, and thus the convergence speed of the
MOEA is greatly accelerated. Moreover, the elite learn-
ing strategy is introduced to further accelerate the con-
vergence speed of the MOEA.

The rest of this paper is organized as follows. Section II
reviews the association rule mining with several necessary

definitions, and a formal problem statement is given. Sec-
tion III gives a detailed description of PMDP. Section IV
shows the evaluation results. Section V reviews the related
works. Finally, Section VI concludes this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first introduce association rule mining
with several necessary definitions. Then, the formal problem
statement is given.

A. Association Rules Mining

Consider a transactional dataset T = {t1, . . . , ti, . . . , tn},
where ti is a binary vector and denotes the ith transaction. If
an item exists in the ith transaction, the corresponding element
in ti equals 1; otherwise, equals 0. All the itemset in T is S,
in which the jth item is denoted by sj . Suppose that A and
B are two subsets of S, and A ∩B = ∅. Then, a rule can be
expressed by (A→ B), where A is called the antecedent and
B is called the consequent. The frequently used notations in
this paper are summarized in TABLE I.

TABLE I
A SUMMARY OF THE FREQUENTLY USED NOTATIONS.

Notation Meaning

T = {ti} Dataset, where ti is the ith transaction
S = {sj} Itemset, where sj is the jth item
minS The support threshold
minC The confidence threshold
SR The sensitive rules
NR The non-sensitive rules
GR The ghost rules
CT The critical transactions
SI The sensitive items
CR The critical rules
xn,i The ith solution of nth iteration
Xn = {xn,i} The population at nth iteration
L The Pareto-optimal solutions
On,i A learning object that is randomly chosen from L
Pm Mutation probability
Pc Crossover probability
F(xn,i) The fitness value of xn,i

Npop Maximum population size
Tmut The random mutation condition
Nmut The times that the update is not performed
Nite The number of iterations
Tfit The terminate condition in terms of fitness
Tite The terminate condition in terms of iteration

To mine the rules, the following two definitions will be used,
i.e., Support and Confidence.

Definition 1 (Support). The Support of (A→ B) is

Sup(A→B) =
|A ∪B|
|T |

× 100%, (1)

where |T | is the number of transactions, and |A ∪ B| is the
number of transactions containing both A and B in dataset
T .

Definition 2 (Confidence). The Confidence of (A→ B) is

Conf(A→B) =
|A ∪B|
|A|

× 100% =
Sup(A→B)

Sup(A)
, (2)
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where |A| is the number of transactions containing A in
dataset T .

For the rule (A→ B), its Support quantifies the occurrence
frequency that both A and B exist in the dataset T , and
its Confidence quantifies the occurrence frequency that B
exists when A exists. Based on the above two definitions, the
association rule can be defined as follows.

Definition 3 (Association Rule). It is said that the association
rule (A→ B) holds, if one has

Sup(A→B) ≥ minS and Conf(A→B) ≥ minC, (3)

where minS and minC are the prespecified-thresholds of
Support and Confidence, respectively.

The miner can adjust minS and minC to mine useful rules
according to their demands.

B. Problem Statement

In this paper, we focus on the SARH problem of minable
data publication and aim to present a scheme that can se-
lectively protect sensitive association rules while keeping a
high data utility. Based on this, we tackle the SARH problem
from the perspective of MOP (the two objects are data privacy
and data utility). There have three initial conditions: (i) all
rules have already been found from the given dataset by the
publisher, (ii) the publisher selects a portion of association
rules as the sensitive rules (SR), and the other rules are called
non-sensitive rules (NR), (iii) the problem is to change the
given dataset so that SR cannot be found and NR can be found
using the same Support and Confidence threshold values. Then
the SARH problem can be defined as follows.
Input:

1) Original dataset,
2) Sensitive rules,
3) Two mining thresholds, minS and minC.

Output:
1) Hiding schemes.

To address this problem, PMDP is presented.

III. PMDP DESIGN

In this section, we describe the design of PMDP in detail.
PMDP consists of four phases, i.e., preprocessing, initializa-
tion, evolution, and termination. The flowchart of PMDP is
shown in Fig. 1 and its pseudo-code is given as Algorithm 1.

