
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 4329

Privacy-Preserving Federated Learning With
Malicious Clients and Honest-but-Curious Servers

Junqing Le, Member, IEEE, Di Zhang , Xinyu Lei , Member, IEEE, Long Jiao ,
Kai Zeng , Member, IEEE, and Xiaofeng Liao , Fellow, IEEE

Abstract— Federated learning (FL) enables multiple clients to
jointly train a global learning model while keeping their training
data locally, thereby protecting clients’ privacy. However, there
still exist some security issues in FL, e.g., the honest-but-curious
servers may mine privacy from clients’ model updates, and the
malicious clients may launch poisoning attacks to disturb or
break global model training. Moreover, most previous works
focus on the security issues of FL in the presence of only
honest-but-curious servers or only malicious clients. In this paper,
we consider a stronger and more practical threat model in
FL, where the honest-but-curious servers and malicious clients
coexist, named as the non-fully trusted model. In the non-fully
trusted FL, privacy protection schemes for honest-but-curious
servers are executed to ensure that all model updates are
indistinguishable, which makes malicious model updates difficult
to detect. Toward this end, we present an Adaptive Privacy-
Preserving FL (Ada-PPFL) scheme with Differential Privacy
(DP) as the underlying technology, to simultaneously protect
clients’ privacy and eliminate the adverse effects of malicious
clients on model training. Specifically, we propose an adaptive
DP strategy to achieve strong client-level privacy protection
while minimizing the impact on the prediction accuracy of the
global model. In addition, we introduce DPAD, an algorithm
specifically designed to precisely detect malicious model updates,
even in cases where the updates are protected by DP measures.
Finally, the theoretical analysis and experimental results further
illustrate that the proposed Ada-PPFL enables client-level privacy
protection with 35% DP-noise savings, and maintains similar
prediction accuracy to models without malicious attacks.

Index Terms— Poisoning attacks, privacy protection, federated
learning, differential privacy, anomaly detection.

Manuscript received 5 March 2022; revised 22 March 2023 and 4 June
2023; accepted 10 July 2023. Date of publication 17 July 2023; date of
current version 25 July 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 61932006 and Grant
62202071; in part by the National Key Research and Development Program
of China under Grant 2018AAA0100101; in part by the China Postdoctoral
Science Foundation under Grant 2022M710518 and Grant 2022M710520;
in part by the Natural Science Foundation of Chongqing, China, under
Grant CSTB2022NSCQ-MSX0358 and Grant CSTB2022NSCQ-MSX1217;
and in part by the Natural Science Foundation under Grant CNS-2153393.
The associate editor coordinating the review of this manuscript and approv-
ing it for publication was Prof. Thorsten Strufe. (Corresponding author:
Xiaofeng Liao.)

Junqing Le, Di Zhang, and Xiaofeng Liao are with the Key Lab-
oratory of Dependable Service Computing in Cyber Physical Society,
Ministry of Education, and the College of Computer Science, Chongqing
University, Chongqing 400044, China (e-mail: junqingle@cqu.edu.cn;
dizhang@cqu.edu.cn; xfliao@cqu.edu.cn).

Xinyu Lei is with the Department of Computer Science, Michigan Techno-
logical University, Houghton, MI 49931 USA (e-mail: xinyulei@mtu.edu).

Long Jiao and Kai Zeng are with the Department of Electrical and Computer
Engineering, George Mason University, Fairfax, VA 22030 USA (e-mail:
ljiao@gmu.edu; kzeng2@gmu.edu).

Digital Object Identifier 10.1109/TIFS.2023.3295949

I. INTRODUCTION

DEEP learning has demonstrated good performance in
many fields, such as image classification [1], [2], pattern

recognition [3] and language processing [4]. To train a neural
network, traditionally centralized learning requires collecting
a large amount of data from clients. However, this approach
may lead to serious leakage of clients’ privacy, because client’s
sensitive data is directly accessible to the collector. To solve
this issue, federated learning [5], [6] (FL) has been proposed.
In FL, multiple clients can collaborate to train a global
learning model while keeping their training data locally. It only
requires clients to upload their model updates (i.e., gradients
or weights) to a central server, and the original data of clients
is completely invisible from others, thereby protecting privacy.

Unfortunately, there still exist many security issues
in FL. As the uploaded model updates may “memorize”
the information about the training data [7], the attackers
(i.e., honest-but-curious servers) can compromise clients’
privacy through these model updates [8]. In addition, the
malicious clients can launch untargeted poisoning attacks
(i.e., sign-flipping attack and additive noise attack) [9], [10]
and targeted poisoning attacks [11], [12] to prevent model con-
vergence, corrupt the global model and cause misclassification.

In recent years, numerous researchers have studied the
aforementioned security issues of FL and proposed various
defense solutions such as the Secure Multiparty Computation
(SMC)-based schemes [13], the Homomorphic Encryption
(HE)-based schemes [14], the Differential Privacy (DP)-based
schemes [15], [16], [17], the byzantine-resilient aggrega-
tion rules [18], [19], [20], the anomaly detection based
schemes [21], and the hybrid schemes [22], [23].

Nevertheless, most previous works focus on the security
issues of FL in the presence of only honest-but-curious servers
or only malicious clients. The investigation of a stronger and
more practical threat model in FL, where both honest-but-
curious servers and malicious clients coexist, has received
limited attention in comparison. In this threat model, it is
assumed that any parties (i.e., servers and clients) may not
be fully trusted. Specifically, the servers may be honest-but-
curious, which honestly follows the aggregation protocol, but
may launch active or passive attacks to get client’s privacy
from the model updates. The local clients may be malicious,
which may not follow the protocol and try to break the
model training by sending incorrect values to servers (such
as poisoning attacks). The previous FL schemes only focused

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4875-1319
https://orcid.org/0000-0001-8799-7875
https://orcid.org/0000-0002-6790-8932
https://orcid.org/0000-0003-3279-0695
https://orcid.org/0000-0002-3566-8161

4330 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

on honest-but-curious servers or malicious clients can be
considered as two special cases in the non-fully trusted FL.

In the non-fully trusted FL setting, the conflict arises
because the privacy-preserving scheme adopted to defend
against honest-but-curious server aims to ensure the indis-
tinguishability of model updates, but the defenses against
malicious clients’ attacks by removing outliers are based
on the differences between model updates. To clarify, high-
performance mechanisms for detecting malicious clients often
encounter the issue of inadequate privacy protection for client
data. On the contrary, solutions designed to effectively defend
against privacy breaches by honest-but-curious server pose
challenges in terms of detecting malicious clients.

When it comes to resolving the conflict between detect-
ing malicious clients and protecting client data privacy,
the previous solutions have exhibited the following draw-
backs. 1) SMC-based schemes adopt a secure aggregation
protocol to mask the client-provided model updates before
uploading to the server. However, the masked updates can
completely discard the characteristics of the original model
updates, making it difficult to identify and eliminate the
malicious model updates (i.e., the maliciously manipulated
model updates from malicious clients). 2) HE-based schemes
allow the server to aggregate the clients’ model updates
over the encrypted domain without decryption. However, the
detection for malicious model updates is also difficult in
the encrypted domain. To address this issue, an anomaly
detection based on the ciphertext domain has been proposed
in [22], but the benign clients’ information may be easily
visible to malicious clients because of the use of the same
decryption key. 3) In DP-based schemes, noise introduced into
model updates accumulates during training, which dramati-
cally degrades the accuracy of model training and increases
the difficulty of detecting malicious model updates. 4) The
schemes based on byzantine-resilient aggregation rules can
partially mitigate the impacts caused by malicious clients,
but they cannot completely eliminate them. 5) An anomaly
detection method [21] for robust FL is proposed to elimi-
nate these impact from the malicious clients. However, this
approach requires prior training based on a public and mali-
cious client-free dataset to obtain a detection model, and this
detection model is not efficient to detect the DP-protected
model updates. 6) The scheme in [23] uses a combination
of SMC and byzantine-resilient aggregation rules to deal with
the privacy leakage and poisoning attacks are also presented in
the non-fully trusted FL. However, significant computation and
communication overheads are required to achieve desirable
results in practical applications.

To protect clients’ privacy and obtain a global model with
high performance in the non-fully trusted FL, an Adaptive
Privacy-Preserving FL (Ada-PPFL) scheme based on DP and
anomaly detection is proposed in this paper. In non-fully
trusted FL, the honest-but-curious server may recover the pri-
vate data from a specific client precisely based on the client’s
accessible model updates, resulting in client-level privacy
leakage [17], [24], [25]. For privacy protection, Ada-PPFL
uses DP to protect the model updates (satisfying (ε, δ)-DP).
Besides, to eliminate the impact of malicious model updates,

TABLE I
THE COMPARISON (✓: SUPPORT, ×: NO SUPPORT)

an anomaly detection method is designed. In the anomaly
detection, the similar model updates are clustered into the
same class, and the updates with large differences (from the
majority of model updates) are treated as anomalies. Fur-
thermore, the design of Ada-PPFL faces two major technical
challenges, outlined as follows.

1) The first challenge is to achieve the strong client-level
privacy protection while ensuring high prediction accuracy of
the global model: Privacy protection based on DP is com-
putationally efficient, and it is provably secure theoretically.
Additionally, model updates that are protected by DP still
retain certain features that can aid in the detection of malicious
clients. Nevertheless, it is important to strike a balance when
adding DP-noise, as excessive noise can lead to a significant
decrease in prediction accuracy, while insufficient noise fails to
provide adequate privacy protection. To address this challenge,
we propose an adaptive DP strategy. In this strategy, after
each client generates new DP-protected local model updates in
each round, it adaptively selects to use some new local model
updates and discard others (the discarded ones are replaced by
the model updates of the prior round). The developed selection
criterion guarantees that only those model updates that can
contribute to high prediction accuracy of the global model are
included in the aggregation process.

2) The second challenge is to precisely detect malicious
model updates: If the updates are protected, the malicious ones
are hard to detect precisely since the protection process might
significantly reduce the detection precision. To tackle this
challenge, we devise a DP-tolerant Anomaly Detection (named
as DPAD) algorithm to detect the malicious model updates.
The DPAD design is inspired by DBSCAN algorithm proposed
in [26]. Specifically, DPAD uses spatial density information
to learn a cluster over two-dimensional (2D) space. The
model updates outside the cluster boundary are evaluated as
anomalies. Consider there are two clusters obtained on the
original model updates and DP-protected model updates, after
DP-protection, any local subspace density is changed slightly.

The comparisons with the previous schemes [13], [14],
[15], [16], [17], [18], [19], [20], [21] are summarized in
TABLE I. The comparison results show that the proposed
Ada-PPFL can deal with the non-fully trusted scenario of FL,
and shows superiority in computation cost, prediction accuracy
and privacy protection. The main contributions of this paper
can be summarized as follows.

