
Cloud Computing Service: The Case
of Large Matrix Determinant Computation

Xinyu Lei, Xiaofeng Liao, Senior Member, IEEE, Tingwen Huang, and Huaqing Li

Abstract—Cloud computing paradigm provides an alternative and economical service for resource-constrained clients to perform

large-scale data computation. Since large matrix determinant computation (DC) is ubiquitous in the fields of science and engineering, a

first step is taken in this paper to design a protocol that enables clients to securely, verifiably, and efficiently outsource DC to a

malicious cloud. The main idea to protect the privacy is employing some transformations on the original matrix to get an encrypted

matrix which is sent to the cloud; and then transforming the result returned from the cloud to get the correct determinant of the original

matrix. Afterwards, a randomized Monte Carlo verification algorithm with one-sided error is introduced, whose superiority in designing

inexpensive result verification algorithm for secure outsourcing is well demonstrated. In addition, it is analytically shown that the

proposed protocol simultaneously fulfills the goals of correctness, security, robust cheating resistance, and high-efficiency. Extensive

theoretical analysis and experimental evaluation also show its high-efficiency and immediate practicability. It is hoped that the

proposed protocol can shed light in designing other novel secure outsourcing protocols, and inspire powerful companies and working

groups to finish the programming of the demanded all-inclusive scientific computations outsourcing software system. It is believed that

such software system can be profitable by means of providing large-scale scientific computation services for so many potential clients.

Index Terms—Cloud computing, secure outsourcing, determinant computation, Monte Carlo verification, outsourcing software system

Ç

1 INTRODUCTION

LARGE-SCALE data computation entails a huge commit-
ment of computing resources, making it prohibitive to

resource-constrained clients. Fortunately, cloud computing
paradigm provides an approach for small to medium size
business to perform large-scale data processing [1]. The
relationship between large-scale data computation and
cloud computing service seems to be inherent: the former
becomes the service object of the latter, while the latter
offers an alternative solution for the former. It is witnessed
that cloud computing has become increasingly important
to provide service-oriented large-scale data computation in
third-party data management settings. For instance, cloud
computing services [2], [3], [4], [5], [6], [7] have been suc-
cessful implemented in several information systems in
recent years.

According to the Cloud Services User Survey and CSA
Security Guidance [8], [9], security has been identified as
the top issue that prevents the business intelligence from
taking advantage of cloud services. Yet, the cloud security
technique is under developed in comparison with other
cloud-related techniques and hence it is becoming the bot-
tleneck. To some extent, security concern is now driving
how we define and develop cloud computing solutions.

Outsourcing of scientific computation is identified as an
important application of cloud computing. By virtue of har-
nessing cloud computing, the resource-constrained clients
can off-load their computation-intensive tasks to powerful
clouds. In contrast to setting up and maintaining their own
infrastructures, the clients can economically share the mas-
sive computational power, storage, and even some soft-
wares of the clouds. Hence, this promising application well
captures some well-known service notions of cloud comput-
ing like Network-as-a-Service (NaaS), Infrastructure-as-a-
Service (IaaS), and Software-as-a-Service (SaaS).

1.1 Challenges

Although it is quite promising, when the outsourcing scien-
tific computation meets the security concerns, three major
challenges arise. More specifically, the first challenge is the
client’s input/output data privacy. The outsourced compu-
tational problems and their results often contain sensitive
information, such as the business financial records, VIP cus-
tomers lists, engineering data, or proprietary asset data, etc.
To hide these information from the cloud, clients need to
encrypt their data before outsourcing and decrypt the
returned result from the cloud after outsourcing. The sec-
ond challenge is the verification of the result returned by
the cloud. A cloud server might not always provide the
accurate result of a given computational task. As an exam-
ple of intentional reasons, for the outsourced computational
intensive tasks, there are strong financial incentives for the
cloud to be lazy and just return incorrect answers to the cli-
ent if such answers require less work and are unlikely to be
detected by the client. Besides, some accidental reasons
such as possible software bugs or hardware failures may
also result in wrong computational results. Consequently,
the outsourcing protocol must be designed in such a way

� X. Lei, X. Liao, and H. Li are with the State Key Laboratory of Power
Transmission Equipment and System Security and New Technology,
College of Computer Science, Chongqing University, Chongqing
400044, P. R., China.
E-mail: xy-lei@qq.com, xfliao@cqu.edu.cn, lhq_jsack@126.com.

� T. Huang is with Texas A&M University at Qatar, Doha PO Box 23874,
Qatar. E-mail: tingwen.huang@qatar.tamu.edu.

Manuscript received 12 Feb. 2014; revised 28 May 2014; accepted 6 June 2014.
Date of publication 17 June 2014; date of current version 9 Oct. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2014.2331694

1939-1374� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

688 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

that it is able to detect whether the returned result is correct.
The third challenge is efficiency. On one hand, a key
requirement is that the amount of local work performed by
the client must be substantially cheaper than performing
the original computational problem on its own. Otherwise,
it does not make sense for the client to resort to the cloud.
On the other hand, it is also desirable to maintain the
amount of work performed by the cloud as close as possible
to that needed to compute the original problem by the client
itself. Otherwise, the cloud may be unable to complete the
task in a reasonable amount of time, or the cost of the cloud
may become prohibitive. To summarize, a protocol for com-
putation outsourcing should satisfy the following for
aspects: correctness, security, verifiability and efficiency.

1.2 Motivations

Determinant computation (DC) is a basic computational
problem in scientific and engineering fields and has a num-
ber of applications. First of all, DC can be used to compute
the hyper volume [10].

Example 1. Take the simple visual 3D parallelepiped as an
example, suppose that the parallelepiped in Fig. 1 is
formed by vectors r1, r2, and r3, where r1 ¼ ð3; 1; 1Þ,
r2 ¼ ð1; 3; 1Þ, and r3 ¼ ð1; 1; 3Þ, then the volume of the
parallelepiped can be computed by

V ¼ det
r1
r2
r3

2
4

3
5 ¼ 3 1 1

1 3 1
1 1 3

2
4

3
5 ¼ 20:

This formula can be used in computing hyper volume in
high-dimensional space where the dimensions are far
more than 3.

Second, DC provides a way to solve a system of linear
equations by virtue of the so-called Cramer’s rule [11].

Example 2. Consider a system of n linear equations for n
unknowns, represented in matrix multiplication form as
follows: Ax ¼ b, where the n� n matrix has a nonzero
determinant, and the vector b is the column vector of the
variables. Then the Cramer’s rule states that the values
for the unknowns are given by:

xi ¼ detðAiÞ
detðAÞ ; i ¼ 1; . . . ; n;

where Ai is the matrix formed by replacing the ith col-
umn of A by the column vector b.

Furthermore, DC is well rooted in other scientific applica-
tions includingmathematical physics analysis [12], Lagrange
interpolation analysis [13], anharmonic oscillator analysis
[14], to just list a few. When the restricted computational
resources are possessed by these clients and DC deals with a
large matrix (or a batch of large matrices), an economical
solution is to outsource DC to a powerful cloud. Even if the
data is in a moderate scale, for clients as battery-limited
mobile phones, portable devices, or embedded smart cards,
secure outsourcing of DC is preferred. Consequently, we are
motivated to design a protocol that enables clients to
securely, verifiably, and efficiently outsource DC to a cloud.

1.3 Contributions

In this paper, we take a first step forward to address the issue
of how to outsource DC to a remote malicious cloud server
while ensuring protocol correctness, maintaining data input/
output privacy, realizing result verifiability, and improving
computational efficiency. From the complexity point of view,
the hitherto best algorithm known for DC shares the same
time complexity of matrix multiplication, i.e., Oðn2:373Þ. An
important challenge is hence to ensure the local computation

performed by the client is less than Oðn2:373Þ. By means of
introducing the block matrix and permutation technique to
protect privacy and adopting LU decomposition and Monte
Carlo technique to handle result verification, the local work

of the client can be restricted toOðn2Þ. That is to say, the client
can reduce its original Oðn2:373Þ work to Oðn2Þ work by out-
sourcing DC to a cloud. Moreover, experimental evaluation
is also provided to demonstrate that the proposed protocol is
able to allow the client to outsource DC to a cloud and gain
substantial computation savings.

1.4 Organization

The remainder of this paper proceeds as follows. Section 2
introduces some essential preliminaries. In Section 3, we
describe our protocol with detailed techniques. Sections 4
and 5 give some related analysis and performance evalua-
tion, followed by Section 6 which overviews the related
work. Finally, some conclusions are drawn in Section 7.