A. Preprocessing

In this subsection, we design a preprocessing mechanism to
reduce the search space of the customized MOEA.

Technically, one can hide a rule by reducing its Support
or Confidence to below the related mining thresholds. And
reducing the Support or Confidence can be achieved by
deleting/adding specific items from/into the original dataset.
However, these two approaches will cause the following three
side-effects.

Algorithm 1: PMDP
Input: T , SR, minS and minC
Output: L

1 Generate CT , SI , and CR // Preprocessing
2 Generate X 0 and F(X 0) // Initialization
3 L ← ∅, Nmut ← 0, Nfit ← 0
4 repeat
5 Xn+1, L, Nmut ← DiffLearn(Xn, L, Nmut)
6 Nite ← Nite + 1
7 until Tfit ≤ Nmut or Tite ≤ Nite;
8 L ← {x∗|F(x∗) � F(x)}, x ∈ {L ∪ Xn+1}

- Hiding Failure. Some SR exist in the original dataset
but are failed to be hidden.

- Lost Rule. Some NR exist in the original dataset but
are lost.

- Ghost Rule (GR). Some fake rules do not exist in the
original dataset but are generated.

Note that changing the antecedent of SR results in more
serious side-effects than changing the consequent of SR [14].
Meanwhile, deleting the item will not generate GR, because
the Support of any fake rule can not be increased. Therefore,
PMDP decides to delete the consequent of SR.

Now, we give three definitions for the preprocessing.

Definition 4 (Critical Transaction [10]). A critical transaction
is a transaction that supports one or more SR. Additionally, a
transaction is said to support a rule if the transaction contains
all the items of this rule.

Based on Definition 4, only the SR-related transactions are
kept as the critical transactions (CT ), and those un-related
transactions can be filtered out to reduce the search space.

Definition 5 (Sensitive Item [10]). If a SR has more than one
item in its consequent, the sensitive item is the item which has
the highest frequency in the consequent of SR and the lowest
frequency in NR. Otherwise, the item in the consequent of SR

will be chosen as the sensitive item.

PMDP deletes the sensitive item (SI ) to hide SR. That is
to say, only the NR containing SI will be affected. Therefore,
the critical rule (CR) is defined so that the lost rule rate can
be calculated by evaluating the losses of CR.

Definition 6 (Critical Rule). A NR is designated as a critical
rule if it contains any sensitive item.

The preprocessing mechanism is summarized as follows.
a) PMDP finds CT ,
b) PMDP finds SI ,
c) PMDP finds CR.
By the above three steps, PMDP can reduce the search

space, so the convergence speed can be accelerated. Now, we
give a simple example to illustrate preprocessing.
Example. An example dataset is given by Fig. 2(a), which
contains 10 transactions and 6 items denoted from a to f . The
mined 14 association rules (minS = 40%, minC = 70%) are
shown in Fig. 2(b).
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Fig. 1. The flowchart of PMDP.

( ) Original Dataset ( ) Rules Before Privacy Protection

Fig. 2. The example dataset and the mined rules.

The following two rules are selected as SR.

(i) b→ e and (ii) f → b, e

Then, the preprocessing is performed as follows.

- Step 1: Find CT . Based on Definition 4, CT is constituted
by 7 transactions, i.e., t1, t3, t5, t6, t7, t9, and t10.

- Step 2: Find SI . For the first SR, obviously, item e should
be the SI . For the second SR, item e satisfies Definition 5.
Thus, we have SI = {e}.

- Step 3: Find CR. A NR containing SI is identified as a
CR, so there are 9 CR in the 12 NR.

( ) Critical Transactions ( ) Critical Rules

Fig. 3. The critical transactions and critical rules obtained by preprocessing.

Fig. 3 shows the results of preprocessing, and we can obtain
that |CT |

|T | = 7
10 = 70% and |CR|

|NR| =
9
12 = 75%. Apparently, the

preprocessing can reduce the amount of data and the search
space.

