
4D Range Reporting in the Pointer Machine Model in Almost-Optimal

Time*

Yakov Nekrich� Saladi Rahul�

Abstract

In the orthogonal range reporting problem we must pre-process a set P of multi-dimensional points, so
that for any axis-parallel query rectangle q all points from q ∩ P can be reported efficiently. In this paper we
study the query complexity of multi-dimensional orthogonal range reporting in the pointer machine model. We
present a data structure that answers four-dimensional orthogonal range reporting queries in almost-optimal
time O(logn log log n+k) and uses O(n log4 n) space, where n is the number of points in P and k is the number
of points in q∩P . This is the first data structure with nearly-linear space usage that achieves almost-optimal
query time in 4d. This result can be immediately generalized to d ≥ 4 dimensions: we show that there is
a data structure supporting d-dimensional range reporting queries in time O(logd−3 n log logn + k) for any
constant d ≥ 4.

1 Introduction

In the orthogonal range reporting problem we must pre-process a set P of multi-dimensional points, so that for any
axis-parallel query rectangle q all points from q ∩ P can be reported efficiently. Orthogonal range reporting was
studied extensively in both RAM model and the pointer machine model, see e.g.,[12, 13, 8, 1, 2, 3, 4, 11, 10, 18, 19].
In this paper we investigate the complexity of this problem in the pointer machine model. We present a data
structure that answers four-dimensional queries in almost-optimal timeO(log n log log n+k), where n is the number
of points in P and k is the number of points in q ∩ P . Our result immediately extends to d > 4 dimensions:
there exists a data structure supporting orthogonal range reporting queries in time O(logd−3 n log log n + k) for
any constant d ≥ 4.

The pointer machine (PM) model was initially introduced by Tarjan [22]. Unlike RAM, in the pointer
machine model each memory cell can be accessed through a series of pointers only. Informally, we can view the
pointer machine as the computational model in which the use of arrays is not allowed. A number of important
geometric problems was studied extensively in the pointer machine model, see e.g.,[16, 13, 17, 14, 15, 1, 2, 3, 4].
It is important to investigate the differences in computational power of the PM and the standard RAM model.
Understanding their respective limits and advantages can be potentially useful for both models.

In the pointer machine model, two-dimensional range reporting queries can be answered in time O(log n +
k) [9, 12]. Three-dimensional orthogonal range reporting queries can be also answered in O(log n + k) time [1].
This query time is optimal because predecessor queries can be reduced to orthogonal range reporting in 2d.
Thus, in the PM model we completely understand the query complexity of range reporting in d ≤ 3 dimensions.
However it is not known what is the optimal query time of orthogonal range reporting in d > 3 dimensions. Using
range trees [9], we can answer 4d range reporting queries in O(log2 n + k) time. Afshani et al. [2, 3] described
a data structure that answers queries in O((log n/ log log n)2 + k) time. In a subsequent paper [4] the same

authors significantly improved the query time and obtained a data structure with O(log3/2 n + k) query time.
See Table 1. However the optimal complexity of four-dimensional range reporting queries remains an intriguing
question. Existence of a data structure that supports four-dimensional queries in optimal O(log n+ k) time was
asked as an open question in several research papers and surveys, see e.g., [4] and in [7].

In this paper we come very close to answering this open question and show that four-dimensional range
reporting can be answered in O(log n log log n+ k) time in the PM model. We describe a data structure that uses

*The full version of the paper can be accessed at https://arxiv.org/abs/2211.03161
�Department of Computer Science, Michigan Technological University.
�Department of Computer Science and Automation, Indian Institute of Science.

Copyright © 2023
Copyright for this paper is retained by authors

https://arxiv.org/abs/2211.03161

Reference Query Type Query Time Space Usage

[1] Dominance log2 n+ k n log n
[2, 3] Dominance (log n/ log log n)2 + k n(log n/ log log n)

[4] Dominance log3/2 n+ k n(log n/ log log n)
New Dominance log n log log n+ k n log n

[9]+[16] General log3 n+ k n log2 n

[1] General log2 n+ k n log4 n
[2, 3] General (log n/ log log n)2 + k n(log n/ log log n)4

[4] General log3/2 n+ k n(log n/ log log n)4

New General log n log log n+ k n log4 n

Table 1: 4d Orthogonal Range Reporting in the PM Model: Previous and New Results

O(n log n) space and supports four-dimensional dominance1 queries in O(log n log log n+ k) time and O(n log n)
space. Our data structure can be also modified to answer 5-sided queries (i.e., orthogonal range reporting queries,
such that the query rectangle is bounded on five sides) within the same time and space bounds, see Theorem 4.2.
This result can be also extended to the general case of four-dimensional range reporting without increasing
the query time (but at the cost of increasing the space usage by O(log3 n) factor). Finally the result can be also
generalized to higher dimensions: There is a data structure that uses O(n logd n) space and supports d-dimensional
orthogonal range reporting queries in O(logd−3 n log log n + k) time for any constant d ≥ 4 (see Theorem 5.1).
Our data structure can also support range emptiness queries (i.e., determine whether a query range is empty) in
time O(logd−3 n log log n).

This paper is structured as follows. We describe our main result in Sections 3 and 4. Our data structure
supports the special case of range reporting queries, the 4d 5-sided queries. In Section 5 we show how the data
structure can be modified to support more general types of orthogonal range reporting queries. The main idea of
our approach is to replace a single range tree with a hierarchy of range trees with decreasing fan-out. We construct
shallow cuttings for groups of sibling nodes in each tree (Section 4). This hierarchy of trees with shallow cuttings
assigned to nodes is somewhat similar to the method used in [19]. However a direct application of this method
would lead to polynomial space usage; we need to modify this approach in order to save space as described in
Sections 3 and 4. Although our data structure requires an almost-linear number of shallow cuttings, it can be
constructed in n logO(1) n time as explained in Section 6. Our construction algorithm is based on a non-trivial
modification of previous work; we believe that this result can be of independent interest.

It is also interesting to compare data structures in the PM model to state of the art in the RAM model. It
is known that it is possible to achieve O(log log n+ k) query time for two- and three-dimensional range reporting

in the RAM model. On the other hand, any n logO(1) n-space data structure supports four-dimensional range
reporting queries in Ω(log n/ log log n) time [20]. Thus in the RAM model there is an almost logarithmic gap
between the complexity of orthogonal range reporting in three and four dimensions. The result of this paper
indicates that there is either no gap between 3d and 4d or this gap is significantly smaller in the case of the PM
model.