2 PRELIMINARIES

2.1 System Model, Threat Model, Design Goals,
and Framework

2.1.1 System Model

We consider the secure DC outsourcing system model, as
illustrated in Fig. 2. A client with low computational power
intends to outsource the original DC to a cloud service pro-
vider, who has massive computational power and special
softwares. In order to protect input privacy, the client
encrypts the original DC using a secret key K to get a new
DC problem, written as DCK . Later, the encrypted DCK is
given to the cloud for a result. Once the cloud receives
DCK , the computation is carried out with softwares; then
the cloud sends back the result to DCK . The cloud also
sends back a proof G that tries to prove the returned result
is indeed correct and the cloud does not cheat. On receiving
the returned result, the client decrypts it using the secret
key K to get the result to the original DC. Meanwhile, the

Fig. 1. A Parallelepiped Formed by Vectors r1, r2, and r3.

LEI ET AL.: CLOUD COMPUTING SERVICE: THE CASE OF LARGE MATRIX DETERMINANT COMPUTATION 689

client checks whether the result is correct: if yes, accepts it;
otherwise, just rejects it.

2.1.2 Threat Model

The security threats faced by the outsourcing system model
primarily come from the behavior of the cloud. Generally,
there are two levels of threat models in outsourcing: semi-
honest cloud model and malicious cloud model [15]. In the
semi-honest cloud model, the cloud correctly follow the
protocol specification. However, the cloud records all the
information it can access, and attempts to use this to learn
information that should remain private. While in the mali-
cious cloud model, the cloud can arbitrarily deviate from
the protocol specification. The malicious cloud may just
return a random result to the client to save its computing
resources, while hoping not to be detected by the client.
Therefore, an outsourcing protocol in the malicious cloud
model should be able to handle result verification. In this
paper, we assume that the cloud is malicious. Our protocol
should be able to resist such a malicious cloud.

2.1.3 Design Goals

We identify four goals that the outsourcing protocol should
satisfy. 1) Correctness. If both the client and the cloud follow
the protocol honestly, the DC can be indeed fulfilled by the
cloud and the client gets the correct result to the original
DC. 2) Security. The protocol can protect the privacy of the
client’s data. On one hand, given the encrypted DCK prob-
lem, the cloud cannot get meaningful knowledge of the cli-
ent’s input data, which is referred to as input privacy. On the
other hand, the correct result to the original DC is also hid-
den from the cloud, and this is called as output privacy. The
input/output privacy should be protected “as-strong-as-
possible”. 3) Robust cheating resistance. The correct result
from a faithful cloud server must be verified successfully by
the client. No false result from a cheating cloud server can
pass the verification with a non-negligible probability.
4) Efficiency. The local computation done by the client
should be substantially less than the computation of the
original DC on its own. In addition, the amount of computa-
tion on computing the encrypted DCK should be as close as
possible to that on computing the original DC.

2.1.4 Framework

Syntactically, a secure DC outsourcing protocol should
contain five sub-algorithms: 1) the algorithm for key

generation KeyGen, 2) the algorithm for DC encryption
DCEnc, 3) the algorithm for solving DCK problem
DCSolve, 4) the algorithm for DC decryption DCDec, and
5) the algorithm for result verification ResultVerify. One
significant difference between this framework and the tra-
ditional encryption framework is that in this case both
encryption and decryption process occur in the client
side. This eliminates the expensive public key exchange
process in the traditional encryption framework. There-
fore, this framework is able to efficiently realize one-time-
pad type of flexibility. That is to say, KeyGen will be run
every time for a new outsourced matrix instance to
enhance security. Once we have this framework, we just
need to work out the details of these five sub-algorithms,
which will be shown in Section 3.

2.2 Mathematical Background

Permutation function is well studied in group theory and
combinatorics [16]. Using Cauchy’s two-line notation, a per-
mutation function can be written as

1 � � � n
p1 � � � pn

� �
; (1)

where one lists the preimage element in the first row, and
for each preimage element lists its image under the permu-
tation below it in the second row. A permutation can also be
represented by cycle notation and transposition notation[16].
An illustrative example is given as follows.

Example 3.

�
1 2 3 4 5

3 4 5 2 1

�
¼ ð1 3 5Þð2 4Þ ðCycle NotationÞ

¼ ð1 5Þð1 3Þð2 4ÞðTransposition NotationÞ:
(2)

This paper defaultly applies the one-line array pðiÞ ¼ pi,

where i ¼ 1; . . . ; n, to denote (1). Let p�1 denote the inverse
function of p. As shown in Example 3, a permutation can be
represented by a sequence of transpositions (two-element
exchanges). It is defined as even permutation if it consists of
an even number of transpositions and odd permutation if it
consists of an odd number of transpositions. The sign of a
permutation is denoted as sgnðpÞ and defined as

sgnðpÞ ¼ þ1; if p is even;
�1; if p is odd:

�
(3)

What’s more, the Kronecker delta function [17] dx;y equals 1
if x ¼ y and 0 if x 6¼ y. Shown in Table 1 are the summariza-
tion of main terms throughout this paper.

Two important properties regarding to the determinant
of matrix are given in the following lemmas [11].

Lemma 1. A row transposition (two-row exchange) or column
transposition (two-column exchange) of a matrix changes the
sign of its determinant.

Lemma 2. Suppose that A, B, 0, andD are matrices of dimension
n� n, n�m,m� n, andm�m, respectively, then

Fig. 2. Secure DC Outsourcing System Model.

690 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

det
A B
0 D

� �
¼ detðAÞdetðDÞ: (4)

3 PROTOCOL CONSTRUCTION

In this section, each part of the framework for secure out-
sourcing of DC will be individually solved.

3.1 Secret Key Generation

Consider a full rank matrix X 2 Rn�n, the resource-
constrained client intends to securely outsource the compu-
tation of detðXÞ to a powerful cloud. The protocol starts by
invoking Algorithm 1 (Procedure Secret-Key-Generation) to
set up a secret keyK.

Algorithm 1. Procedure Secret-Key-Generation

Input: A security parameter k.
Output: Secret key K: m, fd1; . . . ; dmg, fa1; . . . ;anþmg,

fb1; . . . ;bnþmg, B, p1, p2, sgnðp1Þ, sgnðp2Þ.
1: On input a security parameter k, which specifies a

positive integer m and three key spaces Kd, Ka, and
Kb, the client first picks three sets of randomnumbers:
fd1; . . . ; dmg Kd, fa1; . . . ;anþmg Ka, fb1; . . . ;
bnþmg Kb, where 0 =2 Kd [Ka [Kb.

2: Then, the client picks a matrix B of dimension n�m
with the number of zero entries uniformly and ran-
domly distributing in f0; . . . ; nmg.

3: Finally, the client invokes Algorithm 2 to generate two
random permutations p1 and p2 of the integers
1; . . . ; nþm and records sgnðp1Þ and sgnðp2Þ as well.

Algorithm 2 is modified from Fisher-Yates shuffle [18],
[19] by adding a parameter sgn to record the sign of the
generated permutation. There are several variants of Fisher-
Yates shuffle to generate a random permutation. Neverthe-
less, the asymptotic time complexity of Fisher-Yates shuffle
has already been optimal. This is the reason why this algo-
rithm could be used for random permutation generation in
this work.

Algorithm 2. Random Permutation Generation

Input: nþm.
Output: p and sgnðpÞ.
1: Set p ¼ Inþm (identical permutation);
2: Set sgn ¼ þ1 (even permutation);
3: for i ¼ nþm down to 2 do
4: Set j to be a random integer with 1 � j � i;
5: Swap p½j� and p½i�;
6: if (j! ¼ i && sgn ¼¼ þ1) then
7: sgn ¼ �1 (odd permutation);
8: end if
9: if (j! ¼ i && sgn ¼¼ �1) then

10: sgn ¼ þ1;
11: end if
12: end for

3.2 DC Encryption

Next, we describe Algorithm 3 (Procedure DC-Encryption).
The permutation technique described in this procedure is
first used in [20] to address matrix multiplication outsourc-
ing problem. This permutation technique is adopted as a
subroutine in Algorithm 3 (Procedure DC-Encryption).
Some novel crucial results of this technique regarding to DC
outsourcing are identified in Lemma 3.

Algorithm 3. Procedure DC-Encryption

Input: The original matrix X and the secret key K: m,
fd1; . . . ; dmg, fa1; . . . ;anþmg, fb1; . . . ;bnþmg, B,
p1, p2, sgnðp1Þ, sgnðp2Þ.