B. Initialization

We proceed to introduce the initialization, which is based
on a fixed-length representation scheme and can be divided
into the following three steps.

a) Transformation. CT is transformed into a 0-1 matrix. In
such matrix, the (i, j)th element equals 1 means that the
item sj exists in transaction ti. For the matrix of CT ,
the size is |CT | × |S|, where |CT | is the number of CT

and |S| is the number of items.
b) Selection. For the matrix of CT , the SI -related columns

are selected as the initial solution x0. It is a |CT |× |SI |
binary matrix, where |SI | is the number of SI .

c) Modification. The elements in x0 are randomly modi-
fied, and then we generate the initial population X 0 ∈
R|CT |×|SI |×Npop , in which the population size Npop is
empirically set.

Based on the example dataset, we continue to illustrate the
initialization.
Example. Fig. 2 shows the itemset S = {a, b, c, d, e, f} and
|S| = 6. Then, the initialization is performed as follows.

- Step 1: Transform CT . Fig. 3(a) shows the CT . The
transformed matrix is shown in Fig. 4(a), in which 4
items (i.e., a, b, e and f ) belong to t1 so it can be
represented by 110011. Similarly, t3, t5, t6, t7, t9, and
t10 are respectively denoted by a binary vector.

- Step 2: Generate x0,1. For the given CT , we pick the
SI -related columns and then obtain the initial solution
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( ) The Matrix of Critical Transactions ( ) Initial Population

Fig. 4. The initialization process of PMDP for the example dataset.

x0,1, which is a 7× 1 binary vector since |CT | = 7 and
|SI | = 1.

- Step 3: Generate X 0. Several elements of x0,1 are ran-
domly modified to get the initial population X 0. The
obtained X 0 has been shown in Fig. 4(b).

C. Evolution

Let us introduce the evolution process of PMDP. Before
that, we design the fitness function to quantify the quality of
solutions.

1) Fitness Function: The fitness function is represented by

min F(x) = (fprivacy(x), futility(x)), (4)

where fprivacy(x) is designed to evaluate the data privacy, and
futility(x) is designed to measure the data utility (i.e., the lost
rule rate and the ghost rule rate).

Let |SR|, |CR|, |NR|, |CT |, and |GR| denote the number of
SR, CR, NR, CT , and GR, respectively. Besides, let Rl denote
the lth SR and Rv denote the vth CR. Then, for any solution
x, the first subfunction fprivacy(x) can be represented by

fprivacy(x) =

∑|SR|
l=1 rl +

∑|SR|
l=1 hl

|SR|
, (5)

where rl is a binary decision variable. When rl = 1, it
indicates that PMDP fails to hide Rl. Besides, we let hl denote
the hiding distance of Rl, and its specific form is

hl = min{ConfRl
−minC, SupRl

−minS}rl. (6)

In fprivacy(x), the value of
∑|SR|

l=1 rl increases by 1 when
one SR is failed to be hidden, which may be caused by
the change of multiple transactions. Namely,

∑|SR|
l=1 rl only

provides a coarse-grained evaluation about the hiding failure
rate. For a fine-grained evaluation, we introduce

∑|SR|
l=1 hl,

where hl is calculated by Eq. (6) and can reflect how much
at least the Confidence or the Support of Rl needs to be
decreased for hiding Rl. Thus, fprivacy(x) provides a more
precise evaluation of the quality of the solutions on data
privacy.

The second subfunction futility(x) can be represented by

futility(x) = (

∑|CR|
v=1 pv +

∑|CR|
v=1 lv

|NR|
,
|CT | − |x|
|T |

), (7)

where |x| is the number of elements with value 1 in x, and
pv is a binary decision variable. When pv = 1, it indicates

that PMDP loses Rv . Besides, let lv denote the lost distance
of Rv , and its specific form is

lv = max{minC − ConfRv ,minS − SupRv}pv. (8)

In futility(x), the value of
∑|CR|

v=1 pv increases by 1 when
a CR loses during the hiding process. Similar to fprivacy(x),∑|CR|

v=1 pv is a coarse-grained evaluation about the lost rule
rate. Thus,

∑|CR|
v=1 lv is adopted as a fine-grained evaluation,

where lv is calculated by Eq. (8) and can reflect how much
at most the Confidence or the Support of Rv needs to be
increased for avoiding the loss of Rv . Owing to that PMDP
hides SR by removing its consequent, there is no GR gener-
ated. Hence, the ghost rule rate of PMDP identically equals
0. Besides, we hope to further reduce the loss of data utility,
so we introduce the data change rate |CT |−|x|

|T | as the auxiliary
information to quantify the quality of solutions.