2 Preliminaries

Let P be a set of n points in four-dimensional space. A dominance range query is a special case of the orthogonal
range query when the query range is a product of half-open intervals. A four-dimensional dominance range query
is a query of the form q =

∏4
i=1(−∞, ai]. A 5-sided query is a query of the form [a1, b1]×

∏4
i=2(−∞, bi]. In the

case of an emptiness query, the goal is to report whether there is any point of P inside the query region q.
Shallow cuttings. Consider two 3d points p and q. A point p dominates another point q if and only if p has

a higher coordinate value than q in each dimension. Let P be a set of n points in 3d. A t-level shallow cutting of
P [1] is a collection C of cells or boxes of the form (−∞, a]× (−∞, b]× (−∞, c] with the following three properties:

1. The number of cells is only O(n/t), i.e., |C| = O(n/t).

1We refer to Section 2 for definitions of special cases and other terms used in this section.

Copyright © 2023
Copyright for this paper is retained by authors

2. Each box in C dominates at most c2t points in P .

3. Any point in 3d which dominates at most c1t points in P will lie inside at least one cell in C.

The conflict list of a cell C ∈ C is defined as the points of P that are inside C. The apex point of a cell
(−∞, a] × (−∞, b] × (−∞, c] is defined as (a, b, c). Given a query point q in 3d, the FIND-ANY query either
reports a cell in C which contains q, or reports that there is no cell containing q. We will use the following fact
about FIND-ANY queries.

Lemma 2.1. (FIND-ANY query [1].) Let C be collection of cells in a t-level shallow cutting of P . There is a data
structure of size O(|C|) which can answer the FIND-ANY query in O(log |C|) time, where |C| denotes the number
of cells in C.

3 Top and bottom structures

We use the notation [m] = {1, 2, . . . ,m}. In a restricted 4d 5-sided reporting query, the additional constraint
is that first coordinates of points are from [n1/3] and for each j ∈ [n1/3] there are n2/3 points of P whose first
coordinate value is equal to j. We will prove the following result about restricted 5-sided queries.

Theorem 3.1. Assume that there is a restricted 4d 5-sided reporting structure that occupies O(n log n) space and
answers a query in O(log n · log log n+ k) time. Then there is 4d 5-sided range reporting structure that occupies
O(n log n) space and answers queries in O(log n · log log n+ k) time.

Structure. Let T be a range tree built on the first coordinates of the points in P . The fanout or degree
of T is two. Let ` = 1

3 log n be the level of the tree (root is at level zero) which has n1/3 nodes. Then the
top structure, Ttop, is a subset of T restricted to levels 1, 2, . . . , `. Let v1, v2, . . . , vt be the nodes in the left-to-
right ordering at level `, and let P (v1), P (v2), . . . , P (vt) be the points of P lying in their subtrees, respectively.
Then, for each point p(p1, p2, p3, p4) ∈ P , if p lies in the subtree of vi, then p is transformed to a new point
p′ = (i, p2, p3, p4). Let Ptop =

⋃
p∈P {p′} be the new collection of points. An instance of restricted 4d 5-sided

reporting structure (Theorem 4.1) on Ptop is constructed. Finally, recursive bottom structures are constructed
on P (v1), P (v2), . . . , P (vt). The recursion stops when the cardinality of a point set falls below a suitably large
constant, and the queries on such point sets can be handled via naive scan.

Query algorithm: 5-sided queries. The leaf nodes of Ttop are the nodes at level ` = 1
3 log n. For each

leaf node v ∈ Ttop, its range [a(v), b(v)] is defined as follows: a(v) (resp., b(v)) is the first coordinate value of the
leftmost (resp., rightmost) point in the subtree of v. Let Rtop be a collection of these ranges. Define [atop1 , btop1]
to be the union of all the ranges in Rtop which lie completely inside [a1, b1]. Let va and vb be the leaf nodes in
Ttop whose ranges contain a1 and b1, respectively.

1. If va 6= vb, then perform a restricted 4d 5-sided query on Ptop with the query range [atop1 , btop1]×
∏4
i=2(−∞, bi].

Next, perform 4d dominance queries on P (va) and P (vb) with queries [a1,∞) ×
∏4
i=2(−∞, bi] and

(−∞, b1]×
∏4
i=2(−∞, bi], respectively. Dominance queries can be answered as explained below.

2. If va = vb, then perform a 4d 5-sided query on the bottom structure corresponding to va with the query
q = [a1, b1]×

∏4
i=2(−∞, bi].

Query algorithm: 4d dominance queries. Now we explain how a dominance query can be answered.
First, the query algorithm performs a restricted query on Ptop with the query range (−∞, btop1)×

∏4
i=2(−∞, bi],

where btop1 is defined as above. Since a restricted 4d dominance query is a special case of a restricted 4d 5-sided
query, we can use the data structure on Ptop to answer this query. Let vb be the leaf node in Ttop containing b1.
Then, we perform a 4d dominance query on the bottom structure corresponding to vb.

Analysis. Let S(n) be the space occupied by the data structure when built on n points. At Ttop, we assume
that the restricted 4d 5-sided structure occupies O(n log n) space. Then (ignoring the output size term),

S(n) ≤ n1/3 · S(n2/3) +O(n log n).

Let s(n) = S(n)/n. Then,

Copyright © 2023
Copyright for this paper is retained by authors

s(n) ≤ s(n2/3) +O(log n) =⇒ s(n) = O(log n).

This solves to S(n) = O(n log n). Now we analyze the query time of dominance queries. Let Q4(n) be the time
taken to answer a 4d dominance query. Then,

Q4(n) = Q4(n2/3) +O(log n · log log n) = O(log n · log log n).

Now we analyze the time Q5(n) of answering a 5-sided query. There are two cases:

1. If va 6= vb, then let Q′5(n) be the time taken to answer the restricted query at Ttop (ignoring the output
size term). By assumption of Theorem 3.1, Q′5(n) = O(log n · log log n + k) time. We already know that
Q4(n) = O(log n log log n). Hence, Q5(n) = O(Q4(n) +Q′5(n)) = O(log n · log log n).

2. If va = vb, then let Q5(n) be the time taken to answer the query (again ignoring the output size term).
Then,

Q5(n) = Q5(n2/3) +O(log n).

Note that there is no recursion involved in the first case. If the second case happens i times before the first
case happens, then

Q5(n) ≤ O(log n+ log n2/3 + . . .+ log n(2/3)i) +Q′5(n(2/3)i) +Q4(n(2/3)i)

= O(log n) +Q′5(n(2/3)i) +Q4(n(2/3)i) ≤ O(log n) +Q′5(n) +Q4(n) = O(log n · log log n).

This finishes the proof of Theorem 3.1.

4 Restricted 4d 5-sided structure

In the previous section, Theorem 3.1 assumes the existence of a restricted 4d 5-sided structure, with O(n log n)
space and O(log n · log log n+k) query time. In this section we build this data structure. Recall that in a restricted
4d 5-sided query, the input is a set P of n points with the restriction that, for each j ∈ [n1/3], there will be n2/3

points of P whose first coordinate value is equal to j. The query is a 5-sided box [a1, b1]×
∏4
i=2(−∞, bi].