Output: Matrix Y.
1: The client generates a matrix T ¼ ½XB 0

D�, where 0 is an
m� n zero matrix andD ¼ diagðd1; . . . ; dmÞ.

2: The client generates two ðmþ nÞ � ðmþ nÞ matrices
P1 and P2, where P1ði; jÞ ¼ aidp1ðiÞ;j and
P2ði; jÞ ¼ bidp2ðiÞ;j.

3: The client computes Y ¼ P1TP
�1
2 . According to

Theorem 1, the client can use (7) to efficiently (via time

Oðn2Þ) compute Y.

TABLE 1
Terms and Description

Terms Description

p�1 the inversion of the permutation p
sgnðpÞ the sign of the permutation p
dx;y the Kronecker delta function
X a full rank matrix of order n� n
Xði; jÞ, Xij, xi;j, or xij the entry in ith row and jth column in matrix X
detðXÞ the determinant of matrix X
DY ,DX the unchecked determinant of Y and X in Algorithm 5 (Procedure DC-Decryption)
diagðd1; . . . ; dnÞ a diagonal matrix matrix with main diagonal entries being d1; . . . ; dn
a Ka the process of choosing an element a from set Ka uniformly and randomly
Prob1 the probability of non-detection of false returned results in one round of

the random check process in Algorithm 6 (Procedure Result-Verification)
Probl the probability of non-detection of false returned results in whole l times

random check processes in Algorithm 6 (Procedure Result-Verification)
Probf the probability of check failure, i.e., the probability of non-detection of

false returned results in Algorithm 6 (Procedure Result-Verification)

LEI ET AL.: CLOUD COMPUTING SERVICE: THE CASE OF LARGE MATRIX DETERMINANT COMPUTATION 691

4: Later, the encrypted matrix Y will be outsourced to
the cloud.

Lemma 3. In Algorithm 3 (Procedure DC-Encryption), the deter-
minants of matrix P1 and P2 are given by

detðP1Þ ¼ sgnðp1Þ
Qnþm

i¼1 ai;
detðP2Þ ¼ sgnðp2Þ

Qnþm
i¼1 bi:

�
(5)

Proof. It suffices to prove the case of P1. If P1 is generated by
P1ði; jÞ ¼ aidp1ðiÞ;j, then the diagonal matrix L1 ¼ diag

ða1; . . . ;anþmÞ can be transformed to be P1 through a
number of column transpositions. The parity of the num-
ber of the column transpositions is the same with the sign
of permutation p1. Recall Lemma 1, one has detðP1Þ ¼
sgnðp1ÞdetðL1Þ ¼ sgnðp1Þ

Qnþm
i¼1 ai. tu

Two valid examples can help the readers to gain an
insightful understanding of Lemma 3.

Example 4.

� Case 1. Suppose that fa1;a2;a3g ¼ f1; 2; 3g and

p1 ¼ ð 12 21 33Þ ¼ ð12Þ , then

P1 ¼
0 1 0
2 0 0
0 0 3

2
4

3
5:

Let

L1 ¼ diagða1;a2;a3Þ ¼
1 0 0
0 2 0
0 0 3

2
4

3
5;

then L1 can be transformed to be P1 through exchanging
the first column vector and second column vector,
because of p1 ¼ ð12Þ. The permutation p1 consists of only
one transposition, therefore it is an odd permutation, i.e.,
sgnðp1Þ ¼ �1. It holds immediately that detðP1Þ ¼
sgnðp1ÞdetðL1Þ ¼ ð�1Þ �

Q3
i¼1 ai ¼ �6.

� Case 2. If the above p1 is replaced by an even per-

mutation p01 ¼ ð 12 23 31Þ ¼ ð13Þð12Þ , then

P01 ¼
0 1 0
0 0 2
3 0 0

2
4

3
5:

In this case,

L1 ¼
1 0 0
0 2 0
0 0 3

2
4

3
5

can be transformed to be P01 through first exchanging the
first column vector and the third column vector and then
exchanging the the first column and the second column
vector, because of p01 ¼ ð13Þð12Þ. It holds that

sgnðp01Þ ¼ þ1, which results in detðP01Þ ¼ sgnðp01ÞdetðL1Þ
¼ ðþ1Þ �Q3

i¼1 ai ¼ 6.

Lemma 4. In Procedure Algorithm 3 (DC-Encryption), the
matrix P2 is invertible. More precisely,

P�12 ði; jÞ ¼ ðbjÞ�1dp�1
2
ðiÞ;j: (6)

Proof. Since 0 =2 Kb, note from Lemma 3 that the determi-
nant of P2 satisfies detðP2Þ ¼ sgnðp2Þ

Qn
i¼1 bi 6¼ 0, which

demonstrates that P2 is invertible. The remaining proof is
straightforward and therefore it is omitted. tu

Theorem 1. In Algorithm 3 (Procedure DC-Encryption), if

Y ¼ P1TP
�1
2 , then it holds that

Yði; jÞ ¼ ðai=bjÞTðp1ðiÞ;p2ðjÞÞ: (7)

Proof. Let

T ¼
t1;1 � � � t1;q

..

. . .
. ..

.

tq;1 . . . tq;q

2
64

3
75;

where q ¼ nþm. Observe that P1ði; jÞ ¼ aidp1ðiÞ;j, this
leads to

P1T ¼

a1tp1ð1Þ;1 � � � a1tp1ð1Þ;q
..
. . .

. ..
.

aitp1ðiÞ;1 � � � aitp1ðiÞ;q
..
. . .

. ..
.

aqtp1ðqÞ;1 . . . aqtp1ðqÞ;q

2
6666664

3
7777775
:

From Lemma 4, P�12 ði; jÞ ¼ ðbjÞ�1dp�1
2
ðiÞ;j, then one can

obtain

P1TP
�1
2 ¼

a1
b1
tp1ð1Þ;p2ð1Þ � � � a1

bj
tp1ð1Þ;p2ðjÞ � � � a1

bq
tp1ð1Þ;p2ðqÞ

..

. . .
. ..

. . .
. ..

.

ai
b1
tp1ðiÞ;p2ð1Þ � � � ai

bj
tp1ðiÞ;p2ðjÞ � � � ai

bq
tp1ðiÞ;p2ðqÞ

..

. . .
. ..

. . .
. ..

.

aq
b1
tp1ðqÞ;p2ð1Þ . . .

aq
bj
tp1ðqÞ;p2ðjÞ � � � aq

bq
tp1ðqÞ;p2ðqÞ

2
666666664

3
777777775
:

This can be finally rewritten as P1TP
�1
2 ¼ Yði; jÞ ¼

ðai=bjÞTðp1ðiÞ;p2ðjÞÞ, completing the proof. tu

3.3 DC in the Cloud

See Algorithm 4 (Procedure DCK-in-the-Cloud).

Algorithm 4. Procedure DCK-in-the-Cloud

Input: Y.
Output: L and U.

1: On input the encrypted matrix Y, the cloud then
invokes any existing LU decomposition algo-
rithm [21] to compute a lower triangular matrix
L and an upper triangular matrix U such that
Y ¼ LU.

2: The cloud then sends L and U back to the client.

692 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

3.4 DC Decryption

See Algorithm 5 (Procedure DC-Decryption).

Algorithm 5. Procedure DC-Decryption

Input: L, U, andK.
Output:DX.

1: On receiving the returned matrices L and U from

the cloud, the client computes DY ¼
Qnþm

i¼1 ðLiiUiiÞ,
where DY is the unchecked determinant of matrix
Y.

2: The client further computes

DX ¼ DY � sgnðp2Þ
Qnþm

i¼1 bi

sgnðp1Þ
Qnþm

i¼1 ai �
Qm

i¼1 di
;

whereDX is the unchecked determinant of matrix X.

3.5 Result Verification

Generally, handling result verification is not an easy task.
However, this problem is well addressed by using the idea
of Freivalds’ algorithm [22], [23]. Technique details are elab-
orated in Algorithm 6 (Procedure Result-Verification). We
defer the detailed analysis of it in Section 4.

Algorithm 6. Procedure Result-Verification

Input: The unchecked returned matrices L and U.
Output: AcceptsDX as the correct result; or rejects it.
1: If (L is not an ðnþmÞ � ðnþmÞ lower triangular

matrix or U is not an ðnþmÞ � ðnþmÞ upper tri-
angular matrix) then

2: Output “verification fails”; aborts.
3: end if
4: for i ¼ 1 : l do
5: The client generates an ðnþmÞ � 1 random 0=1

vector r.
6: The client computesW ¼ L� ðUrÞ � Y� r.
7: if (W 6¼ ð0; . . . ; 0ÞT) then
8: Output “verification fails”; aborts.
9: end if

10: end for
11: The client accepts DX as the correct determinant of

matrix X if the returned matrices pass the above
check; otherwise, rejects it.