• We propose an Ada-PPFL scheme with DP as the
underlying technology for the non-fully trusted FL. The
proposed Ada-PPFL can eliminate the adverse effects of
malicious clients on model training and prevent honest-
but-curious servers from stealing clients’ privacy.

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

LE et al.: PRIVACY-PRESERVING FL WITH MALICIOUS CLIENTS AND HONEST-BUT-CURIOUS SERVERS 4331

• We propose an adaptive DP strategy to achieve a strong
client-level privacy protection, while minimally compro-
mising the prediction accuracy of the global model.

• We introduce an innovative approach termed DPAD that
demonstrates remarkable efficacy in precisely detecting
malicious model updates, even if all model updates are
DP-protected.

The remainder of this paper is organized as follows.
In Section II, some related works are reviewed. The pre-
liminaries about FL, DP and DBSCAN are introduced in
Section III. Section IV describes the system model, threat
model, assumptions, and goals of Ada-PPFL. Section V
presents the detailed design of Ada-PPFL. The conver-
gence and security analyses of Ada-PPFL are presented
in Section VI. Performance evaluations are conducted in
Section VII, followed by the conclusions in Section VIII.

II. RELATED WORK

Federate Learning: FL is an efficient and secure
scheme for distributed network, originally proposed by
Jakub Konecny et al. [5] in 2015. In the setting of federated
learning (FL), the raw client data remains on the local devices
and is never transmitted to the central server. Only the model
updates, such as model gradients or weights, are uploaded
to the server for aggregation. The two most commonly
used FL models are Federated Stochastic Gradient Descent
(FedSGD) [15] and Federated Averaging (FedAvg) [27].
In FedSGD, the interaction between the server and the client
is the model gradients. FedAvg is a communication-efficient
FL approach that uploads model weights instead of gradients.

Attacks in FL: The adversaries, such as honest-but-curious
servers and malicious clients, can launch attacks targeting
clients’ privacy or model training. In FL, an honest-but-
curious server can control everything (including gradients and
weights) sent to the server in all rounds, and may attempt
to exploit this access to extract sensitive information from
the clients, thereby compromising their privacy. For example,
the honest-but-curious server can successfully reconstruct the
private data of the clients or infer the private features of
the training data through model inversion attack [28] and
inference attacks [29], [30]. For the malicious clients, they
can undermine the model performance of FL by poisoning
local data and model parameters. Examples of such attacks
include label-flipping attacks [9], noise attacks [9], [10] and
backdoor attacks [11], [12].

Defenses in FL: Recently, researchers have focused on
addressing adversarial attacks, and many outstanding defense
strategies have been proposed. For the honest-but-curious
servers, the strategies based on Secure Multiparty Com-
putation (SMC) [13], Homomorphic Encryption (HE) [14],
and Differential Privacy (DP) [15], [16], [17] are the most
popular and efficient solutions. Besides, some solutions have
been developed to mitigate the impact of poisoning attacks
on model training. The byzantine-resilient aggregation rules,
including Krum [18], GeoMed [19] and Trimmed mean [20],
can mitigate the impact of byzantine nodes (i.e., malicious
nodes/clients) by selecting a representative client model update

to estimate the true center model updates. The works in [9]
and [10] have adopted variance-reduced stochastic gradient
descent (SGD) and additional regularization term to achieve a
similar defense. In [21], the central server utilizes a powerful
detection model to identify and remove malicious model
updates. In addition, the work in [31] applied trusted execution
environment (TEE) to guarantee integrity and privacy, and
in [32] introduced a defense against Sybil-based poisoning.
In practice, the adversaries in FL may include both adversary
servers and malicious clients. However, the defense strategies
that can address this case have not been investigated in depth.

III. PRELIMINARIES

In this section, some related preliminaries about federated
learning, differential privacy and density-based spatial cluster-
ing of applications with noise are introduced.

Federated Learning: FL is a machine learning setting where
multiple decentralized clients collaborate to train a model
under the coordination of a central server. In FL, the raw
datasets are kept locally on the clients’ devices [33]. In gen-
eral, the processes of FL can be decoupled into multiple
training rounds. In each round, the server first sends the initial
model or global model updates to clients. Then each client
trains the model locally using his/her data, and finally uploads
the trained model updates to the server for aggregation.

Assume that there are N clients and the set of samples is
U = {u1, u2, . . . , uN }, where the set ui contains the samples
stored at client i . Let (xk, yk) be a sample k of client i , then
the samples of client i can be rewritten as ui = (X i , Yi) =

{(xk, yk)}k∈[1,ni], where ni = |ui | is the sample number of
client i . The loss function on the sample (xk, yk) with model
parameters (i.e., model weights) ω is typically defined as
fk(ω) = ℓ(ω; xk, yk). In FL, the goal of model training is
to find a weight ω that minimizes the loss. The distributed
optimization model can be expressed as

min
ω

F(ω) =
N∑

i=1

ni

n
Fi (ω),

where the local objective Fi (ω) =
1
ni

∑
k∈[1,ni]

fk(ω) and n =
|U | is the number of total samples.

Differential Privacy (DP): DP [34] provides a strong crite-
rion of privacy preservation for the algorithms on aggregate
datasets. The DP can be formally defined as follows.

Definition 1: Differential Privacy: Let D be a collection of
datasets. A mechanism M: D→ R with domain D and range
R satisfies (ε, δ)-DP, if for any two adjacent datasets d, d ′ ∈ D
and any outputs O ⊆ R it holds that

Pr[M(d) ∈ O] ≤ eε Pr[M(d ′) ∈ O] + δ,

where ε > 0 is the privacy budget and decides the privacy
level, i.e., the smaller ε, the stronger privacy guarantee.

In the context of FL, d and d ′ can be defined as two different
types of adjacent datasets, i.e., sample-adjacent datasets [17],
[35], [36] and client-adjacent datasets [17], [37], [38].

Sample-adjacent datasets: Let d and d ′ be two datasets of
training samples. If d and d ′ differ in only one sample, they
are sample-adjacent.

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

4332 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Client-adjacent datasets: Let d and d ′ be two datasets of
training samples, where each sample is associated with a
client. Then d and d ′ are adjacent if the samples of only one
client in d are different from the samples of any client in d ′.

For example, let d = {a1, a2, a3, a4, a5} and d ′ =
{a1, a2, a3, a5} be two datasets, where the two datasets are
different in a4. If ai represents a sample, d and d ′ are sample-
adjacent. If ai represents the samples of client i , d and d ′ are
client-adjacent.

A standard paradigm for providing a privacy-preserving
approximation of the query function h : D → Rm is to add
noise proportional to the sensitivity Sh of the query function h.
The sensitivity Sh is defined as the maximum of absolution
ℓ2 difference maxd,d ′∈D ||h(d) − h(d ′)||2, where d and d ′

are adjacent. The Gaussian noise mechanism is the one of
such privacy-preserving approximations, defined by M(d) =
h(d)+N (0, S2

hσ
2 I), whereN is a normal distribution with the

mean 0 and the standard deviation Shσ , I is identity matrix,
and S2

hσ
2 I represents a covariance matrix.

Besides, there is a property in DP that makes it particularly
useful in applications, that is sequential composition [39], [40].

Theorem 1: (Sequential composition). Suppose m mecha-
nisms {M1, . . . ,Mm} satisfy (εi , δ)-DP, respectively. Then,
a mechanism formed by (M1(d), . . . ,Mm(d)) satisfies
(
∑m

i εi ,mδ)-DP.
Density-based Spatial Clustering of Applications with Noise

(DBSCAN): DBSCAN [26], [41] is a density-based clustering
non-parametric algorithm that groups closely packed points
together and marks points that are located alone in low-density
regions as outliers.

Given a set of points in some space, let eps specify the
radius of a neighborhood with respect to some points, and
m′ represents the minimum number of points required to
form a dense region. These points can be classified as core
points, directly (density-) reachable points, reachable points
and outliers, as follows:

Core points: if at least m′ points are within distance eps of
point p (including p), p is defined as core point;

Directly reachable points: if point q is within distance eps
from core point p, point q is directly reachable from point p;

Reachable points: if there is a path p1, · · · , pn with p1 = p
and pn = q , and each pi+1 is directly reachable from pi , point
q is reachable from p;

Outliers: If all points are not reachable from any other point,
these points are outliers or noise points.

In DBSCAN, if p is a core point, p and all points that are
reachable from it form a cluster.

IV. PROBLEM FORMULATION

In this section, we present the threat model, assumptions,
goals, and system model of the proposed Ada-PPFL.

System Model: The system model of Ada-PPFL is shown in
Fig. 1, including client layer and server layer. The clients are
responsible for local model training, while the server performs
model update aggregation and the detection operations of
malicious model updates. The data processing procedures of
Ada-PPFL are shown in the right part of Fig. 1, and the details
are described below.

Fig. 1. The system model of Ada-PPFL.

1) Local clients download the initial global model or aggre-
gated global model updates from the server.

2) Local clients train model on their data to generate new
model updates, and perform an adaptive DP protection
for the new model updates before they are uploaded (The
specific design is introduced in Section V).

3) The server receives DP-protected model updates
uploaded by the clients, and then employs DPAD
algorithm to detect any anomalies in these updates. (The
specific design is shown in Section V).

4) The ‘benign updates’ after detection are aggregated to
get the global model updates of the next round.

Threat Model: In this paper, we consider the non-fully
trusted FL, where the honest-but-curious server and the mali-
cious clients coexist. 1) Honest-but-curious server. She/He
follows aggregation protocols honestly, but can launch any
attack to steal or compromise clients’ privacy information.
For example, she/he can launch model reversal attacks or
inference attacks to reconstruct private data of the victim
by analyzing the model updates of the clients, and she/he
can further compromise the privacy of the clients by sharing
the entire protocol view with others. 2) Malicious clients.
They can maliciously upload arbitrary values to the server by
poisoning sample data and model updates to undermine the
model convergence or corrupt the global model.

Assumptions: 1) If the model updates are only slightly
modified by malicious clients, they are considered to remain
benign. 2) To defend against collusion attacks, we assume the
proportion of benign clients is greater than 50%. In a real FL
scenario, it is reasonable to assume that the number of benign
clients is much larger than the number of malicious clients.

Goals: There are two design goals of the proposed
Ada-PPFL. 1) Privacy-preserving. Ada-PPFL should ensure
that each client’s model updates satisfy (ε, δ)-DP in each
training round. 2) High-accuracy. Ada-PPFL should ensure
that the global model achieves high prediction accuracy.

V. DESIGN OF ADA-PPFL

This section describes the design of Ada-PPFL in detail,
including the main training process of Ada-PPFL, the adaptive
DP strategy, and the proposed detection algorithm DPAD.