During the evolution, PMDP calculates the fitness of each
solution and finds the Pareto-optimal solutions. Fig. 5 shows
the relationship between the general optimal solution and
the Pareto-optimal solutions. Pareto-optimal means that it is
impossible to make at least one object better without making
any other object’s value worse.

Fig. 5. The relationship between the general optimal solution and the Pareto-
optimal solutions.

Then, we give the following definitions of Dominate and
Pareto-optimal.

Definition 7 (Dominate [15]). A vector F∗ = (f∗1 , . . . , f
∗
d )
>

is said to dominate another vector F = (f1, . . . , fd)
>, if

F∗ � F

holds, where F∗ � F means that ∀ i ∈ {1, . . . , d}, f∗i ≤ fi
and ∃ i ∈ {1, . . . , d}, f∗i < fi.

Definition 8 (Pareto-optimal [15]). A solution x∗ is called a
Pareto-optimal if no other solutions dominate it.

2) Evolution with Elite Learning: We design an evolution
scheme DiffLearn with an elite learning strategy. DiffLearn
includes filtering, mutation, crossover, and selection. The
pseudo-code is given as Algorithm 2, and the main steps of
DiffLearn are described as follows.

a) Filtering. The Filtering is performed as

L = {x∗|F(x∗) � F(x)}, (9)
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Algorithm 2: DiffLearn
Input: Xn, L and Nmut

Output: Xn+1, L and Nmut

1 L ← {x∗|F(x∗) � F(x)} // Filtering
2 for i = 1, 2, ...,Npop do
3 Select On,i from L // Select learning

object
4 if Nmut > Tmut then
5 d∗,i ←Mrand;

6 else
7 d∗,i ← dPm − r1eOn,i + dr1 − Pme

// Mutation
8 x∗,i ← dPc − r2ed∗,i + dr2 − Pcexn,i

// Crossover
9 Calculate F(x∗,i) // Calculate fitness

10 if F(x∗,i) � F(xn,i) then
11 xn+1,i ← x∗,i; F(xn+1,i)← F(x∗,i)

// Selection
12 Nmut ← 0;

13 else
14 Nmut ← Nmut + 1;

where x∗ is a Pareto-optimal solution that satisfies
Definition 8, and the Pareto-optimal solutions constitute
the elite set L. Both x∗ and x belong to {L ∪ Xn}.

b) Mutation. Set a mutation threshold Tmut smaller than
the terminate threshold Tfit (Sec. III-D). Besides, we let
Nmut denote the times that the update is not performed.
Then, the Mutation is performed as follows.
(i) Nmut > Tmut,

d∗,i =Mrand, (10)

where Mrand is a solution randomly generated and
d∗,i is utilized to generate the ith solution of the next
iteration.
(ii) Nmut ≤ Tmut,

d∗,ik,m =

{
on,ik,m, if r1 ≤ Pm,

1, otherwise,
(11)

where the subscript (k,m) denotes the (k,m) element of
a variable, and k ∈ {1, . . . , |CT |}, m ∈ {1, . . . , |SI |},
hereinafter are the same. Hence, d∗,ik,m is the (k,m)th
element of d∗,i, and on,ik,m is the (k,m)th element of
On,i, a learning object randomly chosen from the elite
set L. Moreover, Pm denotes the mutation probability,
and r1 is uniformly distributed in (0, 1).

c) Crossover. The Crossover is performed as

x∗,ik,m =

{
d∗,ik,m, if r2 ≤ Pc,

xn,i
k,m, otherwise,

(12)

where x∗,ik,m is an element of x∗,i that denotes the ith
solution of each iteration. The crossover probability is
denoted by Pc. The random number r2 is uniformly
distributed in (0, 1).

d) Selection. The Selection is performed as

xn+1,i =

{
x∗,i, if F(x∗,i) � F(xn,i),

xn,i, otherwise,
(13)

where xn+1,i is the ith solution of (n+1)th iteration.