3.6 The Completed Protocol

We now present the completed protocol that contains five
sub-algorithms (KeyGen, DCEnc, DCSolve, DCDec, Result-
Verify) as follows:

� KeyGenð1kÞ. On input a security parameter k, the cli-
ent invokes Algorithm 1 (Procedure Secret-Key-Gen-
eration) to get a secret key K: m, fd1; . . . ; dmg,
fa1; . . . ;anþmg, fb1; . . . ;bnþmg, B, p1, p2, sgnðp1Þ,
sgnðp2Þ.

� DCEncðX;KÞ. On input the original matrix X and the
secret key K, the client invokes Algorithm 3

(Procedure DC-Encryption) to encrypt the original
matrix X into an encrypted matrix Y to protect the
input privacy.

� DCSolveðYÞ. On input the encrypted matrix Y, the
cloud invokes Algorithm 4 (Procedure DCK-in-the-
Cloud) to get two matrices L and U. Then, the cloud
returns L, U, and an empty proof G to the client.

� DCDecðL;U; KÞ. On input the returned results L
and U, and the secret key K, the client invokes
Algorithm 5 (Procedure DC-Decryption) to get the
unchecked determinant DX of the original matrix X.

� ResultVerifyðL;U;GÞ. On input the unchecked results
L, U, and the empty proof G, the client invokes Algo-
rithm 6 (Procedure Result-Verification) to check their
correctness. If they pass the check, then the client
accepts DX as the correct determinant of the original
matrix X; otherwise, just rejects it.

4 CORRECTNESS, SECURITY, AND VERIFIABILITY

ANALYSIS

4.1 Correctness Guarantee

Theorem 2. The proposed protocol is correct.

Proof. It suffices to show that if both the client and the cloud
follow the protocol honestly, then detðXÞ is given by

detðXÞ ¼ detðYÞ � sgnðp2Þ
Qnþm

i¼1 bi

sgnðp1Þ
Qnþm

i¼1 ai �
Qm

i¼1 di
; (8)

where

detðYÞ ¼
Ynþm
i¼1
ðLiiUiiÞ: (9)

If so, the decryption process in Algorithm 5 (Procedure
DC-Decryption) will always yield the correct result.

Since T ¼ ½ X
0
B
D
�, it follows from Lemma 1 that

detðXÞ ¼ detðTÞ
detðDÞ ¼

detðTÞQm
i¼1 di

: (10)

According to Y ¼ P1TP
�1
2 and Y ¼ LU, one can obtain

T ¼ P�11 LUP2. This results in

detðTÞ ¼ detðP1Þ�1detðLÞdetðUÞdetðP2Þ: (11)

Remember, for triangle matrices, it holds that

detðLÞ ¼
Ynþm
i¼1

Lii; detðUÞ ¼
Ynþm
i¼1

Uii: (12)

Combining (10), (11), (12) and results in Lemma 3, (8) is
obtained. This implies that the decryption process will
always yield the correct result and hence the proposed
protocol is correct. tu

4.2 Security Guarantee

4.2.1 Input Privacy

The proposed protocol can protect input privacy if the cloud
cannot recover the original matrix X from the encrypted

LEI ET AL.: CLOUD COMPUTING SERVICE: THE CASE OF LARGE MATRIX DETERMINANT COMPUTATION 693

matrix Y. The original matrix X is encrypted by the follow-
ing three phases.

� Phase 1. The original matrix X serves as a building

block of matrix T, i.e., T ¼ ½ X
0
B
D
�.

� Phase 2. The position of each entry in the original
matrix T is randomly rearranged under two random
permutations, i.e., Uði; jÞ ¼ Tðp1ðiÞ;p2ðjÞÞ.

� Phase 3. Each entry in matrix U is further masked by
multiplying a factor, i.e., Yði; jÞ ¼ ðai=bjÞUði; jÞ.

1) In Phase 1, if m ¼ 0, then T ¼ X. This will lead to
Y ¼ ðai=bjÞXðp1ðiÞ;p2ðjÞÞ. Let NX denote the number of

zero entries in matrix X. Then, by counting the number of
zero entries in the encrypted matrix Y, the cloud can obtain
NX . If m 2 Zþ, then Y ¼ ðai=bjÞTðp1ðiÞ;p2ðjÞÞ, where

T ¼ ½ X
0
B
D
�. In this case, the cloud can obtain

NX ¼ NT �NB � nm�ND ¼ NT �NB � nm� ðm2 �mÞ;
where ND ¼ m2 �m and NB is randomly located in
f0; . . . ; nmg. Suppose that n and m are revealed, then the

cloud has a probability of correct guess of NX to be 1
nm. This

probability is very small if nm is sufficiently large. In fact,
the cloud only knows the information of nþm from the
encrypted matrix Y, this reason further increases the diffi-
culty to recover NX. Therefore, NX is well protected by
using this block matrix technique.

2) In Phase 2, each entry in matrix T is rearranged under
a random row permutation and a random column permuta-
tion. The key space consists of two random permutations p1

and p2. If the information of NX remains secret, the cloud
needs to guess ðmþ nÞ! cases of permutations to recover T
from matrix U. What’s more, the entries in matrix B and the
diagonal entries in matrixD can be treated as “noise entries”.
In this Phase, these noise entries in the matrix T are diffused
to the encrypted matrix U under two random permutations.
Without the knowledge of the two permutations, these

ðnmþm2 �mÞ noise entries are indistinguishable from the
entries in the original matrix X. Intuitively, a larger choice
of m will generate more noise entries in B and D, which
eventually results in a higher-security-level protocol.

3) In Phase 3, each entry in matrix U is further masked by
a random scaling, the expected time of brute-force attack on
the key space to guess fa1; . . . ;anþmg and fb1; . . . ;bnþmg is
ðjKajnþmjKbjnþmÞ=2. A choice of large key space Ka and Kb

will thwart this attack.
According to the above analysis, without the each-run-

specific secret key, the cloud cannot recover X from Y by
trivial means. The proposed protocol is believed to reach an
applicable and strong enough security level in practice and
hence input privacy is protected.

4.2.2 Output Privacy

The proposed protocol can protect output privacy if given
the returned matrices L and U, the cloud cannot recover the
correct determinant detðXÞ of the original matrix X. Given L
and U, the cloud can compute detðYÞ using (9). Let

g ¼ sgnðp2Þ
Qnþm

i¼1 bi=ðsgnðp1Þ
Qnþm

i¼1 ai �
Qm

i¼1 diÞ. It holds
from (8) that detðXÞ ¼ g � detðYÞ. Then, the cloud’s task is
to recover detðXÞ from detðYÞ. This attack is very hard based

on the following two observations: 1) the range of g can set
to be very large via proper choices of key spaces Kd, Ka, and
Kb; 2) a new key is generated in each run of the protocol,
meaning that g is different each time. As a consequence,
without any prior knowledge of detðXÞ and the secret key
K, given detðYÞ, the cloud still has a great uncertainty about
detðXÞ. In this way, the output privacy is protected.

4.3 Verifiability Guarantee

Theorem 3. The proposed protocol satisfies robust cheating
resistance.

Proof. The correctness of the returned matrices L and U is
checked form Steps 1 to 10 in Algorithm 6 (Procedure
Result-Verification). The random check process from
Steps 5 to 9 is repeated l times. We now define the follow-
ing three parameters to facilitate our proof. Let Prob1 be
the probability of non-detection of false returned results
(the results such that Y 6¼ LU) in one round of the ran-
dom check process. Let Probl denote the probability of
non-detection of false returned results in whole l times
random check processes. Moreover, we define Probf to
be the probability of check failure, i.e., the probability of
non-detection of false returned results in Algorithm 6
(Procedure Result-Verification).