Theorem 4.1. There is a restricted 4d 5-sided reporting structure which occupies O(n log n) space and answers
a query in O(log n · log log n+ k) time.

Combining the above theorem (Theorem 4.1) with Theorem 3.1 proves our main result about 4d 5-sided
queries.

Theorem 4.2. There exists a data structure that answers 5-sided 4d range reporting queries on a set P in
O(log n · log log n+ k) time and uses O(n log n) space, where n is the number of points in P and k is the number
of points in the query range.

We will start by describing the solution for the emptiness query, which reports whether P ∩ q is empty or not.
Later, we will extend our solution to the reporting version of the problem, i.e., reporting all the points in P ∩ q.

4.1 The emptiness query
High-level overview. A straightforward way to answer 4d dominance emptiness query is to build a range

tree on the first coordinate of the points in P , and reduce the query algorithm to solving O(log n) instances of
FIND-ANY query (Lemma 2.1) which takes O(log2 n) time in total. Roughly speaking, Afshani et al. [4] improved
the query time to O(log1.5 n) by reducing the problem to an instance of 3d rectangle stabbing (where the input
is axis-parallel boxes in 3d and the query is a point) which helps in answering several instances of FIND-ANY
query in one-shot.

Our solution is based on a different approach. In the i-th iteration of the query algorithm, we reduce
the problem of deciding whether P ∩ q is empty or not to O(3i) instances of FIND-ANY queries on shallow

cuttings consisting of nO(1/3i) cells. As a result, by Lemma 2.1, the time spent in the i-th iteration will be
O(3i · log n1/3i) = O(log n). In total, only O(log3 log n) iterations will be performed and hence, the query time is
reduced to O(log n · log3 log n). Our solution for restricted 4d 5-sided query is a generalization of this approach.

Consider a parameter β. Some of the equations in this section will be presented in terms of β. Setting β = 3
will correspond to the restricted 4d 5-sided solution.

Copyright © 2023
Copyright for this paper is retained by authors

(b)

u1 u` ur uf

.

v

(a)

u′
`

u′
r

v′ = v1

v2

v3

v4

v5

(c)

u′
r

v′ = v1

v2

v3

Figure 1: (a) A node v ∈ Ti, (b) For β = 3, five nodes in Ti+1 are enough to cover any bounded range of v, and
(c) For β = 3, three nodes in Ti+1 are enough to cover any prefix range of v.

Idea 1: Constructing many range trees. We start by constructing logβ log n trees T2, . . . , Tlogβ logn. The

fanout, fi, of tree Ti is n1/βi . Each Ti has n1/3 leaf nodes and the j-th leaf node stores all the points in P whose
first coordinate value is equal to j. For 2 ≤ i < logβ log n, tree Ti+1 can be constructed from Ti as follows: pick
an internal node v ∈ Ti and let Ch(v) be its child nodes. We will replace v and Ch(v) (a two-level tree) with a
subtree of fanout fi+1, the root of the new subtree is the node v and Ch(v) are the leaf nodes of the new subtree.
After each internal node in Ti performs this operation, the tree Ti+1 is constructed.

Lemma 4.1. (Covering ranges of points) For i < logβ log n, let v be any internal node in tree Ti and let
u1, u2, . . . , uf be its f children from left-to-right. For ` ≤ r, define a “bounded range” P (v, `, r) ⊆ P to be the
points in the subtrees of u`, u`+1, . . . , ur. A “prefix range” (resp., “suffix range”) is a special case of bounded
range with ` = 1 (resp., r = f). Then,

� (Covering bounded ranges) For any P (v, `, r), there exists at most (2β − 1) nodes v1, v2, . . . , v2β−1 in tree
Ti+1 and integers `1, . . . , `2β−1, r1, . . . , r2β−1 such that

P (v, `, r) =
⋃

j∈[2β−1]

P (vj , `j , rj).

Among the (2β−1) bounded ranges, at least (2β−2) are either prefix or suffix ranges.

� (Covering prefix and suffix ranges) For any P (v, 1, r), there exists at most β nodes v1, v2, . . . , vβ in tree Ti+1

and integers r1, . . . , rβ such that

P (v, 1, r) =
⋃
j∈[β]

P (vj , 1, rj).

This holds analogously for any suffix range.

See Fig. 1 for an example of Lemma 4.1; the proof is deferred to Section 7.
Idea 2: Nested shallow cuttings for all bounded ranges. Next, multiple shallow cuttings will be

constructed at each node in trees T2, . . . , Tlogβ logn. Recall that fi = n1/βi is the fanout of tree Ti, and define

f1 = n1/β . Consider an arbitrary node v ∈ Ti. For all 1 ≤ ` ≤ r ≤ fi, a f2
i−1-level shallow cutting, C(v, `, r), is

constructed based on the last three coordinates of the pointset P (v, `, r). We will say that C(v, `, r) and its cells
are associated with a tree Ti

Let C be the collection of cells from all the shallow cuttings constructed. Pick any cell C ∈ C. If C is
associated with tree Ti, then a (f2

i /c)-level shallow cutting is constructed based on the conflict list of C, where
c is a sufficiently large constant. The resulting shallow cuttings and cells are called nested shallow cuttings and
nested cells, respectively. A FIND-ANY structure of Lemma 2.1 is constructed based on these nested cells.
Such nested shallow cuttings are constructed for each cell in C. Let CN be the collection of all the nested cells
constructed. The data structure will store all the cells in C and CN , and the FIND-ANY structures corresponding
to each cell in C. Additionally, for all the nested cells in CN which were constructed at the last tree Tlogβ logn,
their conflict lists are explicitly stored.

Copyright © 2023
Copyright for this paper is retained by authors

C1

C2

C

p

Figure 2: C is a nested cell constructed at Ti and is associated with a prefix range. Γ(C) = {C1, C2, C3} for
β = 3. The figure shows only C1 and C2 and points from v1 and v2 (denoted by red circles and blue crosses
respectively).

Lemma 4.2. The size of the data structure is O(n log n).

Proof. Consider a node v ∈ Ti. Firstly, |P (v)| ≥ n2/3, since each leaf node in Ti is associated with at least n2/3

points. Secondly, for β = 3, we have f2
i−1 ≤ f2

1 ≤ n2/β = n2/3. Therefore, |P (v)| = Ω(f2
i−1). As a result,

a f2
i−1-level shallow cutting on P (v, `, r) will have O(|P (v)|/f2

i−1) cells. Since O(f2
i) such shallow cuttings are

constructed at v, the total number of cells constructed will be O(|P (v)|·f2
i /f

2
i−1). The number of cells constructed

at all the nodes of a given level will be O(
∑
v |P (v)| · f2

i /f
2
i−1) = O(n · f2

i /f
2
i−1). Since the conflict list size of

each cell is O(f2
i−1), a (f2

i /c)-level nested cutting on this conflict list creates O(f2
i−1/f

2
i) nested cells. As such,

the number of nested cells at a given level is O(n · f2
i /f

2
i−1)× O(f2

i−1/f
2
i) = O(n). For β = 3, the height of tree

Ti is (log n1/3)/(log n1/3i) = 3i−1. Therefore, the number of nested cells in a tree Ti will be O(n.3i). Summing

over all the trees, the number of nested cells is
∑log3 logn
i=0 O(n · 3i) = O(n log n).