Take xn,i as an example, the specific evolution process is
as follows.

- Step 1: Before the evolution of the nth iteration, D-
iffLearn first performs Filtering and then the obtained
Pareto-optimal solutions are selected as the elite set L.
For the 1st iteration, the elite set L is generated by
performing the Filtering on the initial population, and
each element of L is an elite solution.

- Step 2: DiffLearn checks whether random mutation con-
dition Nmut > Tmut holds or not. If the condition holds,
a random solutionMrand will be generated and assigned
to d∗,i by Eq. (10), and then jump directly to Step 3. If
not, DiffLearn will perform Mutation for each element of
xn,i as Eq. (11). When r1 is smaller than Pm, the value
on,ik,m of the selected learning object On,i will be assigned
to d∗,ik,m. Otherwise, the value of d∗,ik,m will be set to 1.

- Step 3: DiffLearn performs as Eq. (12). If the random
number r2 is smaller than Pc, the mutation result d∗,ik,m

will be assigned to x∗,ik,m. If not, DiffLearn keeps the
parent solution’s value, i.e., x∗,ik,m = xn,i

k,m. Then, the child
solution x∗,i is generated.

- Step 4: As Eq. (13), PMDP first calculates the child
solution’s fitness. Then, the solution with smaller fitness
will be kept as the parent solution of next iteration. If
there is no update during this iteration, the value of Nmut

is incremented by 1.

Compared with the general EA in [16], DiffLearn designs an
extra step, Filtering (Step 1), in which the elite set is composed
of the Pareto-optimal solutions. The convergence speed of
PMDP can be improved with the elite learning strategy. Some
researchers ignored that the utilization of elite learning in
evolution [17]. Besides, DiffLearn will assign 1 to d∗,ik,m if
r1 is greater than the mutation probability Pm. It is different
from the mutation which uses the exclusive or operation to get
the mutation result [18]. This kind of mutation may cause a lot
of unnecessary change. From Definition 3, we know that the
fewer change means the smaller of lost rule rate. In addition,
to avoid trapping at a local optimum, PMDP introduces Nmut.
If Nmut exceeds a given threshold, DiffLearn will generate a
random solution, which can improve the population diversity.

D. Termination

Two parameters, Tfit and Tite, are selected as the terminate
conditions. Once Tfit ≤ Nmut holds, the evolution terminates
and arrives at the final result. Besides,Nite denotes the number
of iterations, and the evolution terminates when Nite exceeds
Tite. Hence, the terminate condition is Tite ≤ Nite or Tfit ≤
Nmut. The evolution process of DiffLearn will repeat until at
least one of these two termination conditions is satisfied.
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IV. PERFORMANCE EVALUATION

In this section, experiments are conducted to evaluate the
performance of PMDP. We repeat the experiment 10 times,
and the averages of these experimental results are compared
with COA4ARH [10]. The experimental-related settings are
given as follows.

- Implementation. PMDP is implemented by MATLAB.
Experiments are performed on a system with Microsoft
Windows 7 32-bit Operating System (3.30GHz Intel Core
i5-4590 processor CPU and 4.00 GB RAM).

- Datasets. We adopt three typically public datasets1, i.e.,
Mushroom, c20d10k, and BMS1. The characteristics of
the three datasets are shown in TABLE II, where Avg.Len
and Max.Len denote the average and the maximum
length of the transactions, respectively.

TABLE II
CHARACTERISTICS OF DATASETS

Dataset Trans. Items Avg.Len Max.Len Type

Mushroom 8,416 119 23 23 Dense
c20d10k 10,000 192 20 20 Dense
BMS1 59,601 497 2.51 267 Sparse

- Parameters Setting. The parameters of the three datasets
are shown in TABLE III, in which Npop can be empiri-
cally set by users according to their demands.