A. The Main Process of Ada-PPFL

The goal of Ada-PPFL is to obtain a high-performance
global model while ensuring strong privacy protection for par-
ticipating clients. On the client-side of Ada-PPFL, we develop

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

LE et al.: PRIVACY-PRESERVING FL WITH MALICIOUS CLIENTS AND HONEST-BUT-CURIOUS SERVERS 4333

an adaptive DP strategy for noise addition to provide
client-level privacy protection and reduce the impact of noise
in the prediction accuracy of global model. On the server-side
of Ada-PPFL, we propose a DP-tolerant anomaly detection
with adaptive scaling for clustering to identify and remove
the malicious model updates, ensuring the high prediction
accuracy of global model. The main process of Ada-PPFL
is described in Algorithm 1.

In Algorithm 1, Step 5 - Step 7 present the process on
the clients. The function A in Step 7 represents the adaptive
DP strategy, and will be described in Section V-B in detail.
Step 9 is the detection process on the server, and the proposed
DPAD is presented in Section V-C in detail.

Algorithm 1 The Main Process of Ada-PPFL

1 Initialization: Samples of n clients D = {d1, d2, . . . ,

dn}, model weight ω0 and ω−1 = zeros(|ω0|), client
selection probability q ∈ (0, 1], FedAvg is the update
method, and the sample number in each client is the
same;

2 for each global round T = 1, 2, . . . do
3 Learning rate ηT ;
4 UT ← (sample clients with probability q);
5 for each client i ∈ UT in parallel do
6 Local training:
7 ω̄i

T = A(di , ωT−1, ηT);

8 The selected clients upload their ω̄i
T to server;

9 The server detects these updates by DPAD and
removes the malicious model updates;

10 The set of the remaining clients is U l
T , where

U l
T ⊆ UT ;

11 The remaining set of model updates
ω̄T = {ω̄

i
T |i ∈ UT };

12 Update (i.e., aggregation) in server:
ωT ←

1
|U l

T |

∑
i∈U l

T
ω̄i

T ;

B. The Adaptive DP Strategy

The adaptive DP strategy is designed to obtain strong
privacy protection while ensuring high prediction accuracy of
the global model. To achieve the goals, the client-level privacy
protection is designed, and a selection criterion is developed
to support the adaptive noise addition for the local training.
The design of the adaptive DP strategy for client i is presented
in Algorithm 2.

As described in Step 2 - Step 8 of Algorithm 2, we train a
model on client’s samples by using FedAvg with a diminishing
learning rate. The learning rate of the round T is represented as
ηT , which is decreasing over time. Step 9 - Step 11 achieve
the client-level DP of Ada-PPFL. In Step 12 - Step 17, the
selection criterion is developed to select the model updates that
contribute the high prediction accuracy for model aggregation.

The detail designs of client-level privacy protection and the
selection criterion for each client are presented as follows.

Client-level privacy protection: In order to achieve
client-level privacy protection for each client, we first define

Algorithm 2 Adaptive DP Strategy for Client i (i.e.,
Function A)

Input: the samples of client i (i.e., di), global model
weight ωT−1 at global round T − 1, learning
rate ηT , gradient clipping C ;

Output: The uploaded weight ω̄i
T of client i at global

round T ;
1 Initialization: Batch number b, local epoch times E ,

gradient calculations ∇Fi , DP mechanism in round T
is MT , learning rate η0, conversion ratio λ, wi

t is the
gradient of client i at time t , privacy budget ε;

2 B← di splits into b batches;
3 wi

t = ωT−1, t = E(T − 1)b and k = 0;
4 for each local epoch from 1 to E do
5 for batch B ∈ B do
6 gi

t+k = ∇Fi (B|wi
t+k);

7 k = k + 1;
8 wi

t+k = wi
t − ηT gi

t+k−1;

9 The gradient at global round T is ĝi
T = gi

t , where
t = ET b;

10 Clip gradient ḡi
T = ĝi

T /max(1,
∥∥ĝi

T

∥∥
2

C);
11 Compute the sensitivity at global round T ,

ST ← 2ηT C;
12 Noise scale σT ← {ST /ε for Q};
13 Update the model weights of round T , i.e.,

ωi
T = ωT−1 − ηT ḡi

T ;
14 if λ · ||ωi

T − ω
i
T−1||2 + ||N (0, Iσ 2

T−1)||2 <

2 · ||N (0, Iσ 2
T)||2 then

15 ω̄i
T = ω̄

i
T−1;

16 else
17 ω̄i

T =MT (di) = ω
i
T +N (0, Iσ 2

T);

a query function on the client-adjacent datasets, and then
design a bounded-sensitivity for the query function. When
the noises added to the model updates are based on
the bounded-sensitivity, the client’s model updates satisfy
(ε, δ)-DP, achieving client-level privacy protection.

1) The Query Function of Ada-PPFL: To formally guar-
antee client-level privacy, we apply DP to model training by
using the notion of client-adjacent datasets. The whole process
of local training in a round is defined as a query function Q
of the client-level DP.

Q(di |ωT) = ωT − ηT∇Fi (di |ωT),

where ∇Fi (di |ωT) is the gradient calculations based on ωT
and b batches sampled from di in a training round. The
sensitivity of Q can be represented as follows.

SQ = max
d,d ′∈D

||Q(d)− Q(d ′)||2.

Different from the DP with adding noise to the aggregated
values, our scheme adds noise in the model updates of each
client. If the training samples of each client are a dataset,
the samples of any two clients are client-adjacent datasets.

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

4334 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 2. Two rounds of model updates.

Therefore, the sensitivity of Q at the global round T in
Ada-PPFL can be rewritten as

SQ(·|ωT−1) = max
di ,d j∈UT

||Q(di |ωT−1)− Q(d j |ωT−1)||2,

where UT represents the samples of all clients in the global
round T , ωT−1 is the model weight of global model in round
T − 1, i, j ∈ [1, N] and i ̸= j .

2) Bounded-Sensitivity for Query Function: The output of
Q is varied with the different inputs and cannot be bounded.
Without a priori knowledge on the bound of the size of
updates, it is hard to calculate the sensitivity SQ . Towards
this end, the works in [36] and [38] proposed to clip updates
(gradients/weights) with norm (i.e., ℓ2). For example, in [38],
the server sets a threshold C for the updates, and each model
weight ωi

t is replaced by ωi
t/max(1, ||ω

i
t ||2

C), where t represents
update round. This clipping ensures that the weight ωi

t is
preserved when ||ωi

t ||2 < C , otherwise the weights are scaled
down to be the norm of C . Towards this end, we also use a
fixed clipping C to bound the sensitivity in this paper, and
the sensitivity of query function Q in the round T can be
represented as ST ← 2ηT C .

Selection criterion: In the steps of adding noise, we adopt
an adaptive strategy (motivated by [42]) to obtain stronger
privacy protection by slightly sacrificing prediction accuracy.
The main idea is that the clients adaptively select to use some
new DP-protected local model updates and discard others, and
then the discarded ones are replaced by the model updates of
the prior round. According to Fig. 2, the details of the selection
criterion are described as follows. When the replacement is
performed, the sacrificed prediction accuracy di f f2 is ||ωi

T −

ωi
T−1||2. Since the model updates and noise N follow different

distributions, we use the constant λ to represent the conversion
ratio of model updates to noise, and the converted noise is
denoted as λ ·di f f2. Moreover, as the uploaded model updates
of the previous round will not provide any more information
to the server, we don’t need to allocate privacy budget for the
model updates of the current round. Then, the reduced noise
is N (0, Iσ 2

T), while the privacy protection is increased by ε.
When λ ·di f f2+di f f1 < ||N (0, Iσ 2

T)||2, the replacement can
help to reduce the added noise and thus improve the prediction
accuracy, where di f f1 = ||N (0, Iσ 2

T−1)||2 − ||N (0, Iσ 2
T)||2.

In summary, the selection criterion can be rewritten as:
the model updates of the current round are replaced by the
model updates of the prior round if λ · di f f2 + di f f1 <

||N (0, Iσ 2
T)||2, otherwise, the model updates of the current

round are DP-protected by adding the noise ||N (0, Iσ 2
T)||2.

Fig. 3. An example to illustrate why DPAD perserves the density of updates
over 2D space. After DP-protection, given a local subspace, the number of
move-in updates and move-out updates are roughly the same, so the density
over the subspace is changed slightly.

C. DPAD Algorithm

The DP-tolerant anomaly detection (DPAD) algorithm is
designed to identify and remove the malicious model updates
from the DP-protected model updates. After DP-protection,
given a local subspace, the number of move-in updates and
move-out updates are roughly the same, so the density over
the subspace is changed slightly. Fig. 3 shows an example
to explain the reason, where the density (over the 2D space)
determines the cluster boundary shape in DPAD. Therefore,
DPAD is quasi-cluster-boundary-preserving, indicating that
the anomalies after protection are still high likely to be
anomalies before protection. The details of DPAD algorithm
are presented in Algorithm 3.

In Step 2 of Algorithm 3, we first use multi-dimensional
scaling (MDS) to build a two-dimensional space for model
updates. Because the generation of clusters in DPAD is based
on spatial density, which is not suitable for high-dimensional
model updates (i.e., curse of dimensionality).

In Step 3 of Algorithm 3, we adaptively adjust eps through
a linear correlation between eps and noise scale, i.e., eps =
kσT + r , where k and r are constant. The parameter eps is
a reflection of the similarity between model updates. How
to set eps is important. If eps is too large, the malicious
model updates will easily be divided into clusters. On the
contrary, if eps is too small, the number of benign clients’
model updates in the cluster is small, and the DP-added
noise will not be able to offset each other well during
aggregation, which will decrease in the aggregation accuracy.
Thus, we adaptively adjust eps to adapt to the changes
caused by the model updates and the DP-added noise during
training, instead of scaling similarity. Besides, according to
Algorithm 2, the noise scale is calculated from model updates.
Thus, the relation of eps with model updates and noise
scale can be converted to a relation between eps and noise
scale.

Step 4 - Step 20 of Algorithm 3 show the processes of
clustering based on spatial-density. In Step 6 of Algorithm 3,
the function Q′(P, eps) is to obtain all model updates
of the eps-neighborhood of P , and saved in the set Np.
If the distance between the model update ω̄i

T and P is
lower or equal to eps, ω̄i

T is the neighborhood of P ,
where the distance function is Euclidean metric. Step 10 -
Step 20 of Algorithm 3 expand the set C LU based on the core
point P .