The proof consists of two steps. First, we show that the
correct results from a faithful cloud server must be veri-
fied successfully by the client. Note that, if the cloud is
faithful and the returned results are correct, then L must
be an ðnþmÞ � ðnþmÞ lower triangular matrix and U
must be an ðnþmÞ � ðnþmÞ upper triangular matrix,
so the verification failure step (Step 2 in Algorithm 6
(Procedure Result-Verification)) will never be executed.
Moreover, if the returned results are correct, we have
Y ¼ LU, so

W ¼ L� ðUrÞ � Y� r ¼ ð0; . . . ; 0ÞT;

regardless of what vector r is. In such case, the other
verification failure step (Step 8 in Algorithm 6 (Proce-
dure Result-Verification)) will never be executed, either.
This implies that the correct returned matrices L and U
must be verified successfully by the client. Note also
from Theorem 2 that if both L and U are correct, then
in Algorithm 5 (Procedure DC-Decryption) the client
will always get the correct determinant detðXÞ of the
original matrix X.

Next, we show that no false results from a cheating
cloud server can pass the verificationwith a non-negligible
probability. In other words, we attempt to prove that Probf
is a negligible quantity.We have the following two cases:

Case 1. It holds that L is not an ðnþmÞ � ðnþmÞ lower
triangular matrix or U is not an ðnþmÞ � ðnþmÞ upper
triangular matrix. In this case, the returned results must
be false and the verificationmust fail, i.e., Probf ¼ 0.

Case 2. It holds that L is an ðnþmÞ � ðnþmÞ lower
triangular matrix and U is an ðnþmÞ � ðnþmÞ upper
triangular matrix. Let

E ¼ LU� Y;W ¼ E� r ¼ ðw1; . . . ; wnþmÞT:

694 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

If the cheating cloud returns false results (either L or U),
then it can be deduced from Theorem 2 that DX would not
be the correct determinant of X. In this case, it holds that
LU� Y 6¼ 0, so at least one entry of E is non-zero. Suppose
that the entry eij 6¼ 0, by the definition of matrix-vector
multiplication, we obtain

wi ¼
Xnþm
k¼1

eikrk ¼ ei1r1 þ � � � þ eijrj þ � � � þ eiðnþmÞrnþm

¼ eijrj þ y;

(13)

where y ¼Pnþm
k¼1 eikrk � eijrj. By applying Total Proba-

bility Theorem [24], it holds that

Pr½wi ¼ 0� ¼ Pr½wi ¼ 0jy ¼ 0�Pr½y ¼ 0�
þ Pr½wi ¼ 0jy 6¼ 0�Pr½y 6¼ 0� (14)

Note from (13) that

Pr½wi ¼ 0jy ¼ 0� ¼ Pr½rj ¼ 0� ¼ 1=2;
Pr½wi ¼ 0jy 6¼ 0� � Pr½rj ¼ 1� ¼ 1=2:

�
(15)

Substituting (15) into (14) results in

Pr½wi ¼ 0� � ð1=2ÞPr½y ¼ 0� þ ð1=2ÞPr½y 6¼ 0�: (16)

Putting Pr½y 6¼ 0� ¼ 1� Pr½y ¼ 0� into (16) leads to

Pr½wi ¼ 0� � 1=2:

Accordingly, it follows that

Prob1 ¼ Pr½W ¼ ð0; . . . ; 0ÞT� � Pr½wi ¼ 0� � 1

2
:

Observe that the random check process is repeated l times,
Probl can be estimated by

Probl � Probl1 �
1

2l
;

Taken together, Cases 1 and 2 cover all possible cases,
and so we have

Probf � Probl � 1

2l
; (17)

which demonstrates that Probf is a negligible quantity in
terms of l. The proof is hence completed. tu
It can be deduced from the proof of Theorem 3 that the

proposed protocol can handle result verification with check
failure (non-detection of false results) probability at most

2�l. The size of l is a tradeoff between efficiency and the
probability of checking failure. In this paper, a choice of
high cheating resistance should require l to be 40 bits (in

this case Probf � 1
240

), for a fast check a reasonable choice of

10 bits is also acceptable (in this case Probf � 1
210

).

4.4 Further Discussions on Result Verification

Let us proceed to introduce the notion of Monte Carlo verifi-
cation algorithm, which is formally defined below.

Definition 1 (Monte Carlo Verification Algorithm [23]).
The classification and the definition of Monte Carlo verification

algorithm is summarized in Table 2. The detailed verbal
description of case 1 is as follows: for a randomized verification
algorithm Vrfy and any decrypted but unchecked result Res, if

Pr½Vrfy accepts Res j Res is correct� ¼ 1;

Pr ½Vrfy accepts Res jRes is false� � d;

then we define Vrfy as a true-biased Monte Carlo verification
algorithm with one-sided error d. The detailed verbal descrip-
tion of cases 2 and 3 can be analogously obtained.

Based on Definition 1 and the proof of Theorem 3, we
immediately have the following theorem.

Theorem 4. One round of random check process in Algorithm 6
(Procedure Result-Verification), i.e., from Steps 5 to 9, is a
true-biased Monte Carlo verification algorithm with one-sided
error 1

2.

For a Monte Carlo verification algorithm with one-
sided error, the failure probability can be reduced (or the
success probability amplified) by running the algorithm
multiple times. Indeed, this mechanism has been
exploited in Algorithm 6 (Procedure Result-Verification).
According to the above analysis, cases 2 and 3 of Monte
Carlo verification algorithms (see Table 2) can also be
used in designing practical result verification algorithms
for secure outsourcing. One may see in what follows that
Monte Carlo verification algorithm offers superiority in
designing efficient result verification algorithm, which is
generally a difficult task in secure outsourcing.

5 PERFORMANCE EVALUATION

5.1 Theoretical Results

Client side overhead. The client side overhead is generated by
running four sub-algorithms: KeyGen, DCEnc, DCDec, and
ResultVerify. Since m is a constant, KeyGen takes time
OðnÞ. Likewise, in DCEnc, applying (7) to efficiently com-

pute Y, it only takes time Oðn2Þ. As to DCDec, the time
needed is OðnÞ. The time consumed by ResultVerify is domi-
nated by triangular matrices check and performing matrix-

vector multiplication, which takes time Oðn2Þ totally.
Cloud side overhead. For the cloud, its only computation

overhead is generated by running DCSolve. The cloud can
apply any existing LU decomposition algorithm. The most
commonly used technique to perform matrix LU decompo-
sition is using Gaussian elimination [21], which is of order

Oðn3Þ. A significant result regarding to the lower bound of
time for LU decomposition is given by [25]: if two matrices
multiplication can be performed in time OðnrÞ, for some
r > 2, then the LU decomposition can be performed in time

OðnrÞ. This indicates that an Oðn2:373Þ algorithm exists based
on the fastest matrix multiplication algorithm, i.e., Williams’
algorithm [26]. Accordingly, suppose that this fastest LU
decomposition algorithm is employed in the cloud side,

then the time consumed by DCSolve is Oðn2:373Þ.
Shown in Table 3 is a summarization of the theoretical

results. The overall time cost is Oðn2Þ for the client and

Oðn2:373Þ for the cloud. From the perspective of efficiency,
the proposed protocol is feasible due to the fact that there

exists a gap between Oðn2Þ and Oðn2:373Þ. According to the

LEI ET AL.: CLOUD COMPUTING SERVICE: THE CASE OF LARGE MATRIX DETERMINANT COMPUTATION 695

asymptotic behavior of Big-O notation [27], we have that the
computational overhead in the client side will be less than
that in the cloud side for a sufficiently large n. The theoreti-
cal results indicate that the proposed protocol is able to
allow the client to outsource DC to the cloud and gain sub-
stantial computation savings.

5.2 Experimental Results

Theoretical analysis of the protocol has shown that out-
sourcing indeed benefits the client. We proceed to imple-
ment the protocol to assess its practical efficiency in this
subsection. Both client and cloud server computations in
our experiments are conducted on the same workstation. If
we implement the protocol for both client side and cloud
side on the same workstation and measure their running
time, then the ratio of time (see the definition of cloud effi-
ciency and relative extra cost in the next paragraph) can
reflect the asymmetric amount of computation performed
in both sides. However, if we implement the protocol on
two different workstations with one in client side and the
other in cloud side, then the cloud efficiency and relative
extra cost will be case-specific, depending on the asymmet-
ric computing speed owned by the two different worksta-
tions. Consequently, one-workstation-based experiment is
employed. Additionally, we ignore the communication
latency between the client and the cloud for this application
since the computation dominates the running time as
shown in our experiments.