In tree Tlog3 logn the conflict list is explicitly stored with each nested cell. The fanout of this tree is two and
hence, the size of the conflict list of each nested cell is O(1). The number of nested cells in this tree is O(n log n).
As a result, storing the conflict list increases the space by only a constant factor, and hence, the overall space
remains O(n log n).

Idea 3: Connecting adjacent trees via cells and nested cells. In the following lemma, we establish
the connection between nested cells of Ti and cells of adjacent tree Ti+1. Henceforth for any cell (or nested cell)
C, we will denote by L(C) its conflict list.

Lemma 4.3. Consider any nested cell C ∈ CN which is associated with Ti, for 2 ≤ i < logβ log n. Then there
exists a set Γ(C) ⊆ C such that

1. Each cell in Γ(C) is associated with tree Ti+1,

2. For all C ′ ∈ Γ(C), we have C ⊆ C ′, and

3. if a region q′ =
4∏
i=2

(−∞, bi] lies inside C, then L(C) ∩ q′ =
⋃
C′∈Γ(C)(L(C ′) ∩ q′).

If C is associated with a bounded range P (v, `, r), then |Γ(C)| ≤ 2β−1, and at most one cell in Γ(C) is associated
with a bounded range. Otherwise, if C is associated with a prefix or a suffix range, then |Γ(C)| ≤ β, and all the
cells in Γ(C) are associated with a prefix or a suffix range.

Proof. Define Ĉ to be the cell on whose conflict list, L(Ĉ), the (f2
i /c)-level nested cutting led to the construction

of nested cell C. Let v be the node in Ti such that Ĉ is a cell of the shallow cutting for some pointset P (v, `, r).
Consider the following two cases:

� If P (v, `, r) is a bounded range, then via the first case in Lemma 4.1, we define N(C) = {v1, v2, . . . , v2β−1},
and

Copyright © 2023
Copyright for this paper is retained by authors

� If P (v, `, r) is a prefix or a suffix range, then via the second case in Lemma 4.1, we define N(C) =
{v1, v2, . . . , vβ}.

In either case,

(4.1) P (v, `, r) =
⋃

vj∈N(C)

P (vj , `j , rj).

Let p be the apex point of C. Since L(Ĉ) = Ĉ∩P (v, `, r), the number of points of L(Ĉ) or P (v, `, r) which are
dominated by p will be less than or equal to f2

i , since we chose a sufficiently large constant c for the (f2
i /c)-level

nested shallow cutting on L(Ĉ). For any vj ∈ N(C), since P (vj , `j , rj) ⊆ P (v, `, r), the number of points of
P (vj , `j , rj) dominated by p will be less than or equal to f2

i . For all vj ∈ N(C), the data structure constructs
a f2

i -level shallow cutting on P (vj , `j , rj). Therefore, for each vj ∈ N(C), there exists a cell, say Cj , in the
f2
i -level shallow cutting constructed on P (vj , `j , rj) which contains p. Then define Γ(C) =

⋃
vj∈N(C){Cj}. This

establishes items (1) and (2) in Lemma 4.3. See Figure 2.
Now we establish (3). Since q′ ⊆ C ⊆ Cj , for all Cj ∈ Γ(C), we infer that

(4.2) q′ = q′ ∩ C = q′ ∩ Cj , for any Cj ∈ Γ(C).

From Equation 4.1, we claim that

P (v, `, r) ∩ q′ =
⋃

vj∈N(C)

(P (vj , `j , rj) ∩ q′)

=⇒ P (v, `, r) ∩ (q′ ∩ C) =
⋃

vj∈N(C)

(P (vj , `j , rj) ∩ (q′ ∩ Cj)) (From equation 4.2)

=⇒ L(C) ∩ q′ =
⋃

Cj∈Γ(C)

(L(Cj) ∩ q′).

Using the above lemma, the data structure stores pointers from each nested cell C ∈ CN to its corresponding
cells in Γ(C).

Query algorithm. Recall that q′ =
∏4
j=2(−∞, bj]. Starting from i=1, in the i-th iteration of the query

algorithm, a collection of cells Ci+1 is maintained. At the beginning of the i-th iteration, the query algorithm will
satisfy the following three invariants:

1. The cells in Ci+1 are associated to the tree Ti+1.

2. q′ is guaranteed to lie inside all the cells in Ci+1.

3. The problem of determining whether |P ∩ q| ≥ 1 is reduced to the problem to determining whether

|L(Ĉ) ∩ q′| ≥ 1, for any Ĉ ∈ Ci+1.

During the i-th iteration, for each cell Ĉ ∈ Ci+1, we do the following: Perform FIND-ANY query on the

nested shallow cutting constructed based on L(Ĉ). If no nested cell is reported, then we conclude that |P ∩ q| ≥ 1
and stop the algorithm. Otherwise, let C be the cell reported. Based on Lemma 4.3, add the cells in Γ(C) to
Ci+2.

In the i-th iteration, if the algorithm does not stop, then the three invariants continue to hold at the beginning
of the (i+1)-th iteration. Bullet (1) of Lemma 4.3 ensures that all the cells in Ci+2 are associated to Ti+2. For

each cell Ĉ ∈ Ci+1, its corresponding nested cell C contains q′. Combining this fact with bullet (2) of Lemma 4.3

ensures that q′ lies inside all cells in Ci+2. Since L(Ĉ) ∩ q = L(C) ∩ q, combining this fact with bullet (3) of

Lemma 4.3 ensures that computing L(Ĉ) ∩ q is equivalent to computing
⋃
C′∈Γ(C)(L(C ′) ∩ q).

In the end, if the algorithm computes Clogβ logn, then we stop the recursion and explicitly scan the conflict
list of all the cells in Clogβ logn to check if any point lies inside q.

Copyright © 2023
Copyright for this paper is retained by authors

Initialization steps. As an initialization step we query T2 with [a1, b1]. Let π` and πr be the path from the
root node to the leaf nodes corresponding to a1 and b1, respectively. For each node v ∈ π` ∪πr, let w1, w2, . . . , wf
be its children. Let w` (resp., wr) be the leftmost (resp., rightmost) child such that the first coordinate value of
all the points in P (w`) (resp., P (wr)) lie inside [a1, b1]. Then perform FIND-ANY query on the shallow cutting
constructed on P (v, `, r). If no cell is reported, then conclude that |P ∩q| ≥ 1, and stop the algorithm. Otherwise,
add the cell reported to C2. Since the height of T2 is a constant, |C2| ≤ c0, where c0 is a sufficiently large constant.