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

LE et al.: PRIVACY-PRESERVING FL WITH MALICIOUS CLIENTS AND HONEST-BUT-CURIOUS SERVERS 4335

Algorithm 3 DPAD
Input: UT , clipping threshold C , and the DP-protected

model updates ω̄T = {ω̄
i
T |i ∈ UT };

Output: new ω̄T ;
1 Initialization: m′, C LU = ∅ and j = 0;
2 Map ω̄T to a 2-dimensional space, i.e.,
ω̄T = M DS(ω̄T , 2);

3 eps = kσT + r , which is an adaptive setting;
4 for P in ω̄T do
5 Mark P as visited model updates;
6 Compute Np = Q′(P, eps) to obtain all model

updates within P’s eps-neighborhood;
7 if si ze(Np) < m′ then
8 Mark P as NOISE;

9 else
10 Clu j = ∅, and j = j + 1;
11 Add P to cluster Clu j ;
12 for P ′ in Np do
13 if P ′ is not visited then
14 Mark P ′ as visited;
15 Np′ = Q′(P ′, eps);
16 if si ze(Np′) ≥ m′ then
17 Np is equal to Np joined with Np′;

18 if P ′ is not yet member of any cluster
then

19 Add P ′ to cluster Clu j ;

20 Put Clu j into the set C LU ;

21 Cluster that satisfies max{si ze(Clu j)|Clu j ∈ C LU } is
marked as Clu;

22 return ω̄T = Clu;

After clustering, the target cluster with the maximum
number of points is obtained, in which the values are
the benign model updates, described in Step 21 of
Algorithm 3.

VI. THEORETICAL ANALYSIS

In this section, we present the convergence analysis and
security analysis for Ada-PPFL.

A. Convergence Analysis

The convergence of the proposed Ada-PPFL scheme is
analyzed with Smooth and Strongly Convex cost function and
Non-Smooth and Convex cost function. The update mode of
Ada-PPFL is inspired by the FedAvg method. Let ωi

t be
the model updates of the i-th client at the t-th (or time t)
local model update. Let IT be the set of global aggregation
steps, i.e., IT = {k Eb|k = 1, 2, . . .}, where E is local
epoch time and b is the number of batches in an epoch. If
t ∈ IT , the local model updates of these rounds are clipped
and noised, and then they will be uploaded to the server for
aggregation.

Update Description: The updates of Ada-PPFL without the
replacement can be described as

vi
t+1 = wi

t − ηT∇Fi

(
ωi

t , ξ
i
t

)
,

wi
t+1 =

{
vi

t+1, if t + 1 /∈ IT ,∑
i∈U l

T
pi (ωT−1 −

ήt ĝi
T

αi
T
+ ñi

T), if t + 1 ∈ IT ,

where ωT−1 = w(T−1)Eb, vi
t+1 represents the immediate result

of the local update from wi
t , and ĝi

T = (ωT−1 − vi
t+1)/ήt .

ξ i
t is the batch of samples uniformly chosen from the client’s

samples, and αi
T = max(1, ||ĝi

T ||2/C). ήt is the learning rate at
time t and ήt = ηT when T − 1 < ⌊ t

Eb ⌋ ≤ T .
∑

i∈U l
T

pi = 1,
and pi = 1/|U l

T |.
The aggregation with all benign client participation at round

t (t ∈ IT) can be written as

wt ←
∑
i∈U l

T

pi wi
t .

Based on the above analysis, the convergence results are
analyzed under smooth and strongly convex costs and non-
smooth and convex costs, respectively.

Assumptions of Smooth and Strongly Convex Costs: we
review the following assumptions on the functions F1, . . . , FM
in [43], where [1,M] ∈ U l

T .
Assumption 1: F1, . . . , FM are all L-smooth for all v and

w satisfying Fi (v) ≤ Fi (w)+ (v−w)T∇Fi (w)+ L
2 ||v−w||22.

Assumption 2: F1, . . . , FM are all µ-strongly convex for
all v and w satisfying Fi (v) ≥ Fi (w) + (v − w)T∇Fi (w) +
µ
2 ||v− w||22.

Assumption 3: Let ξ t
i be sampled from the i-th client’s local

data uniformly at random. The variance of stochastic batch
gradients in each client is bounded, i.e., E||∇Fi (wt

i , ξ
t
i) −

∇Fi (wt
i)||

2
≤ σ́ 2

i for i ∈ U l
T .

Assumption 4: The expected squared norm of stochastic
gradients is uniformly bounded, i.e., E||∇Fi (wt

i , ξ
t
i)||

2
≤

G2 for i ∈ U l
T and all t .

Assumptions 1 and 2 are standard for some functions
such as the ℓ2-norm regularized linear regression, the logistic
regression, and the softmax classifier.

Assumptions of Non-Smooth and Convex Costs: we make
the following assumptions on the functions F1, . . . , FM
in [43], where [1,M] ∈ U l

T .
Assumption 5: F1, . . . , FM are all convex (i.e., non-

strongly convex) for all v and w satisfying Fi (v) ≥ Fi (w) +
(v−w)T ∂Fi (w), where ∂Fi (w) is subgradient of Fi (w) with
respect to w.

Assumption 6: The subgradient ∂Fi (wt
i , ξ

t
i) is L ′-Lipschitz

bounded, i.e., ||∂Fi (wt
i , ξ

t
i)|| ≤ L ′ for i ∈ U l

T and all t .
Theorem 2: Let Assumptions 1 to 4 hold and L , µ, σ́i ,G

be defined therein. J =
∑

i∈U l
T

p2
i σ́

2
i + 6L0+ 2(Eb− 1)2G2,

where 0 describes the degree of non-iid and equals F∗ −∑
i∈U l

T
pi F∗i . F∗ and F∗i are the minimum values of F and

Fi , respectively. Then

E
[
F (ω̃T)

]
− F∗ ≤

Lv
2(γ + T)

,

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

4336 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

where v=max
(
(EbJβ2

+ 4z2C2)/(βµ/α2
T − 1), (γ + 1)11

)
,

11 = E ∥ω̃0 − ω
∗∥

2, and ω∗ is the model optimal weights.
In addition, ω̃T = w̃t+1 while T = t+1

Eb .
Theorem 3: If Assumption 5 and Assumption 6 hold, i.e.,

E[F(ω̃T)] − F∗ ≤

√
Eb(Eb + 4)L ′2(1+ ln(T − 1))

√
T − 1

+
11
√

T − 1
+
ψ(1+ ln(T − 1))
√

T − 1
,

where T is the global round, E ∥ω̃0 − ω
∗∥

2
= 11, and ψ =

C2
[(L ′

C − 1)2(1+ 4z2)+ 4z2
].

The proofs of Theorem 2 and Theorem 3 are given in the
Appendix.

When the replacement occurs on some clients at time
t + 1 ∈ IT , these clients are represented as Ur

T . The rest
of clients (without replacements) who upload model updates
successfully are denoted as Un

T , and U l
T = U

r
T + U

n
T . Thus,

ṽt+1 = (α̃T−1w̃t+1−Eb − (α̃T−1 − 1)ω̃T−2 + α̃T−1ñT−1)

+ (α̃T w̃t+1 − (α̃T − 1)ω̃T−1 + α̃T ñT),

where w̃t+1 =
∑

i∈Un
T

pi wi
t , ñT =

∑
i∈Un

T
pi ni

T , α̃T =∑
i∈Un

T
piα

i
T , w̃t+1−Eb =

∑
i∈Ur

T
pi wi

t−Eb, ñT−1 =∑
i∈Ur

T
pi ni

T−1, and α̃T−1 =
∑

i∈Ur
T

piα
i
T−1.

1) Convergence Results on Smooth and Strongly Convex
Costs: According to Theorem 2, we have

E
[
F (ω̃T)

]
− F∗ ≤

Lv1

2(γ + T)
+

Lv2

2(γ + T − 1)

<
Lv

(γ + T − 1)
,

where v1=max
(
(EbJβ2

+4z2C2)/(
βµ

α2
T−1
− 1), (γ + 1)11

)
,

v2 = max
(
(EbJβ2

+ 4z2C2)/(
βµ

α2
T−1
− 1), (γ + 1)11

)
, and

v = max(v1, v2).
Specifically, we choose β = η0/ρ, γ = 1/ρ and αT =

max(αT , αT−1) in this paper, then ηt =
η0

ρT+1 and

E
[
F (ω̃T)

]
− F∗ ≤

ρL
ρT + 1− ρ

(
α2

T (EbJη2
0 + 4C2ρ2)

ρµη0 − α
2
T ρ

2

+
1+ ρ
ρ

11

)
.

αi
T = max(1, ||ĝi

T ||2/C) and max(α̃T) ≤
G
C , where k ∈ [1, T ′]

and G ≥ C . Thus, the upper bound of αT is a constant.
Besides, ||ĝi

t ||2 of benign model updates is always bounded.
The unbounded values of the malicious model updates will
be removed and are not aggregated in the server. Finally,
E
[
F (ω̃T)

]
− F∗ will go to zero when T is large enough.

It indicates that ω̃T converges to the optimal model weight
with the convergence rate O(1/T).

2) Convergence Results on Non-Smooth and Convex Costs:
According to Theorem 3, let ηT =

1
√

T
and then we have

E
[
F (ω̃T)

]
− F∗ ≤

(
11
√

T − 2
+
ψ(1+ ln(T − 2))
√

T − 2
+

√
Eb(Eb + 4)L ′2(1+ ln(T − 2))

√
T − 2

)
+

(
ψ(1+ ln(T − 1))
√

T − 1

+
11
√

T − 1
+

√
Eb(Eb + 4)L ′2(1+ ln(T − 1))

√
T − 1

)

≤ 2

(
ψ(1+ ln(T − 1))
√

T − 1
+

√
Eb(Eb + 4)L ′2(1+ ln(T − 1))

√
T − 1

+
11
√

T − 1

)
,

where ψ , 11, E , b and L ′ are constants. Thus, E
[
F (ω̃T)

]
−

F∗ will go to zero when T is large enough. It means that ω̃T
converges to the optimal model weight as training proceeds.
Besides, the convergence rate is O(ln T/

√
T).

B. Security Analysis

Let Q : D → Rm be an arbitrary m-dimensional
query function, and let its ℓ2-sensitivity be SQ = 12h =
maxad jacent{d,d ′}∈D ||Q(d) − Q(d ′)||2. The Gaussian mech-
anism adds noise scaled to N (0, σ 2) to each of the
m components of the outputs (i.e., model weights).

Theorem 4: Let ε be arbitrary. For c2 > 2ln(1.25/δ), the
mechanism M with σ ≥ c12h/ε of the proposed Ada-PPFL
satisfies (qT ′ε, qT ′δ)-DP in the client-level, where the condi-
tion c2 > 2ln(1.25/δ) denotes the bound of constant c that
is necessary for (ε, δ)-DP, 12h = 2ηT C , and T ′ ≤ T . T ′ is
the number of the rounds that are allocated privacy budget and
T is the number of rounds. q is the probability of participation
in training round, and then

Pr[M(d) ∈ O] ≤ eε Pr[M(d ′) ∈ O] + δ.