Our goal is to find the performance gain for the client by
outsourcing. Thus, the main performance indicator is a

ratio of the time that is needed if the computation is done
locally over the time that is needed by the client’s computa-
tion if outsourcing is chosen. With clear definition of
parameters in Table 4, the performance gain of the client
can be shown by

toriginal
tclient

, which is referred to as client speedup.
This value theoretically should be a considerable positive
number greater than 1, which implies there is a consider-
able performance gain. Another metric is also taken into

consideration, i.e., the cloud efficiency, using
toriginal
tcloud

. Ideally,

the DC encryption should not increase the time to solve the
original DC. It is desirable that the cloud efficiency is close
to 1. What’s more, we would like to see a measurement of
the extra cost, which is defined as the amount of time cost
at both client and the cloud deducted by the time cost
incurred by the client only, i.e., tcloud þ tclient � toriginal. With
this notion, we define the relative extra cost (REC) as

tcloud þ tclient � toriginal
toriginal

¼ tclient þ tcloud
toriginal

� 1:

It is desirable for REC to stay close to 0, which implys that
there are not much extra work incurred by employing the
proposed outsourcing protocol.

Both client and cloud server computations in our experi-
ments are conducted on the same workstation, which is
equipped with an Intel Xeon CPU E5620 and 32 GB RAM.
We implement the proposed protocol in Matlab and utilize
the LAPACK [28] package to perform determinant compu-
tation and LU decomposition. Due to the fact that loops are
extremely slow in matlab, the interface provided by MEX-

TABLE 3
Theoretical Performance of the Proposed Protocol

Sides Client Cloud

Sub-algorithms KeyGen DCEnc DCDec ResultVerify Sending cost DCSolve Sending cost
Time complexity OðnÞ Oðn2Þ OðnÞ Oðn2Þ Matrix Y Oðn2:373Þ Matrices L and U

TABLE 2
Classification and Definition of Monte Carlo Verification Algorithm

Cases Satisfied conditions Definitions

case 1 Pr½Vrfy accepts Res j Res is correct� ¼ 1, True-biased Monte Carlo verification
Pr½Vrfy accepts Res j Res is false� � d. algorithm with one-sided error d

case 2 Pr½Vrfy accepts Res j Res is correct� � �, False-biased Monte Carlo verification
Pr½Vrfy accepts Res j Res is false� ¼ 0. algorithm with one-sided error �

case 3 Pr½Vrfy accepts Res j Res is correct� � �, Monte Carlo verification algorithm
Pr½Vrfy accepts Res j Res is false� � d. with two-sided errors ðd; �Þ

TABLE 4
Notations in Experiments

Notations Means

toriginal the time for the client to compute the original DC locally
tcloud the time for the cloud to compute the outsourced DCK

tclient1 the time for the client to generate the secret key and encrypt the original DC
tclient2 the time for the client to decrypt and verify the returned results
tclient tclient ¼ tclient1 þ tclient2
Y the matrix after encryption
L, U the lower triangular matrix and the upper triangular matrix

696 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

file is employed to invoke code in C language whenever
running loops. All of matrix instances in experiments are
generated to be full rank with each entry randomly located
in ð0; 1Þ. We set Kd ¼ ð0; 1Þ;Ka ¼ Kb ¼ f1; . . . ; nþmg and
design two groups of experiments as described below.

Experiment 1.We first fix l ¼ 20 and conduct three experi-
ments with m ¼ 100, m ¼ 200, and m ¼ 400, which corre-
spond to security priority, tradeoff, and efficiency priority
cases.

Experiment 2. We then fix m ¼ 200 and conduct three
experiments with l ¼ 10, l ¼ 20, and l ¼ 40, which corre-
spond to client speedup priority, tradeoff, and cheating
resistance priority cases.

The main performance is shown in Tables 5 and 6. It can
be observed that client speedup is monotonically increasing
with matrix dimension n. Outsourcing DC is able to gain
more than 6 times client speedup if n is sufficiently large.
Besides, it is shown from Tables 5 and 6 that the cloud effi-
ciency stays close to 1, which is very satisfactory. Finally, it
also can be seen that REC is monotonically decreasing with
matrix dimension n. The comparisons of client speedup,
cloud efficiency, and REC as a function of matrix dimension
n are depicted in Fig. 3.

As evidenced by Tables 5 and 6, and Fig. 3, the pro-
posed protocol offers us two levels of tradeoff to choose in
practical applications. 1) The First Tradeoff. The choice of m
is a tradeoff between security and efficiency (including cli-
ent speedup, cloud efficiency, and REC). It can be found in
Figs. 3a, 3b, and 3c that a larger choice of m indicates a
more secure yet less efficient protocol. 2) The Second Trade-
off. The choice of l is a tradeoff between cheating resistance
and efficiency (including client speedup and REC).

Figs. 3d and 3f demonstrates that a larger choice of l leads
to a degradation of client speedup and an increase of REC.
It is worth noting from Fig. 3e that the choice of l does not
affect the cloud efficiency.

Remarkably, the experimental performance really
depends on matrix dimension, code compile platform, and
the selected algorithm for LU decomposition in the cloud
side. If the cloud exploits other faster LU decomposition
algorithms, then client speedup will decrease to some
extent. However, as long as n goes sufficiently large, the
substantial computation savings can always be anticipated

by the client due to the clear existence of gap between Oðn2Þ
and Oðn2:373Þ.

6 RELATED WORK

Secure outsourcing, since its proposal, has stimulated con-
siderable research efforts both from theoretical cryptogra-
phers and security engineers. With the advent of cloud and
mobile computing age, the theoretical cryptographers’ inter-
est in secure outsourcing is persistently increasing, espe-
cially after Gentry’s first FHE scheme [29] by using an ideal
lattice. They often focus on designing a generic protocol
that covers all problems, e.g., [30], [31]. The generic protocol
always involves in applying a FHE scheme, which is a cryp-
tographic primitive that seems to be far from practical.
Hence, the generic protocol is currently quite complicated
and inefficient. As to security engineers, they often identify
some specific problems and design different techniques to
mask the original problem to protect input/output privacy.
Their protocol always lack formal security treatment and do
not handle the important case of result verification, but

TABLE 5
Performance with Fixed l (Time in Seconds)

Benchmark Original DC EncryptedDCK Client Speedup Cloud Efficiency Relative Extra Cost

No. dimension n toriginal tcloud tclient1 tclient2 tclient toriginal
tclient

toriginal
tcloud

tclientþtcloud
toriginal

� 1

1 5000 6.594 7.314 1.505 1.360 2.865 2:302� 0.9016 0.5435
2 10000 45.82 49.69 6.242 6.038 12.28 3:731� 0.9221 0.3525
3 15000 145.7 154.0 16.69 11.80 28.49 5:115� 0.9461 0.2525
4 20000 335.4 350.5 34.88 22.84 57.72 5:810� 0.9568 0.2173

I. High Security and Low Efficiency Case:m¼100 and l¼20 (Probf � 1
220

)

Benchmark Original DC Encrypted DCK Client Speedup Cloud Efficiency Relative Extra Cost

No. dimension n toriginal tcloud tclient1 tclient2 tclient toriginal
tclient

toriginal
tcloud

tclientþtcloud
toriginal

� 1

1 5000 6.693 8.014 1.602 1.560 3.162 2:117� 0.8351 0.6698
2 10000 45.46 50.35 6.508 6.176 12.68 3:585� 0.9028 0.3866
3 15000 146.6 158.0 17.61 13.44 31.05 4:722� 0.9281 0.2892
4 20000 336.8 357.9 37.01 23.46 60.47 5:570� 0.9409 0.2423

II. Tradeoff between Security and Efficiency Case:m ¼ 200 and l ¼ 20 (Probf � 1
220

)

Benchmark Original DC Encrypted DCK Client Speedup Cloud Efficiency Relative Extra Cost

No. dimension n toriginal tcloud tclient1 tclient2 tclient toriginal
tclient

toriginal
tcloud

tclientþtcloud
toriginal

� 1

1 5000 6.726 9.183 1.796 1.775 3.572 1:883� 0.7325 0.8963
2 10000 45.64 53.99 6.932 6.246 13.18 3:464� 0.8453 0.4717
3 15000 146.6 163.7 19.44 13.18 32.62 4:495� 0.8954 0.3393
4 20000 336.0 366.6 38.89 23.11 62.00 5:419� 0.9165 0.2756

III. Low Security and High Efficiency Case:m ¼ 400 and l ¼ 20 (Probf � 1
220

)

LEI ET AL.: CLOUD COMPUTING SERVICE: THE CASE OF LARGE MATRIX DETERMINANT COMPUTATION 697

these protocols are always quite efficient and can be
deployed immediately.