Lemma 4.4. For i ≥ 2, |Ci| ≤ c0 · βi+1 − 1, where c0 is a sufficiently large constant.

Proof. For all 2 ≤ i ≤ logβ log n, at most one cell in Ci is associated with a bounded range. We prove it via
induction. For C2, the cell in C2 corresponding to the root node of T2 is associated with a bounded range (see
Figure 1(b)). The remaining cells in C2 are associated with a prefix or a suffix range. Assume it is true for Ci. Let

Ĉ be the only cell in Ci associated with a bounded range, and let C be the nested cell reported by the FIND-ANY
query on L(Ĉ). Via Lemma 4.3, observe that at most one cell in Γ(C) ⊆ Ci+1 is associated with a bounded range.

For any other cell Ĉ ∈ Ci and its corresponding nested cell C, all the cells in Γ(C) ⊆ Ci+1 are associated with a
prefix or a suffix range (via Lemma 4.3). Therefore, we conclude that at most one cell in Ci+1 is associated with
a bounded range. This leads to the following recurrence:

|Ci+1| ≤ β · (|Ci| − 1) + (2β − 1) via Lemma 4.3

= β · |Ci|+ β − 1

≤ β(c0 · βi − 1) + β − 1 via induction

≤ c0 · βi+1 − 1.

For any cell C ∈ Ci, the number of nested cells in the nested shallow cutting constructed on L(C) is

O(|L(C)|/f2
i) = O(f2

i−1/f
2
i) = O(n2/βi−1

/n2/βi) = O(n
2β−2

βi). Hence, performing a FIND-ANY operation on

the nested shallow cutting takes O(2β−2
βi · log n) time. As such, performing FIND-ANY operations w.r.t. all the

cells in Ci takes O(|Ci| · 2β−2
βi · log n) = O(log n) time, since Lemma 4.4 states that |Ci| = O(βi). Overall, it

takes O(log n · logβ log n) time to generate sets C1, C2, . . . , Clogβ logn. The time taken to explicitly scan the conflict
lists of cells in Clogβ logn is O(log n), since |Clogβ logn| = O(log n), and each conflict list has a constant size. The
initialization step can be performed in O(log n) time. Overall, the query time is O(log n · log log n).

4.2 The reporting query To handle the reporting query, we will need a few additional data structures.
Firstly, for each node v ∈ Tlogβ logn, based on the points in the subtree of v, construct a (c log6 n)-level shallow
cutting, where c is a sufficiently large constant. Let Clog6 n be the collection of all the cells associated with each
node in Tlogβ logn. For each cell in the cutting, based on its conflict list build a data structure which answers 3d
dominance queries (on the last three coordinates). Secondly, construct a slow data structure on P to answer 4d
dominance queries: The data structure of Afshani [1] for 3d dominance queries along with a range tree on the
fourth coordinate leads to a data structure with O(n log n) size and O(log2 n + k) query time. The third data
structure requires storing additional pointers across trees which is discussed next.

Observation 1. Let ∆ = logβ log n− logβ log log n. Then, β∆ = logn
log logn .

Lemma 4.5. For a cell C associated with tree T∆, there exists a set Λ(C) ∈ Clog6 n of at most O(log logn) cells
such that if q′ lies inside C, then L(C) ∩ q′ =

⋃
C′∈Λ(C)(L(C ′) ∩ q′).

Proof. Consider the case where C is associated with a bounded range at a node v ∈ T∆. Let P (v, `, r) be the
pointset on which the shallow cutting led to the construction of C. After applying first case of Lemma 4.1,
let N1(C) be the collection of covering nodes in T∆+1 such that P (v, `, r) =

⋃
vj∈N1(C) P (vj , `j , rj). Then,

|N1(C)| ≤ 2β − 1. Now, let N2(C) be the collection of covering nodes in T∆+2 after applying Lemma 4.1 on
pointset P (vj , `j , rj), for all vj ∈ N1(C). At most one node in N1(C) corresponds to a pointset with a bounded
range. Therefore,

|N2(C)| ≤ β(|N1(C)| − 1) + (2β − 1) ≤ β(2β − 2) + (2β − 1) = 2β2 − 1.

Copyright © 2023
Copyright for this paper is retained by authors

Performing this recursively, we obtain

|Ni(C)| ≤ 2βi − 1, for any i ≥ 2.

In particular, we obtain |Nlogβ log logn(C)| = O(log log n), and

(4.3) P (v, `, r) =
⋃

vj∈Nlogβ log logn(C)

P (vj , `j , rj).

Now we adapt the proof of Lemma 4.3 to finish the proof. Let p be the apex point of C. Since
L(C) = C∩P (v, `, r), the number of points of L(C) or P (v, `, r) which are dominated by p will be Θ(log2β n), since

we construct an f2
∆−1-level shallow cutting on P (v, `, r), and f2

∆−1 = (n1/β∆−1

)2 =
(
n
β log logn

logn

)2

= Θ(log2β n).

For any vj ∈ Nlogβ log logn(C), since P (vj , `j , rj) ⊆ P (v, `, r), the number of points of P (vj , `j , rj) dominated by

p will be O(log2β n). The data structure constructs a (c log6 n)-level shallow cutting on P (vj , `j , rj). Since c is
chosen to be a sufficiently large constant, there exists a cell, say Cj , in the (c log6 n)-level shallow cutting which
contains p. Then we set Λ(C) =

⋃
vj∈Nlogβ log logn(C){Cj}.

For any Cj ∈ Λ(C), since q′ ⊆ C ⊆ Cj , we claim that

(4.4) q′ = q′ ∩ C = q′ ∩ Cj .

From Equation 4.3, we claim that

P (v, `, r) ∩ q′ =
⋃

Cj∈Λ(C)

(P (vj , `j , rj) ∩ q′)

=⇒ P (v, `, r) ∩ (q′ ∩ C) =
⋃

Cj∈Λ(C)

(P (vj , `j , rj) ∩ (q′ ∩ Cj)) (From equation 4.4)

=⇒ L(C) ∩ q′ =
⋃

Cj∈Λ(C)

(L(Cj) ∩ q′).

Using Lemma 4.5, for each cell C associated with tree T∆ we will maintain pointers to each cell in Λ(C).

Lemma 4.6. The space occupied by additional data structures is O(n log n).

Proof. The space occupied by a single dominance structure will be O(log6 n) and the number of cells in a (c log6 n)-
level shallow cutting is O(|P (v)|/ log6 n), where |P (v)| is the number of points in the subtree of v. Therefore, the

space occupied at any given level of Tlogβ logn is O(
∑
v
|P (v)|
log6 n

× log6 n) = O(n). Since the height of Tlogβ logn is

O(log n), the overall space occupied by all the 3d dominance structures will be O(n log n).