Proof: Given the client’s dataset di and query Q, the
Gaussian mechanism will return Q(di)+N (0, Iσ 2), where the
noise satisfies normal distribution. Assume that the learning
rate of each client is the same in each round. The sensitivity
of Q(·|ωT−1) in the global round T of the proposed Ada-PPFL
is ST (i.e., SQ(·|ωT−1)), where (·) represents all samples of
round T . Then ST can be expressed as

ST = max
{di ,d j }∈D

||Q(di)− Q(d j)||2 = max
{ωi

T ,ω
j
T }∈ω

∗
T

||ωi
T − ω

j
T ||2

= max
{ḡi

T ,ḡ
j
T }∈ḡ∗T

||(ωT − ηT ḡi
T)− (ωT − ηT ḡ j

T)||2

= max
{ḡi

T ,ḡ
j
T }∈ḡ∗T

||ηT (ḡi
T − ḡ j

T)||2.

Since the bounded ḡi
T = ĝi

T /max(1,
∥∥ĝi

T

∥∥
2

C), we have
||ḡi

T ||2 ≤ C . Then, the sensitivity ST satisfies that

ST = max
{ḡi

T ,ḡ
j
T }∈ḡ∗T

||ηT (ḡi
T − ḡ j

T)||2 ≤ 2ηT C.

Thus, the sensitivity of Q of the global round T can be denoted
as ST = 2ηT C . The noise scale is equal to σT = ST /ε, and
MT (di) = Q(di)+N (0, Iσ 2

T). Then we have the privacy loss

Pr(MT (di) = o)
Pr(MT (d j) = o)

=
Pr((Q(di)−N (0, Iσ 2

T)) = o)

Pr((Q(d j)−N (0, Iσ 2
T)) = o)

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

LE et al.: PRIVACY-PRESERVING FL WITH MALICIOUS CLIENTS AND HONEST-BUT-CURIOUS SERVERS 4337

=
Pr(N (0, Iσ 2

T) = Q(di)− o)

Pr(N (0, Iσ 2
T) = Q(d j)− o)

=
Pr(N (0, Iσ 2

T) = ai)

Pr(N (0, Iσ 2
T) = ai + ST (·|ωT−1))

= |
exp((−1/2σ 2

T)||ai ||
2
2)

exp((−1/2σ 2
T)||ai + ST ||

2
2)
|

= |exp((−1/2σ 2
T)(||ai ||

2
2 − ||ai + ST ||

2
2))|,

where o ∈ O is an output and ai represents the difference
between Q(di) and o.

The privacy loss can be written as ln Pr(MT (di)=o)
Pr(MT (d j)=o) =

|(1/2σ 2
T)(||ai ||

2
2 − ||ai + St ||

2
2)|. According to Theorem A.1.

in [34], the mechanism MT is (ε, δ)-DP when σ ≥ c12h/ε,
where 12h = 2ηT C and c2 > 2ln(1.25/δ).

Let the mechanism be M = {M1,M2, . . .Mk, . . .}.
The query function Q of each round (i.e., Q(·|ωT−1) of
global round T) is dependent on its previous global model
weight (ωT−1). As the global model weights are different
and public in each round, each query function is inde-
pendent. Thus, the mechanisms {M1,M2, . . .Mk, . . .} are
independent. According to Theorem 2, the mechanism M
is (q

∑T
i=1 εi , q

∑T
i=1 σi)-DP, where the number of partic-

ipations per client throughout the training process is qT .
In this paper, all parameters εi and σi are equal to ε and
σ , respectively.

In addition, since each client’s data is independent and
invisible, the query function Q can only work on at most
one client’s data at a time. Toward this end, any two clients’
datasets are taken as the adjacent datasets, which is an extra
case of client-adjacent datasets.

In summary, the mechanism M satisfies (qT ε, qTσ)-DP
in the client-level, when σ ≥ c12h/ε, c2 > 2ln(1.25/δ)
and 12h = 2ηT C . Moreover, some uploading model weights
are replaced by the previous uploaded weights in the pro-
posed Ada-PPFL. The actual number of client’s DP-protected
weights visible to the server is T ′. Thus, the mechanism M
satisfies (qT ′ε, qT ′σ)-DP and Theorem 4 holds. □

VII. EXPERIMENTS

In this section, we first introduce the experiment setup. Then
we evaluate the performance of Ada-PPFL.

A. Experiment Setup

Datasets: We conduct experiments on MNIST handwritten
digits dataset1 and CIFAR-10 dataset 2 [44]. MNIST dataset
consists of 60,000 training images (28×28 pixels) and 10,000
test images with 10 categories (i.e, output classes or labels).
CIFAR-10 dataset consists of 50,000 colour training images
(3×32×32 pixels) and 10,000 colour test images in 10 classes.
The training datasets are independent identically distributed
(iid) and non-independent identically distributed (non-iid), and
evenly partitioned into 100 clients in the following exper-
iments (balanced setting). In the iid setting, each client is

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html

randomly assigned a uniform distribution over 10 classes.
In the non-iid setting, the training data is sorted by class
and then divided into 200 partitions, with each client being
randomly assigned to two partitions [45].

Models: The experiments of Ada-PPFL are conducted on
the Logistic Regression (LR, one connected layer with Soft-
max activation) and Convolutional Neural Network (CNN, two
5×5 convolution layers and three fully connected layers with
ReLu activation). The update mode of Ada-PPFL is FedAvg,
where the local epoch E = 1 and batch size equals 10.
Besides, all clients participate in each global aggregation and
m′ is equal to 2 in DPAD algorithm. In the convergence
validation experiments, we set up four different cost functions
for the LR task. Specifically, the cost functions are given by

Fi (ω) =
1
n

n∑
k=1

CrossEntropy (f (ω; xk) , yk) , (1)

Fi (ω) =
1
n

n∑
k=1

CrossEntropy (f (ω; xk) , yk)+ λ1∥ω∥
2
2,

(2)

Fi (ω) =
1
n

n∑
k=1

CrossEntropy (f (ω; xk) , yk)+ λ1∥ω∥1,

(3)

Fi (ω) =
1
n

n∑
k=1

CrossEntropy (f (ω; xk) , yk)

+ λ1∥ω∥1 + λ2r(ω), (4)

where r(ω) =
∑d

j=1
(ω(j))2

1+(ω(j))2 is a smooth but non-convex
regularization term and λ2 controls the influence of r(ω). d is
the size of ω and ω(j) is the j-th value of the vector ω. Cost
functions in Eqs. (1), (2), (3), and (4) are convex and smooth,
strongly convex and smooth, convex and non-smooth, non-
convex and non-smooth, respectively. Besides, the LR tasks
with Eqs. (1), (2), (3), and (4) are denoted as LR-0, LR-1,
LR-2, and LR-3, respectively.

Attacks: In our experiments, three baseline attacks (includ-
ing two untargeted attacks and a targeted attack) are simulated.
1) Sign-flipping Attack: It is an untargeted attack where the
malicious clients flip the signs of their local model updates [9],
[10]. 2) Additive Noise Attack: It is an untargeted attack where
the malicious clients add Gaussian noise to their local model
updates. In the experiments, the noise scale is the same for
each client [9], [10]. 3) Backdoor Attack: It is a targeted
attack, referred as model poisoning attack [11], [21], [46].
In our experiments, we examine the semantic backdoor attack,
where the malicious clients attempt to manipulate the model
to classify images with the label “7” as label “5” on MNIST
dataset and classify images with the label “frog” as label
“deer” on CIFAR-10 dataset.

Metrics: Four metrics are used, including 1) prediction
accuracy, 2) privacy protection degree, 3) detection precision,
and 4) accuracy difference. The prediction accuracy is evalu-
ated by using testing data. The degree of privacy protection
provided by Ada-PPFL is determined by the total privacy
budget ε of the client during training. A smaller privacy

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

4338 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 4. (a) The prediction accuracy of Ada-PPFL with different clipping
thresholds in LR task. (b) The prediction accuracy of Ada-PPFL with different
clipping thresholds in CNN task.

budget indicates stronger privacy protection. The detection
precision is equal to |T P|/(|T P| + |F P|), where |T P| is the
number of benign model updates in the target cluster Clu1,
and |F P| is the number of malicious model updates in Clu1.
The accuracy difference denotes the difference between two
prediction accuracy, and is used to metric the similarity of two
training model.

Implementations: The implementations of Ada-PPFL are
achieved by PYTHON 3.7 on PC with 3.1 GHz Intel Core i5,
8 GB RAM, and macOS High Sierra operating system.

B. Algorithm Parameters

Clipping threshold C: The clipping threshold of gradients
is an important factor that determines the sensitivity (or
noise scale). To verify the performance of Ada-PPFL, the
appropriate clipping C should be confirmed first. According to
Fig. 4(a) and (b), C = 20 is selected as the clipping threshold
of Ada-PPFL. Because the model maintains a similar pre-
diction accuracy under this threshold as in the non-threshold
case, and the smaller C means that less noise is added in DP
scenario.

Conversion ratio λ: The replacement can trade a smaller
loss of accuracy for a higher security, and the replacement
is affected by λ. Thus, the experiments on different λ are
conducted on iid and non-iid datasets. The experimental results
are depicted in Fig. 5 (a) and Fig. 5 (b), which show that the
variation of prediction accuracy in different λ. According to
the results, the prediction accuracy at λ = 8 is high and similar
to the situation without the replacement. Besides, the privacy
protection is improved at conversion ratio λ = 8, which will
be verified in Section VII-D.

C. Convergence of Ada-PPFL

Convergence in different training setting: To verify the
convergence of Ada-PPFL, the experiments of LR-0 with cross
entropy cost function (i.e., Eq. (1) in Section VII-A) are
conducted, where C = 20, λ = 8, η0 = 0.1, ηT = η0/(ρ ∗

T + 1), and the server is honest-but-curious. Fig. 6 (a) shows
the variation of training loss during training. The training loss
decreases with the number of training rounds and gradually
tends to be constant. In this experiment, the threshold of the
difference between two adjacent training losses is 10−5. When
the difference is less than 10−5, the model training converges.

Fig. 5. (a) The prediction accuracy of Ada-PPFL with different conversion
ratio λ for the iid MNIST dataset. (b) The prediction accuracy of Ada-PPFL
with conversion ratio λ for the non-iid MNIST dataset.

Fig. 6. (a) The training loss of LR-0 in three different training scenarios.
(b) The prediction accuracy of LR-0 in three different training scenarios.

Fig. 7. (a) The training loss for tasks with four different cost functions.
(b) The prediction accuracy for tasks with four different cost functions.

In Fig. 6 (b), the schemes, i.e., the training with fixed learning
rate and no attacks, the training with fixed learning rate and
privacy protection, and Ada-PPFL with LR-0, converge in the
58-th, 99-th, and 83-rd rounds of training, respectively.