6.1 Works for Specific Applications

Over the past few decades, many protocols have been
designed for secure outsourcing of some specific applica-
tions. For example, Atallah et al. [20] propose a number of
protocols for secure outsourcing scientific computations,

such as solving a linear system of equations, sorting, etc.
They employed a lot of problem transformation techniques
to construct the protocols, but the common drawbacks of
their protocols are two-fold: they lack detailed efficiency
analysis and evaluation, and they do not tackle the issue
of result verification. Until recently, two secure matrix mul-
tiplication outsourcing protocols were introduced in [32]
and [33]. The former is built upon the assumptions of two

Fig. 3. Comparisons of Client Speedup, Cloud Efficiency, and REC.

TABLE 6
Performance with Fixedm (Time in Seconds)

Benchmark Original DC EncryptedDCK Client Speedup Cloud Efficiency Relative Extra Cost

No. dimension n toriginal tcloud tclient1 tclient2 tclient toriginal
tclient

toriginal
tcloud

tclientþtcloud
toriginal

� 1

1 5000 6.560 15.77 1.517 0.7453 2.262 2:900� 0.8318 0.5478
2 10000 46.01 51.00 6.419 2.928 9.347 4:922� 0.9021 0.3117
3 15000 146.5 157.8 18.27 6.305 24.58 5:962� 0.9288 0.2444
4 20000 336.7 355.9 37.23 11.93 49.16 6:850� 0.9462 0.2028

I. High Client Speedup and Low Cheating Resistance Case:m¼200 and l¼10 (Probf � 1
210

)

Benchmark Original DC Encrypted DCK Client Speedup Cloud Efficiency Relative Extra Cost

No. dimension n toriginal tcloud tclient1 tclient2 tclient toriginal
tclient

toriginal
tcloud

tclientþtcloud
toriginal

� 1

1 5000 6.652 7.819 1.640 1.479 3.119 2:133� 0.8508 0.6442
2 10000 45.59 50.08 6.483 5.986 12.47 3:656� 0.9104 0.3719
3 15000 145.2 157.0 17.59 12.11 29.70 4:890� 0.9248 0.2858
4 20000 339.7 356.5 38.90 22.78 61.68 5:507� 0.9528 0.2311

II. Tradeoff between Client Speedup and Cheating Resistance Case:m ¼ 200 and l ¼ 20 (Probf � 1
220

)

Benchmark Original DC Encrypted DCK Client Speedup Cloud Efficiency Relative Extra Cost

No. dimension n toriginal tcloud tclient1 tclient2 tclient toriginal
tclient

toriginal
tcloud

tclientþtcloud
toriginal

� 1

1 5000 6.651 8.049 1.639 2.764 4.403 1:511� 0.8263 0.8720
2 10000 45.67 50.82 6.561 11.06 17.63 2:591� 0.8988 0.4985
3 15000 146.93 158.4 17.03 27.42 44.45 3:305� 0.9278 0.3804
4 20000 337.9 357.3 35.93 48.92 84.86 3:982� 0.9458 0.3804

III. Low Client Speedup and High Cheating Resistance Case:m ¼ 200 and l ¼ 40 (Probf � 1
240

)

698 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

non-colluding servers, making it vulnerable to colluding
attacks. While the later achieves provable security using
Shamir’s secret sharing [34] technique. But this theoretically
elegant protocol still suffers from large amount of commu-
nication overhead. Several schemes for ranked keyword
searching over outsourced cloud data are developed in [35]
by virtue of harnessing the order-preserving symmetric
encryption technique in [36]. Notably, Wang et al. investi-
gate the issue of privacy-assured outsourcing of image
reconstruction service (OIRS) in cloud [4]. The proposed
OIRS protocol can additionally support extensible service
interfaces and even performance speedup via hardware
built-in design. After Gentry’s breakthrough work on FHE
scheme, the research direction is currently shifting to design
secure outsourcing protocol in the malicious cloud model
rather than in the fully trusted cloud model. Hence, it is
essential to handle result verfication. Following this trend,
several protocols that can handle result verification are pro-
posed, among which there are the secure outsourcing of lin-
ear programming [37], the secure outsourcing of linear
equations [38], the secure outsourcing of convex optimiza-
tion [39], and the secure outsourcing of matrix inversion
and multiplication [40], [41], etc. Recently, the works in [37]
and [38] are further improved in [42] by employing some
special linear transformations and a pseudorandom number
generator. Our system model and framework are inherited
from these works.

6.2 Functionally Related Work

There are three kinds of existing work that are conceptually
and functionally related to secure outsourcing. The first one
is secure multi-parity computation (SMC), initially intro-
duced by Yao [43]. The goal of SMC to create methods that
enable parties to jointly compute a function over their inputs,
while at the same time keeping these inputs private. For
example, two millionaires can compute which one is richer,
but without revealing their net worth. Generally, the parties
in SMC is symmetry assigned with the same computational
tasks, whereas in outsourcing systems, the parties are
resource-asymmetry, i.e., a weak client and a powerful cloud
server. Because SMC does not consider the asymmetry
between the resources possessed by cloud and client, it can-
not be applied to secure outsourcing directly. The second
one is about delegating computation and cheating detection,
e.g., [44]. Yet, the traditional work on cheating detection
allows the server to access the original data, which is prohib-
ited in the proposed secure outsourcing paradigm. The third
one is server-aided computations, such as [45], [46]. One lim-
itation of these protocols is that they are mainly concerned
with outsourcing of cryptographic computations like signa-
ture and modular exponentiation. The other limitation is
that these protocols do not handle result verification.

7 CONCLUSIONS AND OUTLOOK

In this paper, we have designed a state-of-the-practice pro-
tocol for outsourcing of DC to a malicious cloud. It is shown
that the proposed protocol simultaneously fulfills the goals
of correctness, security (input/output privacy), robust
cheating resistance, and high-efficiency. With the advent of
large-scale data and cloud computing era, there is an

increasing need for a well-integrated scientific computa-
tions outsourcing software system, which should be able to
provide secure outsourcing services for all kinds of com-
monly used scientific computations. We conceive that such
integrated software system owns interface in the client side
like Matlab, whereas it moves the heavy computation to the
cloud server. We have designed a state-of-the-practice pro-
tocol for outsourcing of DC in this paper, a step forward to
build such integrated software system. In order to accelerate
the birth of such service-oriented software system, one
future work is to identify new commonly used scientific
computations and then designing protocols to solve them. It
is hoped that the proposed protocol can shed light in
designing other novel secure outsourcing protocols, and
inspire powerful companies and working groups to finish
the programming of the envisioned integrated software
system. It is believed that such software system can be prof-
itable by means of providing large-scale scientific computa-
tion services for so many potential clients.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant 61170249, in
part by the Research Fund of Preferential Development
Domain for the Doctoral Program of Ministry of Educa-
tion of China under Grant 201101911130005, in part by the
Talents of Science and Technology Promote Plan, Chongq-
ing Science & Technology Commission, and in part by the
Program for Changjiang Scholars. This work was made
possible by NPRP Grant 4-1162-1-181 from the Qatar
National Research Fund (a member of the Qatar Founda-
tion). The statements made herein are solely the responsi-
bility of the authors.

REFERENCES

[1] L.-J. L. Zhang, “Editorial: Big services era: Global trends of cloud
computing and big data,” IEEE Trans. Serv. Comput., vol. 5, no. 4,
pp. 0467–468, fouth quarter 2012.

[2] K. P. Joshi, Y. Yesha, and T. Finin, “Automating cloud services life
cycle through semantic technologies,” IEEE Trans. Serv. Comput.,
vol. 7, no. 1, pp. 109–122, Jan.-Mar. 2014.

[3] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure
and dependable storage services in cloud computing,” IEEE
Trans. Serv. Comput., vol. 5, no. 2, pp. 220–232, Apr.-Jun. 2012.

[4] C. Wang, B. Zhang, K. Ren, and J. Wang, “Privacy-assured out-
sourcing of image reconstruction service in cloud,” IEEE Trans.
Emerg. Topics in Comput., vol. 1, no. 1, pp. 166–177, Jun. 2013.

[5] I. Paik, W. Chen, and M. N. Huhns, “A scalable architecture for
automatic service composition,” IEEE Trans. Serv. Comput., vol. 7,
no. 1, pp. 82–95, Jan.-Mar. 2014.

[6] K.-W. Park, J. Han, J. Chung, and K. H. Park, “THEMIS: A mutu-
ally verifiable billing system for the cloud computing environ-
ment,” IEEE Trans. Serv. Comput., vol. 6, no. 3, pp. 300–313, Jul.-
Sep. 2014.