TABLE III
PARAMETERS SETTING OF DATASETS

Dataset Rules minS minC Pm Pc |SR| Tite Tfit Npop

Mushroom 3,828 40% 70% 0.8 0.9
30 20 5 100c20d10k 91,878 50% 70% 0.6 0.8

BMS1 19,655 0.1% 5% 0.5 0.7

- Metrics. The main used metrics are the three side-effects,
i.e., (1) hiding failure rate, (2) lost rule rate, and (3) ghost
rule rate. Besides, another two metrics are used, i.e., (1)
the running time, and (2) the ratio of |CT |

|T | and |CR|
|NR| .

A. Performance of Data Privacy

We first evaluate the performance of data privacy, i.e., the
hiding failure rate. The hiding failure rates of PMDP are
compared with that of COA4ARH, and they are shown in
Fig. 6. To conduct the comparison, we choose the solution
which has the lowest hiding failure rate at each iteration. The
detailed analysis is given as follows.

Fig. 6 shows the final results and the evolution process
of PMDP and COA4ARH. From Fig. 6(a), we can see that
both PMDP and COA4ARH converge to 0. From Fig. 6(b),
Fig. 6(c), and Fig. 6(d), one can observe that PMDP shows
a faster convergence speed than COA4ARH for the three
datasets. To sum up, PMDP ensures an optimal solution and
provides a faster convergence speed.

1http://www.philippe-fournier-viger.com/spmf/
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Fig. 6. Hiding failure rate comparison of PMDP and COA4ARH
under three datasets.

B. Performance of Data Utility

We then evaluate the performance of data utility, i.e., the
lost rule rate and the ghost rule rate. The detailed analysis is
given as follows.

1) Evaluation of the lost rule rate: For the evaluation of
the lost rule rates that obtained by PMDP and COA4ARH, we
give the related results in TABLE IV, where Mean and Std.
denote the mean and the standard deviation of the lost rule
rates at 10 times running, respectively. Fig. 7 shows the mean
of the final lost rule rates and the related evolution process of
PMDP and COA4ARH, respectively. Specifically, we select
the solution which has the lowest hiding failure rate at each
iteration for this comparison. If some solutions have the same
hiding failure rate, we select the solution which has the lowest
lost rule rate.
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Fig. 7. Lost rule rate comparison of PMDP and COA4ARH under
three datasets.

Specifically, the final lost rule rates obtained by PMDP and
COA4ARH are plotted in Fig. 7(a). For PMDP, the lost rule
rates of the three datasets are 77.08%, 83.42%, and 21.79%,
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TABLE IV
THE STATISTICS INFORMATION OF THE LOST RULE RATE ( |LostRules|

|CR| )

Dataset Methods No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Mean Std.

Mushroom
PMDP 0.8058 0.7775 0.8058 0.8054 0.7487 0.8054 0.7413 0.7506 0.7340 0.7336 0.7708 0.0323

COA4ARH 0.7871 0.8009 0.7914 0.8154 0.8851 0.7956 0.8009 0.7871 0.7914 0.8154 0.8070 0.0292

c20d10k
PMDP 0.8236 0.8253 0.8123 0.8441 0.8441 0.8815 0.8123 0.8123 0.8343 0.8518 0.8342 0.0220

COA4ARH 0.8074 0.8890 0.8332 0.8342 0.8748 0.8890 0.8074 0.8332 0.8342 0.8748 0.8477 0.0315

BMS1
PMDP 0.2319 0.1780 0.2696 0.1529 0.2264 0.2201 0.2592 0.1931 0.2293 0.2182 0.2179 0.0353

COA4ARH 0.3338 0.3744 0.4342 0.4342 0.3684 0.3778 0.3934 0.3338 0.3744 0.4342 0.3859 0.0382

respectively. For COA4ARH, the lost rule rates of the three
datasets are 80.70%, 84.77%, and 38.59%, respectively. We
can see that the lost rule rate of COA4ARH is higher than
that of PMDP. Besides, Fig. 7(b) shows the evolution process
of the lost rule rates obtained by PMDP and COA4ARH
under the Mushroom dataset. We can see that PMDP shows
a faster convergence speed than COA4ARH, and we can
obtain this conclusion from Fig. 7(c) and Fig. 7(d) as well.
From this point of view, the concept of CR contributes to the
acceleration of the convergence speed. To sum up, PMDP has
better performance on data utility (i.e., lower lost rule rate)
than COA4ARH.