Convergence in different learning tasks: We examine our
theoretical convergence results on the LR-1 and LR-2 task. The
learning rate of LR-1 is ηT = η0/(ρ ∗ T + 1) and the learning
rate of LR-2 is ηT = η0/(ρ ∗

√
T +1). As shown in Fig. 7 (a),

the training losses of LR-1 and LR-2 gradually tend to be
constants in 70-th and 100-th training rounds, respectively.
The prediction accuracy shown in Fig. 7 (b) also tends to
converge as the number of training rounds increases. Thus, the
convergence analysis of Ada-PPFL in Section VI are verified.

To show the convergence results of Ada-PPFL are generally
applicable, the experiments of LR-3 and CNN task (with
cross entropy cost function) are conducted. The cross entropy
cost function in CNN task is non-convex. The convergence
results are depicted in Fig. 7 (a) and (b). Ada-PPFL converges

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

LE et al.: PRIVACY-PRESERVING FL WITH MALICIOUS CLIENTS AND HONEST-BUT-CURIOUS SERVERS 4339

Fig. 8. (a) The client’s replacement ratio under different λ for iid dataset.
(b) The client’s replacement ratio under different λ for non-iid dataset.

at 125 and 47 training rounds in LR-3 and CNN tasks,
respectively.

In summary, our Ada-PPFL achieves good convergence
results in the common LR and CNN tasks and can adapt to
different types of loss functions.

D. Privacy Protection of Ada-PPFL

In this section, we simulate the privacy budget allocated in
Ada-PPFL to achieve client-level privacy protection and use
privacy protection degree to measure the privacy of client data.

Privacy protection degree: The degree of privacy protection
is measured by the total privacy budget during training.
Fig. 8 (a) and Fig. 8 (b) show the relations between replace-
ment ratio and parameter λ. When λ = 8, there is 35% of
model updates kept locally. If the privacy budget is fixed
in each training round, a 35% reduction in the total privacy
budget allocated to each client, meaning a 35% increase in
privacy protection guarantee.

The results of Fig. 6 show that the number of training rounds
required for convergence of different schemes is also different.
The replacements of each training round before convergence
are shown in Fig. 9 (a), where 1 means the replacements
occurred and 0 means no replacements. In the experiment,
the number of 1 is equal to 25, which is far less than the
number 58 in the scheme with fixed learning rate. Thus, the
total privacy budget allocated to each client in Ada-PPFL
is less than that of other schemes, meaning stronger privacy
protection.

Besides, Fig. 9 (b) shows the noise scale added by
Ada-PPFL and the scheme with fixed noise scale to each client
that is usually performed by previous work. Total noise scale
in Ada-PPFL with LR-0 and in the model training with fixed
learning rate and protection are 0.9469 and 1.9800, respec-
tively. That is, Ada-PPFL requires less noise to achieve privacy
protection, which also ensures high prediction accuracy.

E. Attack Defense of Ada-PPFL

The defense performances of Ada-PPFL are evaluated by
the prediction accuracy, the detection precision, and the pre-
diction accuracy difference under three baseline attacks.

Ada-Pplf vs. Byzantine-Resilient Aggregation Schemes: In
order to test the defense performances of the proposed
Ada-PPFL, the prediction accuracy experiments are con-
ducted on three baseline attacks in the non-fully trusted FL.

Fig. 9. (a) The number of the replacements on a client in Ada-PPFL. (b) The
noise scale on clients in Ada-PPFL vs. the fixed noise scale.

Fig. 10. (a) The prediction accuracy under sign-flipping attack. (b) The
prediction accuracy under noise attack. (c) The prediction accuracy under
backdoor attack.

Besides, the proposed Ada-PPFL is compared to two common
Byzantine-resilient aggregation schemes, i.e., Krum [18] and
GeoMed [19], which are often used to defend against Byzan-
tine clients. The experimental results are shown in Fig. 10,
where our Ada-PPFL can achieve high prediction accuracy
under different malicious attacks and is better than Krum and
GeoMed schemes. That is, our Ada-PPFL can not only defend
three baseline attacks but also ensure high prediction accuracy.

Three Baseline Attacks Detection: In Ada-PPFL, the
DP-protected model updates of clients are mapped to 2-
dimensional space by multi-dimensional scaling (MDS)
algorithm. Then, we use DPAD to detect the malicious
model updates. In the experiment of detection precision, the
percentage of malicious model updates is set as 30% in
the sign-flipping attack and the additive noise attack. The
clients with label “7” (MNIST) label “frog” (CIFAR-10) are
malicious in the backdoor attack.

The experimental results on MNIST dataset are shown in
Fig. 11 and Fig. 12. Fig. 11 (a) and Fig. 12 (a) show the
detection precision of Ada-PPFL for the three baseline mali-
cious attacks in LR and CNN tasks. The detection precision

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

4340 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 11. (a) The detection precision of each round for three baseline attacks.
(b) The prediction accuracy after Ada-PPFL.

Fig. 12. (a) The detection precision of each round for three baseline attacks.
(b) The prediction accuracy after Ada-PPFL.

Fig. 13. (a) The detection precision of each round for three baseline attacks.
(b) The prediction accuracy difference in Ada-PPFL.

of Ada-PPFL goes to 1 as training progresses, which indicates
that the proposed Ada-PPFL has good detection capability for
baseline attacks. Besides, Fig. 11 (b) and Fig. 12 (b) show that
the prediction accuracy of Ada-PPFL is very close to that of
the training without attacks, meaning that the impact of the
malicious model updates is eliminated in Ada-PPFL.

In order to verify whether Ada-PPFL is applicable to dif-
ferent types of data, the experiments on CIFAR-10 dataset are
performed. The detection precision of Ada-PPFL for the three
baseline malicious attacks in CNN task is shown in Fig. 13 (a).
The detection precision of Ada-PPFL also tends to 1 as the
training rounds increasing. The prediction accuracy difference
between Ada-PPFL and the baseline prediction accuracy is
always less than 2.5%, as shown in Fig. 13 (b).

In summary, the proposed Ada-PPFL can achieve good con-
vergence results in different types of loss functions, and per-
form well in handling LR and CNN tasks. Besides, Ada-PPFL
enables client-level privacy protection with 35%DP-noise sav-
ing. Then, under client-level privacy protection, Ada-PPFL can

effectively defend against three baseline malicious attacks with
high prediction accuracy. Thus, our Ada-PPFL is an effective
and generally applicable privacy-preserving federated learning
scheme in the non-fully trusted setting.

VIII. CONCLUSION

In this paper, we considered a non-fully trusted federated
learning where the server is honest-but-curious, and the clients
are malicious. In the non-fully trusted FL, a conflict exists
between privacy-preserving and outliers detecting. To solve
this conflict, we proposed an adaptive privacy-preserving
scheme (Ada-PPFL) in the non-fully trusted setting. On the
client side of Ada-PPFL, we designed a privacy protection
model based on DP and a selection criterion to support the
adaptive noise addition for clients’ local training. They guar-
anteed strong protection of the client’s privacy and improved
the prediction accuracy of training. Meanwhile, we adopted a
DPAD algorithm on the server side to detect the DP-protected
model updates, which can precisely detect and remove the
malicious model updates. Finally, the theoretical analyses
and experimental results further illustrate that the proposed
Ada-PPFL can provide client-level privacy protection and keep
high prediction accuracy in the non-fully trusted FL.

APPENDIX

A. Additional Notations

We first show the update method of Ada-PPFL without the
replacement, and then we define some additional notations.

vi
t+1 = wi

t − ήt∇Fi

(
wi

t , ξ
i
t

)
,

wi
t+1 =

vi

t+1, if t + 1 /∈ IT ,∑
i∈U l

T

pi (ωT−1 −
ηT ĝi

T

αi
T
+ ñi

T), if t + 1 ∈ IT ,

where T ← ⌈ t+1
Eb ⌉ and ήt = ηT when t ∈ {(T − 1)Eb, T Eb}.

Motivated by [43], [47], we define that ṽt =
∑M

i=1 pi vi
t ,

w̃t =
∑M

i=1 pi wi
t , g̃t =

∑M
i=1 pi∇Fi

(
wi

t
)

and gt =∑M
i=1 pi∇Fi

(
wi

t , ξ
i
t
)
. The learning rate of each client is the

same in the same round. Then, we can get that ṽt+1 =

w̃t − ήt gt and Egt = g̃t .

B. Key Lemmas

Four key lemmas can be summarized based on Assumptions
1 to 6, described as follows.

Lemma 1: Based on Assumptions 1 and 2, if ήt ≤
1

4L ,
it follows that

E
∥∥ṽt+1 − ω

∗
∥∥2
≤
(
1− ήtµ

)
E
∥∥w̃t − ω

∗
∥∥2
+ ή2

t E ∥gt − g̃t∥
2

+ 6Lή2
t 0 + 2E

M∑
i=1

pi
∥∥w̃t − wt

i

∥∥2
.

Lemma 2: According to Assumption 3, it follows that

E ∥gt − g̃t∥
2
≤

M∑
i=1

p2
i σ́

2
i .

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

LE et al.: PRIVACY-PRESERVING FL WITH MALICIOUS CLIENTS AND HONEST-BUT-CURIOUS SERVERS 4341

Lemma 3: If Assumption 4 holds, we have

E

[M∑
i=1

pi
∥∥w̃t − wt

i

∥∥2

]
≤ ή2

t (Eb − 1)2G2,

where ήt is non-increasing and ήt ≤ ηt+Eb for all t ≥ 0
Lemma 4: If Assumptions 5 and 6 hold, we have

E
∥∥ṽt+1 − ω

∗
∥∥2
≤ E||w̃t − ω

∗
||

2
− 2ήtE(F(w̃t)− F∗)

+ (Eb + 4)ή2
t L ′2.

For the proof of these lemmas 1 to 3, please refer to
Section .4 of [43]. We will not repeat them here.

C. Proof of Lemma 4

Proof: Notice that ṽt+1 = w̃t − ήt gt , then

||ṽt+1 − ω
∗
||

2
=||w̃t − ήt gt − ω

∗
− ήt g̃t + ήt g̃t ||

2

=||w̃t − ήt g̃t − ω
∗
||

2
+ ή2

t ||gt − g̃t ||
2
+

2ήt ⟨w̃t − ήt g̃t − ω
∗, g̃t − gt ⟩.

Assume A1 = ||w̃t − ήt g̃t − ω
∗
||

2, then we have

A1 = ||w̃t − ω
∗
||

2
− 2ήt ⟨w̃t − ω

∗, g̃t ⟩ + ή
2
t ||g̃t ||

2

≤ ||w̃t − ω
∗
||

2
− 2ήt

M∑
i=1

pi ⟨w̃t − wi
t ,∇Fi

(
wi

t

)
⟩

− 2ήt

M∑
i=1

pi ⟨w̃t − ω
∗,∇Fi

(
wi

t

)
⟩.