The number of cells associated with a node v in T∆ (with fanout f∆ = n1/β∆

) is O(|P (v)|/f2
∆−1)×O(f∆) =

O(|P (v)|/f∆), and as such, the number of cells at a given level in T∆ is O(n/f∆). Therefore, via Lemma 4.5, the
total number of pointers maintained will be

O

(
n

f∆
· log log n

)
= O

(n

n1/β∆ · log log n
)

= O

(
n log log n

n
log logn

logn

)
= O

(
n log logn

log n

)
= o(n log n).

To answer a reporting query, we start by performing the same steps as the query algorithm for the emptiness
query. Recall that if the emptiness query algorithm enters the i-th iteration, then either the algorithm stops in
that iteration or a collection Ci+2 is generated for the (i+1)-th iteration. To answer the reporting query, two
modifications are made to the emptiness query algorithm:

1. If the algorithm stops in the i-th iteration, and i < ∆−1, then query the slow structure.

Copyright © 2023
Copyright for this paper is retained by authors

2. If the algorithm reaches the (∆−1)-th iteration, then for each cell C ∈ C∆, query with q′ the 3d dominance
structures associated with each cell in Λ(C) (Lemma 4.5).

Lemma 4.7. The query time is O(log n · log log n+ k).

Proof. If case (1) happens, then via properties of nested shallow cuttings, we conclude that |P ∩ q| = Ω(f2
i+1) =

Ω(n2/βi+1

), since an f2
i+1-level nested shallow cutting is performed at cells associated with tree Ti+1. Since

i < (∆− 1), it implies that |P ∩ q| = Ω(n2/β∆−1

) = Ω(n2β log logn/ logn) = Ω(log2β n) = Ω(log2 n), for β = 3. As a
result, querying the slow data structure takes O(log2 n+ k) = O(k) time.

If case (2) happens, then the number of 3d dominance structures queried will be O(|C∆| · log log n) (via
Lemma 4.5). The time taken to query a single 3d dominance structure is O(log log6 n + ki) = O(log logn + ki),
where ki is the output size. Therefore, the overall query time will be O(|C∆| · log log n · log log n +

∑
i ki) =

O(β∆ log2 log n+ k) = O(log n · log log n+ k) (via Lemma 4.4).

5 General 4d orthogonal range reporting and higher dimensions

Our result for five-sided 4d queries can be extended to answer general 4d queries using standard techniques. For
example, we can support queries

∏2
i=1[ai, bi] ×

∏4
i=3(−∞, bi] by constructing the range tree T2 on the second

coordinates of all points. We keep the data structure for five-sided queries in every internal node of T2. For
a given query q =

∏2
i=1[ai, bi] ×

∏4
i=3(−∞, bi], we find the leaf that contains the predecessor of b2, the leaf

that contains the successor of a2, and their lowest common ancestor w. Let wl and wr be the left and right
children of w. Let ql = [a1, b1] × [a2,+∞) ×

∏4
i=3(−∞, bi] and qr = [a1, b1] × (−∞, b2] ×

∏4
i=3(−∞, bi]. Then

q ∩ P = q ∩ P (w) = (ql ∩ P (wl)) ∪ (qr ∩ P (wr)). Since both ql and qr are five-sided queries, we can answer .

In the same way, we can support general queries q =
∏4
i=1[ai, bi] without increasing the query time and using

O(n log4 n) space.
We can also obtain a data structure that supports general queries in d > 4 dimensions using range trees. The

space usage and query time grow by O(log n) factor with every dimension d > 4.

Theorem 5.1. There exists a data structure that answers d-dimensional orthogonal range reporting queries on
a pointset P in O(logd−3 n log logn+ k) time and uses O(n logd n) space, where k is the number of points in the
query range and n is the number of points in P .

6 Construction Algorithm

As explained in previous sections, our data structure relies on a large number of three-dimensional shallow cuttings.
There are algorithms that construct shallow cuttings in nearly linear time. That is, a shallow cutting of an n-point
set can be constructed in time O(n log n) [6, 5]. If we directly apply these algorithms, it would take Ω(n3/2) time
to construct our data structure.

In this paper we use a different approach: We observe that conflict lists of cells in shallow cuttings are not
needed in our case. The construction algorithm is modified so that the runtime is pseudo-linear in the number of
cells of the constructed 3d shallow cutting. We start by reviewing the algorithm of Afshani and Tsakalides [6].
Then we describe our implementation. Next we show how the new algorithm for 3d shallow cuttings can be
applied to create our data structure for restricted 5-sided queries (Theorem 4.1) in O(n log5 n) time. Finally we
explain how this result can be used to construct data structures for general orthogonal range reporting. In this
section we will denote the second, third, and fourth coordinates of a point p by x(p), y(p), and z(p) respectively.

Previous Work: Overview of an O(n log n)-Time Algorithm. In [6] the authors show how a 2d shallow
cutting can be maintained under deletions. Then they combine their method with the sweep-plane approach
and obtain a three-dimensional shallow cutting. A two-dimensional shallow cutting is a staircase, i.e., a polyline
obtained by alternating horizontal and vertical segments, see Fig. 3. An inner corner of a 2d shallow cutting is
the lower endpoint of a vertical segment (resp. the left endpoint of a horizontal segment) and an outer corner is
the upper endpoint of a vertical segment (resp. the right endpoint of a horizontal segment). When some inner
corner dominates less than k points, we start the process of patching the staircase. Let ci denote the outer corner
that precedes di. Let c′i denote the leftmost point such that y(ci) = y′(ci) and c′i dominates 10k points. We
extend the preceding outer corner to the point c′i and c′i becomes a new outer corner. Then we find the point
d′i+1, such that x(d′i+1) = x(c′i) and d′i+1 dominates 9k points; we add a vertical segment [c′i, d

′
i+1] to the staircase

Copyright © 2023
Copyright for this paper is retained by authors

c1

c2

c3

c4

c5

c6

d1

d2

d3

d4

di

ci c′i

c′i+1

c′i+2
d′i

d′i+1

cj

ci+1

cj−1

Figure 3: Left: Inner and outer corners of a staircase (2d shallow cutting). Right: Patching of a staircase. Patch
and new corners are shown with dashed polyline. The old corner cj dominates at least 7k points, but old corners
ci+1, . . ., cj−1 dominate less than 7k points.

and d′i+1 becomes a new inner corner. Next, we find the leftmost point c′i+1 with x(c′i+1) = x(d′i+1 such that c′i+1

dominates 10k points; we add the horizontal segment [d′i+1, c
′
i+1] to the staircase. We continue adding horizontal

and vertical segments with corresponding outer and inner corners to the staircase until the following termination
condition is satisfied: Let dj be the rightmost inner corner dominated by c′i. If dj dominates at least 7k points,
we add the corner c′′i instead of c′i, so that x(c′′i) = x(dj) and y(c′′i) = y(c′i). Finally we add a vertical segment
[c′′i , dj] and finish the process of patching. All corners dominated by new outer corners are removed from the
two-dimensional shallow cutting.