2) Evaluation of the ghost rule rate: This part evaluates
the ghost rule rates of PMDP and COA4ARH.
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Fig. 8. Ghost rule rate comparison of PMDP and COA4ARH under
three datasets.

Fig. 8 shows that the ghost rule rate identically equals 0
in the hiding process of PMDP and COA4ARH. The ghost
rule is a common issue for several existing algorithms, such
as DSR [7]. Apparently, the influence of ghost rule has been
successfully eliminated in PMDP.

C. Performance on Optional Hiding
We now turn to evaluate the performance on optional hiding,

namely, the selectivity of the solution. Fig. 9 shows the Pareto-
optimal solutions obtained by PMDP and the optimal solution
obtained by COA4ARH under three datasets.

Fig. 9 shows that the solutions of PMDP are almost evenly
distributed on the solution space. The reason is that PMDP
considers the importance of each side-effect equally. So, there
are Pareto-solutions generated. Each Pareto-optimal solution
of PMDP is an optional hiding scheme for a dataset to deal
with the SARH problem. Meanwhile, COA4ARH chooses to
prioritize the hiding failure rate, thus, there is only one solution
obtained by COA4ARH, which makes the publisher have no
other choices. To sum up, PMDP provides a variety of options
for the data publisher to achieve the selectively SR hiding.
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Fig. 9. Performance on optional solutions under three datasets.

Besides, PMDP formulates the SARH problem as a MOP,
in which one objective is data privacy (i.e., hiding failure rate),
and another objective is data utility (i.e., lost rules rate). From
Fig. 9, one can observe that the hiding failure rate is negatively
correlated with the lost rule rate. The results of Pareto-optimal
solutions demonstrate that it is reasonable to adopt the MOEA.

D. Performance on Efficiency

In this section, we demonstrate the efficiency of PMDP.

10852.25

42443.37

1279.44
5163.31

20076.88

461.87

Mushroom c20d10k BMS1
0

1

2

3

4

5

R
u
n
n
in

g
 T

im
e
 (

s
e
c
.)

10
4

COA4ARH

PMDP

Fig. 10. Running time comparison of PMDP and COA4ARH under
three datasets.

Fig. 10 shows the running time of PMDP and COA4ARH
under three datasets. One can observe that the running time
of PMDP under three datasets is about half of the running
time of COA4ARH. In addition, c20d10k costs more time than
Mushroom and BMS1.
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Fig. 11. Comparison of |CT |
|T | and |CR|

|NR| under three datasets.

Fig. 11 shows |CT |
|T | (light blue) and |CR|

|NR| (green) of the three
datasets, and it demonstrates the rationality of the proposed
preprocessing mechanism again. One can observe that the
|CT |
|T | of the first two datasets are significantly high and even

approach 1. For BMS1 dataset, |CT |
|T | is significantly low and

nearly equals 0. Besides, the |CR|
|NR| of the first two datasets is

relatively high, and both of them are over 50%. Meanwhile, the
|CR|
|NR| of BMS1 is 15.32%. Because we only need to calculate
CR for evaluating the lost rule rate, the computational cost
of PMDP is reduced. Apparently, PMDP reduces the search
space of the customized MOEA in dealing with the SARH
problem.

From Fig. 10 and Fig. 11, we can infer that the running
time may be influenced by the type of dataset, |CT |

|T | , and |CR|
|NR| .

Especially, higher |CR|
|NR| may cause a longer running time. To

sum up, PMDP shows better performance on efficiency than
COA4ARH.

V. RELATED WORK

This section briefly reviews the work related to this paper.
To our knowledge, these methods can be roughly divided into
two types, i.e., the traditional method and the heuristic method.