By Cauchy-Schwarz and AM-GM inequalities, we have

−2ήt ⟨w̃t − wi
t ,∇Fi

(
wi

t

)
⟩ ≤ ||w̃t − wi

t ||
2
+ ή2

t ||∇Fi

(
wi

t

)
||

2.

(5)

By the convexity of Fi (·) (i.e., Assumption 5) and L ′-
Lipschitz bounded (i.e., Assumption 6), we have

− 2ήt ⟨w̃t − ω
∗,∇Fi

(
wi

t

)
⟩ ≤ −2ήt (Fi (wi

t)− Fi (ω
∗)), (6)

ή2
t ||g̃t ||

2
≤ ή2

t

M∑
i=1

pi ||∇Fi

(
wi

t

)
||

2
≤ ή2

t L ′2, (7)

E||g̃t−gt ||
2
=

M∑
i=1

p2
i E||∇Fi

(
wi

t , ξ
i
t

)
−∇Fi

(
wi

t

)
||

2
≤ 2L ′2,

(8)

E
M∑

i=1

pi ||w̃t − wi
t ||

2
≤ Ebή2

t L ′2. (9)

More details can refer to the proof of Lemma 3 in [43].
By combining Eqs. (1), (2) and (3), it follows that

A1 = ||w̃t − ήt g̃t − ω
∗
||

2

≤ ||w̃t − ω
∗
||

2
+

M∑
i=1

pi ||w̃t − wi
t ||

2
+ ή2

t ||∇Fi

(
wi

t

)
||

2

− 2ήt

M∑
i=1

pi (Fi (wi
t)− Fi (ω

∗))+ ή2
t L ′2

≤ ||w̃t − ω
∗
||

2
+

M∑
i=1

pi ||w̃t − wi
t ||

2

− 2ήt

M∑
i=1

pi (Fi (wi
t)− Fi (ω

∗))+ 2ή2
t L ′2.

As E⟨w̃t − ήt g̃t − ω
∗, g̃t − gt ⟩ = 0, and then according to

Equation (4), we have

E||ṽt+1 − ω
∗
||

2
= E||w̃t − ήt g̃t − ω

∗
||

2
+ ή2

t E||g̃t − gt ||
2

≤ E||w̃t − ω
∗
||

2
+ E

M∑
i=1

pi ||w̃t − wi
t ||

2
+ ή2

t E||g̃t − gt ||
2

− 2ήtE
M∑

i=1

pi (Fi (wi
t)− Fi (ω

∗))+ 2ή2
t L ′2

≤ E||w̃t − ω
∗
||

2
− 2ήtE(F(w̃t)− F∗)+ (Eb + 4)ή2

t L ′2.

Thus, Lemma 4 holds. □

D. Proof of Theorem 2

Proof: According to the above definitions and the update
of Ada-PPFL, we have

ṽt+1 =

{
w̃t+1, if t + 1 /∈ IT ,

α̃T w̃t+1 − (α̃T − 1)ω̃T−1 + α̃T ñT , if t + 1 ∈ IT ,

where α̃T =
∑M

i=1 piα
i
T and ñT =

∑M
i=1 pi ni

T .
According to Lemmas 1 to 3, we have

E||ṽt+1 − ω
∗
||

2
≤
(
1− ήtµ

)
E
∥∥w̃t − ω

∗
∥∥2
+ ή2

t J,

where J =
∑M

i=1 p2
i σ́

2
i + 6L0 + 2(Eb − 1)2G2.

In this paper, we focus on the convergence of the global
model, and the situation of t + 1 ∈ IT is analyzed, where
t + 1 is represented by T . For convenience, let 1́t+1 =

E
∥∥w̃t+1 − ω

∗
∥∥2, and it follows that

E||ṽt+1 − ω
∗
||

2

= E||α̃T w̃t+1 − (α̃T − 1)ω̃T−1 + α̃T ñT − ω
∗
||

2

= E||α̃T (w̃t+1 − ω
∗)− (α̃T − 1)(ω̃T−1 − ω

∗)+ α̃T ñT ||
2

≤
(
1− ήtµ

)
1́t + ή

2
t J,

and

E||α̃T (w̃t+1 − ω
∗)||2 = α̃2

T 1́t+1

≤
(
1− ήtµ

)
1́t+ή

2
t J+E||(α̃T − 1)(ω̃T−1 − ω

∗)+ α̃T ñT ||
2.

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

4342 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

According to 1́t ≤
(
1− ήtµ

)
1́t−1 + ή

2
t J , ήt < 1/µ and

α̃2
T > 1. 1T = 1́t+1, and we have

1́t+1 ≤

(
1− ήtµ

)
1́t+1−Eb

α̃2
T

+
Ebή2

t J

α̃2
T
+
(α̃T − 1)21T−1

α̃2
T

+ E||ñT ||
2

≤

(
1−

ήtµ

α̃2
T

)
1T−1 + Ebή2

t J + E||ñT ||
2.

For a diminishing stepsize, ηT =
β

T+γ for some
β > 1

µ
and γ > 0. Since every ñi

T ∼ N (0, Iσ 2
T)

when t + 1 ∈ IT , we have E||ñT ||
2
≈ σ 2

T =

4z2C2η2
T . We next prove that 1T ≤

v
γ+T , where v =

max
(
(EbJβ2

+ 4z2C2)/(βµ/α2
T − 1), (γ + 1)11

)
.

1T ≤

(
1−

ηTµ

α̃2
T

)
1T−1 + Ebη2

T J + E||ñT ||
2

=
T + γ − 2
(T + γ − 1)2

v +

[
EbJβ2

+ 4z2C2

(T + γ − 1)2
−

βµ/α2
T − 1

(T + γ − 1)2
v

]
≤

v

T + γ
.

By the smooth of F(·), we have

E
[
F (ω̃T)

]
− F∗ ≤

L
2
1T ≤

L
2

v

γ + T
.

Thus, Theorem 2 holds. □

E. Proof of Theorem 3

Proof: According to the definitions and the update of
Ada-PPFL, we also have

w̃t+1

=

 ṽt+1, if t + 1 /∈ IT ,
1
α̃T

ṽt+1 + (1−
1
α̃T
)ω̃T−1 − ñT , if t + 1 ∈ IT ,

where T ← ⌈ t+1
Eb ⌉, α̃T =

∑M
i=1 piα

i
T and ñT =

∑M
i=1 pi ni

T .
According to Lemma 4, it follows that

T ′∑
t=0

2ήtE(F(w̃t)− F∗) ≤
T ′∑

t=0

(Eb + 4)ή2
t L ′2

+

T ′∑
t=0

(E||w̃t − ω
∗
||

2
− E

∥∥ṽt+1 − ω
∗
∥∥2
).

If tk = k Eb ∈ IT , where k = ⌈ t
Eb ⌉. Let k′ = ⌊ T ′

Eb ⌋, and
then we have

T ′∑
t=0

(E||w̃t − ω
∗
||

2
− E

∥∥ṽt+1 − ω
∗
∥∥2
)

= E||ω̃0 − ω
∗
||

2
+ (E||w̃t1 − ω

∗
||

2
− E||ṽt1 − ω

∗
||

2)+ · · ·

+ (E||w̃tk′ − ω
∗
||

2
− E||ṽtk′ − ω

∗
||

2)− E||ṽT ′ − ω
∗
||

2

≤ E||ω̃0 − ω
∗
||

2
+ (E||w̃t1 − ω

∗
||

2
− E||ṽt1 − ω

∗
||

2)+ · · ·

+ (E||w̃tk′ − ω
∗
||

2
− E||ṽtk′ − ω

∗
||

2).

At the global round tk , it has

E||w̃tk − ω
∗
||

2
− E||ṽtk − ω

∗
||

2

= E||ṽtk − ω
∗
+ (1−

1
α̃k
)(ω̃k−1 − ṽtk)− (ñk)||

2

− E||ṽtk − ω
∗
||

2

≤ (1−
1
α̃k
)2E||ω̃k−1 − ṽtk ||

2
+ E||ñk ||

2

= (1−
1
α̃k
)2E||α̃kω̃k−1 − α̃kω̃i − α̃k ñk ||

2
+ ||ñk ||

2.

In Ada-PPFL, as the clipping gradient satisfies ḡi
tk < C ,

we have

||ω̃k − ω̃k−1||
2
= ||

M∑
i=1

pi (ω̃k−1 − ήtk ḡi
tk)−

M∑
i=1

pi ω̃k−1||
2

= ||

M∑
i=1

pi ήtk ḡi
tk ||

2
≤ ή2

tk C2.

Since E||ñk ||
2
≈ σ 2

k = 4z2C2η2
k , we have

T ′∑
t=0

(E||w̃t − ω
∗
||

2
− E

∥∥ṽt+1 − ω
∗
∥∥2
)

≤ E||ω̃0 − ω
∗
||

2
+

k′∑
k=1

C2η2
k [(α̃k − 1)2(1+ 4z2)+ 4z2

].

Assume that the E[F(w̃t)] is smaller than E[F(w̃t ′)] and
T ′ = t + x , where t ′ ∈ [0, T ′], t ̸= t ′ and x ≥ 0. As αi

T =

max(1, ||ĝi
T ||2/C), we have max(α̃k) ≤

L ′
C , where k ∈ [1, T ′]

and L ′ ≥ C . Besides, using the fact that F(w̃t)− F∗ > 0 and
αi

T = max(1, ||ĝi
T ||2/C), we have

(E[F(w̃T)] − F∗)
T ′∑

t=0

2ήt ≤

T ′∑
t=0

2ήtE(F(w̃t)− F∗)

≤

T ′∑
t=0

(E||w̃t−ω
∗
||

2
−E

∥∥ṽt+1 − ω
∗
∥∥2
)+

T ′∑
t=0

(Eb + 4)ή2
t L ′2

≤ E||ω̃0 − ω
∗
||

2
+

k′∑
k=1

C2η2
k [(

L ′

C
− 1)2(1+ 4z2)+ 4z2

]

+

T ′∑
t=0

(Eb + 4)ή2
t L ′2,

where E ∥ω̃0 − ω
∗∥

2
= 11, ψ = C2

[(L ′
C −1)2(1+4z2)+4z2

],
ηk =

1
√

k
, and ήt = ηk when t ∈ {(k − 1)Eb, k Eb}. Then,

we use the following inequalities (refer to [48])

y∑
x=1

1
√

x
≥
√

y, and
y∑

x=1

(
1
√

x
)2 ≤ 1+ ln(y), (10)

where y ≥ 2.
By Eqs. (6) and (7), we have

∑T ′
t=0 ήt ≥ Eb

√
k′,
∑T ′

t=0 ή
2
t ≤

Eb(1+ ln(k′)), and
∑k′

k=1 η
2
k ≤ 1+ ln(k′).