[7] Y. Zhou, Y. Zhang, H. Liu, N. Xiong, and A. V. Vasilakos, “A bare-
metal and asymmetric partitioning approach to client
virtualization,” IEEE Trans. Serv. Comput., vol. 7, no. 1, pp. 40–53,
Jan.-Mar. 2014.

[8] G. Brunette and R. Mogull, “Security guidance for critical areas of
focus in cloud computing v2. 1,” Cloud Security Alliance, pp. 1–76,
2009.

[9] X. Zhang, L. T. Yang, C. Liu, and J. Chen, “Oruta: Privacy-preserv-
ing public auditing for shared data in the cloud,” IEEE Trans. Serv.
Comput., vol. 2, no. 1, pp. 43–56, Jan.-Mar. 2014.

[10] B. Peng, “The determinant: A means to calculate volume,” Recall,
vol. 21, pp. 1–6, 2007.

LEI ET AL.: CLOUD COMPUTING SERVICE: THE CASE OF LARGE MATRIX DETERMINANT COMPUTATION 699

[11] C. Meyer, Matrix Analysis and Applied Linear Algebra Book and Solu-
tions Manual, vol. 2, Philadelphia, PA, USA: SIAM, 2000.

[12] R. Vein, P. Dale, R. Vein, and P. Dale, Determinants and Their Appli-
cations in Mathematical Physics, vol. 1, New York, NY, USA:
Springer, 1999.

[13] C. K. Chui and M.-J. Lai, “Vandermonde determinant and
lagrange interpolation in rs,” in Nonlinear and Convex Analysis,
vol. 107, Boca Raton, FL, USA: CRC Press, 1987, pp. 23–35.

[14] S. Biswas, K. Datta, R. Saxena, P. Srivastava, and V. Varma, “The
hill determinant: An application to the anharmonic oscillator,”
Phys. Rev. D, vol. 4, no. 12, pp. 3617–3620, 1971.

[15] Y. Lindell and B. Pinkas, “Secure multiparty computation for pri-
vacy-preserving data mining,” J. Privacy Confidentiality, vol. 1,
no. 1, pp. 59–98, 2009.

[16] R. C. Lyndon, P. E. Schupp, R. Lyndon, and P. Schupp, Combinato-
rial Group Theory, vol. 177, Berlin, Germany: Springer-Verlag, 1977.

[17] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods
for Physicists: A Comprehensive Guide. New York, NY, USA: Aca-
demic, 2011.

[18] R. Durstenfeld, “Algorithm 235: Random permutation,” Commun.
ACM, vol. 7, no. 7, pp. 420–420, 1964.

[19] D. E. Knuth, The Art of Computer Programming. Reading, MA, USA:
Addison-Wesley, 2006.

[20] M. Atallah, K. Pantazopoulos, J. Rice, and E. Spafford, “Secure
outsourcing of scientific computations,” Adv. Comput., vol. 54,
pp. 215–272, 2002.

[21] C. F. Gerald and P. O. Wheatley,Numerical Analysis. Reading, MA,
USA: Addison-Wesley, 2003.

[22] R. Freivalds, “Probabilistic machines can use less running time,”
Inf. Process., vol. 77, pp. 839–842, 1977.

[23] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

[24] R. Durrett, Probability: Theory and Examples, vol. 3, Cambridge,
U.K.: Cambridge Univ. Press, 2010.

[25] J. R. Bunch and J. E. Hopcroft, “Triangular factorization and inver-
sion by fast matrixmatrix multiplication,” Math. Comput., vol. 28,
no. 125, pp. 231–236, 1974.

[26] Y. Chen and P. Nguyen, “Faster algorithms for approximate com-
mon divisors: Breaking fully-homomorphic-encryption challenges
over the integers,” in Proc. 31st Annu. Int. Conf. Theory Appl. Cryp-
tograph. Techn., 2012, pp. 502–519.

[27] C. H. Papadimitriou, Computational Complexity. Hoboken, NJ,
USA: Wiley, 2003.

[28] E. Anderson, LAPACK Users’ Guide, vol. 9, Philadelphia, PA, USA:
SIAM, 1999.

[29] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2009.

[30] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in
Proc. 30th Annu. Conf. Adv. Cryptology, 2010, pp. 465–482.

[31] K. Chung, Y. Kalai, and S. Vadhan, “Improved delegation of com-
putation using fully homomorphic encryption,” in Proc. 30th
Annu. Conf. Adv. Cryptology, 2010, pp. 483–501.

[32] D. Benjamin and M. J. Atallah, “Private and cheating-free out-
sourcing of algebraic computations,” in Proc. IEEE 6th Annu. Conf.
Privacy, Security Trust, 2008, pp. 240–245.

[33] M. Atallah, and K. Frikken, “Securely outsourcing linear algebra
computations,” in Proc. 5th ACM Symp. Inf., Comput. Commun.
Security, 2010, pp. 48–59.

[34] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[35] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and effi-
cient ranked keyword search over outsourced cloud data,” IEEE
Trans. Parallel Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, Aug. 2012.

[36] A. Boldyreva, N. Chenette, Y. Lee, and A. Oneill,, “Order-
preserving symmetric encryption,” in Proc. 28th Annu. Int.
Conf. Adv. Cryptology: Theory Appl. Cryptograph. Techn., 2009,
pp. 224–241.

[37] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in Proc. IEEE Conf.
Comput. Commun., 2011, pp. 820–828.

[38] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud
for securely outsourcing large-scale systems of linear equations,”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1172–1181, Jun.
2012.

[39] Z. Xu, C. Wang, Q. Wang, K. Ren, and L. Wang, “Proof-carrying
cloud computation: The case of convex optimization,” in Proc.
IEEE Conf. Comput. Commun., 2013, pp. 610–614.

[40] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large
matrix inversion computation to a public cloud,” IEEE Trans.
Cloud Comput., vol. 1, no. 1, pp. 78–87, Jan.-Jun. 2013.

[41] X. Lei, X. Liao, T. Huang, and F. Heriniaina, “Achieving security,
robust cheating resistance, and high-efficiency for outsourcing
large matrix multiplication computation to a malicious cloud,”
Inf. Sci., vol. 280, pp. 205–217, 2014.

[42] F. Chen, T. Xiang, and Y. Yang, “Privacy-preserving and verifiable
protocols for scientific computation outsourcing to the cloud,” J.
Parallel Distrib. Comput., vol. 74, no. 3, pp. 2141–2151, 2014.

[43] A. Yao, “Protocols for secure computations,” in Proc. 23rd Annu.
Symp. Found. Comput. Sci., 1982, pp. 160–164.

[44] S. Goldwasser, Y. Kalai, and G. Rothblum, “Delegating computa-
tion: Interactive proofs for muggles,” in Proc. 40th Annu. ACM
Symp. Theory Comput., 2008, pp. 113–122.

[45] S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Proc. 2nd Int. Conf. Theory Cryp-
tography, 2005, pp. 264–282, 2005.

[46] S. Kawamura and A. Shimbo, “Fast server-aided secret computa-
tion protocols for modular exponentiation,” IEEE J. Sel. Areas Com-
mun., vol. 11, no. 5, pp. 778–784, Jun. 1993.

Xinyu Lei received the BS degree in computing
science from Chongqing University, China, in
2010, where he is currently toward the PhD
degree in computer science. He was once a visit-
ing scholar at Texas A&M University at Qatar,
Doha. His research interests include information
security and algorithms.

Xiaofeng Liao received the BS and MS degrees
in mathematics from Sichuan University,
Chengdu, China, in 1986 and 1992, respectively,
and the PhD degree in circuits and systems from
the University of Electronic Science and Technol-
ogy of China in 1997. His current research inter-
ests include neural networks, nonlinear dynamical
systems, bifurcation and chaos, and cryptogra-
phy. He is a senior member of the IEEE.

Tingwen Huang received the BS degree from
Southwest Normal University (now Southwest
University), China, in 1990, the MS degree from
Sichuan University, China, in 1993, and the PhD
degree from Texas A&M University, College Sta-
tion, in 2002. He was the president of the Asia
Pacific Neural Networks Assembly in 2012. He is
currently an associate editor for the IEEE Trans-
actions on Neural Networks and Learning Sys-
tems.

Huaqing Li received the BS degree in information
and computation science from theChongqing Uni-
versity of Posts and Telecommunications, China,
in 2009. He is currently working toward the PhD
degree in computer science at Chongqing Univer-
sity. His research interests include nonlinear
dynamical systems, bifurcation and chaos, and
consensus of multiagent systems.

700 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2015