A. Traditional Method

1) Reconstruction-based Method: The reconstruction-based
method first reconstructs the dataset and then conducts the as-
sociation rules mining, such that the privacy can be preserved.
For instance, a reconstruction approach is presented to estimate
the distribution of data, in which several classifiers are further
designed to evaluate the performance of the reconstructed data
and the original data [19]. Besides, to balance the privacy and
the data utility, another reconstruction-based algorithm called
DR-PPFIM is proposed in [20]. DR-PPFIM first identifies the
frequent itemsets related to sensitive frequent itemsets and
removes them, and then a reconstruction scheme is performed.
But, the adopted reconstruction scheme may not be global
optimum for the hiding purpose.

2) Sanitization-based Method: To protect sensitive infor-
mation, the sanitization-based method has emerged [21]. For
instance, some malicious attackers can utilize social media in-
formation in a published dataset to predict private information.
To reduce the accuracy of this kind of attack, a sanitization-
based method is proposed in [22]. Besides, the data sharing
among a variety of organizations also causes privacy prob-
lems. Then, the researchers design three sanitization-based

mining algorithms for privacy-preserving utility mining [23].
Our proposed scheme hides the sensitive rules by deleting
the specific items from the dataset, which is similar to the
sanitization-based method. But, the proposed scheme provides
more choices and a data utility guarantee.

B. Heuristic method

1) SOEA-based method: The single-objective evolutionary
algorithm (SOEA)-based method shows great performance on
the finding of the optimal solution [24], [25]. For example,
owing to the great ability to explore the search space, the
particle swarm optimization (PSO) algorithm is applied to hide
rules [26]. Compared with the genetic algorithm (GA)-based
method [27] which pre-defines weights for those side-effects,
the PSO algorithm can outperform on the effectiveness of pro-
tecting/hiding SR. In addition, a cuckoo search optimization
algorithm is adopted for deleting/inserting items from/into the
dataset, and a solution with the fewest side-effects is obtained
[10]. It shows better performance than the GA-based hiding
strategy [28] and DSR [7]. But these works only consider the
minimization of privacy leakage as the optimization goal and
fail to consider improving data utility. Hence, the data utility
of the protected dataset is low.

2) MOEA-based Method: Several MOEA-based method
are presented to solve the problem that exists in the SOEA-
based method [29]–[31]. In the beginning, the multi-objective
genetic algorithm is utilized to mine association rule [29].
Some works have aimed at association rules mining, such
as a MOEA-based method is presented for mining the fuzzy
emerging patterns [32], another indexed set representation
scheme-based MOEA for mining high utility patterns [33], and
a hybrid MOEA methods for rapidly and directly mining the
high-quality rules [34]. Recently, the researchers focus on the
MOEA-based method to privacy-preserved mine association
rules. For instance, a MOEA-based algorithm is presented, but
it can hide only one sensitive association rule at a time [8].
Based on MOEA, another method of frequent itemset hiding is
proposed in [35], in which the sensitive frequent itemset hiding
is achieved by removing specific items. But, it generates the
ghost rule, which may result in a higher loss of data utility.

Besides, the above mentioned methods adopt the tradition-
al MOEA. However, with the increasing of data size, the
performance of traditional MOEA often deteriorates rapidly.
To address this large-scale optimization problem, a series of
algorithms are presented [36]–[38]. The specific challenges of
the large-scale optimization problem are examined empirically
in [36], [37]. In addition, a self-evaluation evolution approach
is proposed in [38]. In the future, the privacy-preserving
minable data publication can be solved by these algorithms.

VI. CONCLUSION

This paper presents PMDP scheme to tackle the SARH
problem to achieve privacy protection in minable data publica-
tion. The superiority of PMDP has been verified by intensive
experimental results. PMDP provides more optional solutions
of privacy protection for data publishers since it formulates
the SARH problem as a MOP (two objects are data privacy
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and data utility). Besides, PMDP can provide a solution with
a lower lost rule rate under the same hiding failure rate. In
addition, PMDP has the advantage to be quick protection, and
the proposed preprocessing mechanism allows PMDP to have
a low computational cost.
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