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

LE et al.: PRIVACY-PRESERVING FL WITH MALICIOUS CLIENTS AND HONEST-BUT-CURIOUS SERVERS 4343

Thus, it follows that

E[F(w̃T)] − F∗ ≤
1́1

2Eb
√

k′
+
ψ(1+ ln(k′))

2Eb
√

k′

+
(Eb + 4)L ′2(1+ ln(k′))

√
k′

.

As k′ = ⌊ T ′
Eb ⌋ and T ′ = t + x , it satisfies that k′ ≥ t+x−Eb

Eb ,
where t ≥ Eb and Eb ≥ 1, and then we have

E[F(w̃T)] − F∗

≤

√
Eb(Eb + 4)L ′2(1+ ln(t + x − Eb))

√
t + x − Eb

+
1́1

2
√

Eb
√

t + x − Eb
+
ψ(1+ ln(t + x − Eb))

2
√

Eb
√

t + x − Eb

≤
1́1

√
t − Eb

+
ψ(1+ ln(t − Eb))
√

t − Eb

+

√
Eb(Eb + 4)L ′2(1+ ln(t − Eb))

√
t − Eb

.

If t ∈ IT , we also have

E[F(w̃T)] − F∗ ≤
1́1
√

T − 1
+
ψ(1+ ln(T − 1))
√

T − 1

+

√
Eb(Eb + 4)L ′2(1+ ln(T − 1))

√
T − 1

.

Thus, Theorem 3 holds. □

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, 2012, pp. 1097–1105.

[2] S. Loussaief and A. Abdelkrim, “Machine learning framework for
image classification,” in Proc. 7th Int. Conf. Sci. Electron., Technol.
Inf. Telecommun. (SETIT), Dec. 2016, pp. 58–61.

[3] S. Gao, Y. Zhang, K. Jia, J. Lu, and Y. Zhang, “Single sample face
recognition via learning deep supervised autoencoders,” IEEE Trans.
Inf. Forensics Security, vol. 10, no. 10, pp. 2108–2118, Oct. 2015.

[4] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Proc. Annu. Conf.
Int. Speech Commun. Assoc. (ISCA), 2010, pp. 1045–1048.

[5] J. Konečný, B. McMahan, and D. Ramage, “Federated optimization: Dis-
tributed optimization beyond the datacenter,” 2015, arXiv:1511.03575.

[6] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
2016, arXiv:1610.02527.

[7] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models that
remember too much,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 587–601.

[8] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 1–15.

[9] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in Proc. AAAI Conf. Artif. Intell. (AAAI),
vol. 33, 2019, pp. 1544–1551.

[10] Z. Wu, Q. Ling, T. Chen, and G. B. Giannakis, “Federated variance-
reduced stochastic gradient descent with robustness to Byzantine
attacks,” IEEE Trans. Signal Process., vol. 68, pp. 4583–4596, 2020.

[11] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2019, pp. 634–643.

[12] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.
(AISTATS), 2020, pp. 2938–2948.

[13] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1175–1191.

[14] C. Fang, Y. Guo, N. Wang, and A. Ju, “Highly efficient federated
learning with strong privacy preservation in cloud computing,” Comput.
Secur., vol. 96, Sep. 2020, Art. no. 101889.

[15] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2015,
pp. 1310–1321.

[16] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3454–3469, 2020.

[17] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” pp. 1–14, 2018.

[18] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Proc.
Int. Conf. Neural Inf. Process. Syst. (NeurIPS), 2017, pp. 118–128.

[19] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 1, no. 2, pp. 1–25, 2017.

[20] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. Int. Conf.
Mach. Learn. (PMLR), 2018, pp. 5650–5659.

[21] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to detect
malicious clients for robust federated learning,” 2020, arXiv:2002.00211.

[22] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-
enhanced federated learning against poisoning adversaries,” IEEE Trans.
Inf. Forensics Security, vol. 16, pp. 4574–4588, 2021.

[23] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 2168–2181, Jul. 2021.

[24] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from feder-
ated learning,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2019, pp. 2512–2520.

[25] M. Song et al., “Analyzing user-level privacy attack against federated
learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2430–2444,
Oct. 2020.

[26] M. Ester et al., “A density-based algorithm for discovering clusters in
large spatial databases with noise,” in Proc. Int. Conf. Knowl. Discovery
Data Mining (KDD), vol. 96, 1996, pp. 226–231.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist. (AISTATS), 2017, pp. 1273–1282.

[28] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,
pp. 1322–1333.

[29] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploit-
ing unintended feature leakage in collaborative learning,” 2018,
arXiv:1805.04049.

[30] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2017, pp. 3–18.

[31] Y. Chen, F. Luo, T. Li, T. Xiang, Z. Liu, and J. Li, “A training-integrity
privacy-preserving federated learning scheme with trusted execution
environment,” Inf. Sci., vol. 522, pp. 69–79, Jun. 2020.

[32] C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated
learning in Sybil settings,” in Proc. Int. Symp. Res. Attacks, Intrusions
Defenses (RAID), 2020, pp. 301–316.

[33] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, 2021.

[34] C. Dwork et al., “The algorithmic foundations of differential privacy,”
Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4, pp. 211–407, 2014.

[35] C. Dwork, “Differential privacy: A survey of results,” in Proc. Int. Conf.
Theory Appl. Models Comput. (TAMC), 2008, pp. 1–19.

[36] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2016, pp. 308–318.

[37] K. Amin, A. Kulesza, A. Munoz, and S. Vassilvtiskii, “Bounding user
contributions: A bias-variance trade-off in differential privacy,” in Proc.
Int. Conf. Mach. Learn. (ICML), 2019, pp. 263–271.

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

4344 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[38] G. Andrew, O. Thakkar, B. McMahan, and S. Ramaswamy, “Differen-
tially private learning with adaptive clipping,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 34, 2021, pp. 17455–17466.

[39] C. Dwork and J. Lei, “Differential privacy and robust statistics,” in Proc.
41st Annu. ACM Symp. Theory Comput., May 2009, pp. 371–380.

[40] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
data, ourselves: Privacy via distributed noise generation,” in Proc. Annu.
Int. Conf. Theory Appl. Cryptograph. Techn. (EUROCRYPT), 2006,
pp. 486–503.

[41] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN,”
ACM Trans. Database Syst., vol. 42, no. 3, pp. 1–21, Sep. 2017.

[42] L. Fan and L. Xiong, “An adaptive approach to real-time aggregate
monitoring with differential privacy,” IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 9, pp. 2094–2106, Sep. 2014.

[43] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-iid data,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2019, pp. 1–26.

[44] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.

[45] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” 2018, arXiv:1806.00582.

[46] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” 2019, arXiv:1911.07963.

[47] S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2018, pp. 1–19.

[48] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3,
pp. 601–615, Mar. 2015.

Junqing Le (Member, IEEE) received the B.S.
degree in software engineering from Southwest Jiao-
tong University, Chengdu, China, in 2014, and the
M.S. degree in signal and information processing
and the Ph.D. degree in intelligent computing and
information processing from Southwest University,
Chongqing, China, in 2017 and 2021, respectively.
From May 2019 to May 2020, he was a Visit-
ing Scholar with George Mason University. He is
currently a Research Assistant with the College
of Computer Science, Chongqing University. His

current research interests include privacy protection, machine learning, and
blockchain.

Di Zhang received the Ph.D. degree in intelli-
gent computing and information processing from
Southwest University, Chongqing, China, in 2021.
From December 2018 to December 2020, she
was a Visiting Scholar with Virginia Polytech-
nic Institute and State University. She is currently
a Research Assistant with the College of Com-
puter Science, Chongqing University. Her research
interests include applied crypto, cloud computing
security, and blockchain.

Xinyu Lei (Member, IEEE) received the Ph.D.
degree from the Department of Computer Science
and Engineering, Michigan State University, East
Lansing, MI, USA, in 2021. In 2013, he was a
Research Assistant with Texas A&M University at
Qatar, Doha, Qatar. In 2017, he was a Research
Intern with Ford Motor Company, Dearborn, MI,
USA. He is currently an Assistant Professor with
the Department of Computer Science, Michigan
Technological University, Houghton, MI, USA. His
current research interests include machine learning
and cybersecurity.

Long Jiao received the Ph.D. degree from the
Department of Electrical and Computer Engineer-
ing, George Mason University (GMU). In his Ph.D.
study, he has published more than 20 papers in pres-
tigious journals and conferences, including IEEE
TRANSACTIONS ON INFORMATION FORENSICS
AND SECURITY, IEEE WIRELESS COMMUNICA-
TIONS, IEEE NETWORK, IEEE INFOCOM, and
IEEE CNS. His research interests include cyberse-
curity and wireless networking with emphasis on
physical layer security, cyber-physical systems/IoT

security, spectrum sharing security, and machine learning application in
wireless security. His research has been supported by NSF, DARPA, ARO,
and Virginia Commonwealth Cyber Initiative (CCI).

Kai Zeng (Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
the Worcester Polytechnic Institute (WPI) in 2008.
He was a Post-Doctoral Scholar with the Department
of Computer Science, University of California at
Davis (UCD), from 2008 to 2011. He was with the
Department of Computer and Information Science,
University of Michigan-Dearborn, as an Assistant
Professor, from 2011 to 2014. He is currently an
Associate Professor with the Department of Electri-
cal and Computer Engineering and the Department

of Computer Science, George Mason University. His current research interests
include cyber-physical systems/IoT security and privacy, 5G and beyond
wireless network security, network forensics, machine learning, and spectrum
sharing. He was a recipient of the U.S. National Science Foundation Faculty
Early Career Development (CAREER) Award in 2012, the Excellence in
Post-Doctoral Research Award from UCD in 2011, and the Sigma Xi
Outstanding Ph.D. Dissertation Award from WPI in 2008.

Xiaofeng Liao (Fellow, IEEE) received the B.S. and
M.S. degrees in mathematics from Sichuan Univer-
sity, Chengdu, China, in 1986 and 1992, respectively,
and the Ph.D. degree in circuits and systems from
the University of Electronic Science and Technol-
ogy of China, Chengdu, in 1997. From November
1997 to April 1998, he was a Research Associate
with The Chinese University of Hong Kong. From
October 1999 to October 2000, he was a Research
Associate with the City University of Hong Kong.
From 1999 to 2012, he was a Professor at Chongqing

University. From March 2001 to June 2001 and from March 2002 to June
2002, he was a Senior Research Associate with the City University of Hong
Kong. From March 2006 to April 2007, he was a Research Fellow with the
City University of Hong Kong. He is currently a Professor and the Dean
with the College of Computer Science, Chongqing University. He is also a
Yangtze River Scholar of the Ministry of Education of China, Beijing, China.
He holds four patents, and published four books and over 300 international
journal and conference papers. His current research interests include neural
networks, nonlinear dynamical systems, cryptography, and privacy protection.

Authorized licensed use limited to: Michigan Technological University. Downloaded on August 25,2023 at 01:12:25 UTC from IEEE Xplore. Restrictions apply.