In order to obtain a three-dimensional shallow cutting, a plane parallel to the xy-plane is moved in −z-
direction starting at z = +∞. A two-dimensional shallow cutting is maintained for all points that are below the
plane2. Every time when the plane hits a point, we remove it from the set of points below the plane. When some
inner corner of the staircase dominates less than k points, we patch the staircase as described above. Every added
outer corner becomes an apex point of some cell in the three-dimensional shallow cutting.

Our Implementation The crucial difference between our result and the previous work is that we reduce
the number of updates on the two-dimensional shallow cutting. An update happens only when we have to remove
an outer corner and patch the staircase. To this aim, we associate with each outer corner cj the z-position of the
sweep-plane when it should be removed (provided that cj was not removed earlier by the patching procedure). A
more detailed description of our method follows below.

We maintain a queue Q of corner events. Q supports insertions, deletions, and find-max operations. Every
time when an inner corner di = (x, y) is added to the staircase, we compute the highest value v such that the point
(x, y, v) dominates less than k points of P ; we associate an event (x, y, v) with di and add it to Q. Obviously,
di should be removed from the staircase when the z-coordinate of the sweep-plane is equal to v (unless di was
removed earlier by the patching procedure). We will use the notation end(di) = v. We also maintain the list
L of all outer and inner corners sorted by x-coordinate. For each corner ci in the list we keep a pointer to the
associated event in Q (as well as a reverse pointer from an event in Q to the corner in L).

Our algorithm also requires a data structure that supports range counting and range selection queries in 3d.
A 3d orthogonal range counting query on a set P computes the number of points in q∩P for a three-dimensional
axis-parallel rectangle q′ =

∏3
i=1[ai, bi]. A three-dimensional z-selection query (a, b, k) asks for the highest value v

such that the point p = (a, b, v) dominates exactly k points in P 3. A three-dimensional y-selection query (a, b, k)
asks for the highest value v such that the point p = (a, v, b) dominates exactly k points in P . A three-dimensional
x-selection query (a, b, k) asks for the highest value v such that such that the point p = (v, a, b) dominates exactly
k points in P .

The complete algorithm works as follows. We find the largest z-coordinate of the sweep-plane, such that at
least one inner corner of the staircase dominates less than k points. This value can be found by extracting an
event with the highest z-coordinate from the queue Q (if there are several events with the same z-coordinate, we
select the event with the smallest x-coordinate). Then we patch the corresponding corner di as described above.
Let ci denote the outer corner that precedes di. We find the point c′i with y(c′i) = y(di−1) that dominates exactly
10k points. Finding c′i is equivalent to answering a range selection query. When c′i is known we find the point d′i

2To simplify the description, we sometimes do not distinguish between a point and its xy-projection.
3In this paper we consider a special case of selection queries, the dominance selection queries. For simplicity, this special case will

be denoted selection queries.

Copyright © 2023
Copyright for this paper is retained by authors

with the highest y-coordinate, such that x(c′i) = x(d′i) and c′i dominates 9k points. We can find d′i using a range
selection query too. Next, we identify the rightmost old corner dj , such that x(dj) ≤ x(d′i). The corner dj can
be found by binary search on L. If dj dominates more than 7k points If dj dominates at most 7k points, we set
x(d′i) = x(dj), discard c′i, and connect d′i with dj by a vertical segment. This completes the patching procedure.
When c′i and d′i are computed, we update the list L. New corners c′i and d′i are inserted into L; old outer corners
dominated by d′i and preceding inner corners are removed from L. For every new inner corner di that is inserted
into L, we compute end(ci) and insert (x(ci), y(ci), end(ci)) into Q.

In summary, we can construct a t-level three-dimensional shallow cutting with g = O(mt) cells by executing
O(g) binary searches, executing O(g) queries and updates of Q, answering O(g) three-dimensional range counting
queries, and answering O(g) three-dimensional range selection queries. The queue Q can be implemented as a
binary search tree, so that updates and queries can be supported in O(logm) time. Our algorithm is summarized
in the following lemma.

Lemma 6.1. Suppose that we are given a data structure that supports three-dimensional orthogonal range
counting queries and two-dimensional range selection queries on a set P in times fcount(m) and fselect(m)
respectively, where m is the number of points in P . Then a t-shallow cutting for a set P can be constructed
in O(g(logm+ fcount(m) + fselect(m)) time, where m is the number of points in P and g = O(mt) is the number
of cells in the shallow cutting.

Construction of Shallow Cuttings in Trees Ti. We construct shallow cuttings for all sets P (v, i, j) using
the method from Lemma 6.1. In order to apply this method, we must answer three-dimensional orthogonal range
counting and range selection queries.

We construct a data structure that supports four-dimensional orthogonal range counting queries on the input
set P . A three-dimensional orthogonal range counting query q′ on P (v, i, j) is equivalent to a four-dimensional
orthogonal range counting query [l, r] × q′ on P where l and r are the smallest and the largest first coordinates
of points in P (v, i, j). Using range trees and fractional cascading, we can answer four-dimensional counting
queries in O(log3 n) time. We can reduce x-selection to range counting via binary search on x-coordinates: We
store x-coordinates of all points from P in a balanced binary tree. To answer an x-selection query (a, b, k),
we visit nodes starting with the root node. For each visited node ν, we compute the number of points k′in
P (v, i, j) ∩ (−∞, e]× (−∞, a]× (−∞, b] where e is the x-coordinate stored in ν. If k′ = k, we return e. If k′ < k
we move to the right child of ν, and if k′ > k, we move to the left child of ν. Since, we visit O(log n) nodes, an
x-selection query is answered in O(log4 n) time. We can answer y-selection and z-selection queries in the same
way. Combining this method with Lemma 6.1, we can construct a shallow cutting on a set P (v, i, j) in time
O(g log4 n) where g is the number of cells in the shallow cutting or in O(log4 n) time per cell.

The data structure that supports four-dimensional range counting in O(log3 n) time can be constructed in
O(n log4 n) time. As explained in Lemma 4.2, the total number of cells in all shallow cuttings is O(n log n). Hence
all shallow cuttings needed in our data structure can be constructed in time O(n log5 n).

We also need to construct pointers between cells of different shallow cuttings. To this end, we will use a
separate data structure for each set P (v, l, r).This structure stores the apex points of cells from C(v, l, r) and
supports the following three-dimensional one-reporting queries: given a query range q = [q1, q2] × [qx,∞) ×
[qy,∞) × [qz,∞), we must report only one point from the query range. Using the dominance range reporting
structure from [1] with minor modifications, we can support such queries in O(log n) time. The data structure
for one-reporting queries can be constructed in O(n log n) time. Then, for i = 1, 2, . . ., we visit all sets P (v, l, r)
associated to Ti. For every P (v, l, r) of Ti we identify five sets P (uj , lj , rj) such that P (v, l, r) = ∪3

j=1P (uj , lj , rj)
and uj are nodes of Ti+1. Next we consider all nested shallow cuttings of C(v, l, r). For each cell of each nested
shallow cutting, we find the cell Cj of P (uj , lj , rj), j = 1,. . .,5, that contains C. If Cj contains C, then the apex
point of Cj dominates the apex point of C. Hence we can find Cj in O(log n) time by answering a query on a
dominance one-reporting data structure for C(uj , lr, rj). Thus we can construct all necessary pointers between
cells in O(log n) time per pointer. Hence all pointers between cells can be computed in O(n log2 n) time. Other
components of data structure for restricted 5-sided queries (slow data structures and conflict lists of cells associated
with nodes of Tlogβ logn) can be also constructed in O(n log4 n) time.

Our main result is the following theorem.

Theorem 6.1. Data structure for restricted 5-sided 4d queries, described in Theorem 4.1, can be constructed in
O(n log5 n) time.

Copyright © 2023
Copyright for this paper is retained by authors

In order to construct the data structure for (unrestricted) 5-sided queries described in Theorem 4.2, we (1)
construct the data structure for restricted queries and (2) recursively construct data structures for n1/3 sets of
n2/3 points. Hence the construction time C(n) satisfies the recurrence C(n) = O(n log5 n) + n1/3 · C(n2/3). Let

c(n) = C(n)
n . Then c(n) = O(log5 n) + c(n2/3). The latter recurrence resolves to c(n) = O(log5 n). Hence

C(n) = O(n log5 n) and the data structure of Theorem 4.2 can be constructed in O(n log5 n) time.
Data structures for the general case of orthogonal range reporting consist of multiple instances of structures

from Theorem 4.2. Hence, applying Theorem 6.1, we can construct the data structure for d-dimensional orthogonal
range reporting queries described in Theorem 5.1. The construction time is O(n log4+d n).

7 Proof of Lemma 4.1

We start with the following observation.

Observation 2. For any node v ∈ Ti, let P (v) ⊆ P be the points in its subtree. Let ∆ be the depth of node v in
Ti (the root node is at depth 0). Then there exists a node v′ ∈ Ti+1 such that (a) P (v′) = P (v), and (b) v′ is at
depth β ·∆.

Proof. Since the fanout of Ti is fi = n1/βi , we claim that

(7.5)
n

f∆
i

=
n

n∆/βi
= |P (v)|.

Let v′ be the node in Ti+1 such that P (v′) = P (v). Our construction of Ti+1 ensures that such a node v′

exists. Let ∆′ be the depth of node v′ in Ti+1. Since the fanout of Ti+1 is fi+1 = n1/βi+1

, we claim that

(7.6)
n

f∆′
i+1

=
n

n∆′/βi+1 = |P (v)|.

Combining Equations 7.5 and 7.6, we observe that ∆′ = β ·∆.

Now we are ready to prove Lemma 4.1.

Proof. (Covering bounded ranges) In Ti, let ∆ be the depth of node v. Via Observation 2, there exists a node
v′ in Ti+1 such that P (v′) = P (v). Again via Observation 2, for any P (v, `, r), there exists two nodes u′` and u′r
at depth β · (∆ + 1) such that P (u′`) = P (u`) and P (u′r) = P (ur), respectively. See Figure 1. Let Πr (resp., Π`)
be the path from v′ to u′r (resp., u′`). Then assign v1, v2, . . . , vβ to be the β nodes on Πr (excluding u′r). Next,
assign vβ+1, vβ+2, . . . , v2β−1 to be the (β − 1) nodes on Π` (excluding v′ and u′`).

For all 1 ≤ j ≤ (2β − 1), let the child nodes of vj be w1, w2, . . . , wf ′ . Then we pick P (vj , `j , rj) if w`j is the
leftmost (resp., wrj is the rightmost) child of vj such that P (w`j) ⊆ P (v, `, r) (resp., P (wrj) ⊆ P (v, `, r)). Then,
the reader can observe that P (v, `, r) =

⋃
j∈[2β−1] P (vj , `j , rj).

Let v1 be the node common to both Π` and Πr. For any node vj ∈ Πr \ {v1} (resp., vj ∈ Π` \ {v1}), its child
node w1 (resp., wf ′) will always satisfy P (w1) ⊆ P (v, `, r) (resp., P (wf ′) ⊆ P (v, `, r)). Hence, for all v ∈ Πr\{v1},
we have `j = 1, and for all v ∈ Π` \ {v1}, we have rj = f ′.

(Covering prefix ranges) In Ti+1, let Πr be the path from v′ to u′r (excluding u′r). Then assign v1, v2, . . . , vβ
to be the β nodes on Πr. As before, for all 1 ≤ j ≤ β, let the child nodes of vj be w1, w2, . . . , wf ′ .
Then we pick P (vj , 1, rj) if wrj is the rightmost child of vj such that resp., P (wrj) ⊆ P (v, 1, r). Then,
P (v, 1, r) =

⋃
j∈[β] P (vj , 1, rj).

8 Conclusion and future work

Chazelle [14] showed that for orthogonal range reporting in d-dimensions in the pointer machine model, a query

time of logO(1) n + O(k) can only be achieved by using Ω

(
n
(

logn
log logn

)d−1
)

space. Our data structure for 4d

orthogonal range reporting uses O(n log4 n) space. The immediate open problem is to close the logarithmic factor
gap in the space between our upper bound and the lower bound of Chazelle [14].

The query time of our data structure is O(log n · log log n+ k). An open question is to prove that the optimal

query time of O(log n + k) can be achieved while using n logO(1) n space, or to prove that such a result is not

Copyright © 2023
Copyright for this paper is retained by authors

possible. The complexity of orthogonal range reporting has also been studied in the RAM model [12]. It is
interesting to compare the current state of the art in the PM model with data structures in the RAM model. In
the latter model, the data structure that achieves optimal O(log n/ log log n) query time was recently obtained by
Nekrich [19].

The “dual” version of orthogonal range reporting is the orthogonal rectangle stabbing problem, where the input
is a set of axis-parallel boxes in a d-dimensional space and the query is a point; the goal is to efficiently report all
the boxes containing the query point. In 2d, Chazelle [12] presented an optimal pointer machine data structure
which uses linear-space and answers a query in O(log n+k) time. Afshani et al. [4] proved that any data structure
which uses linear-space will take Ω(logd−1 +k) time to answer a query. This lower bound is almost matched in 3d
by the data structure of Rahul [21]. Currently, the best known data structure in 4d uses O(n log n log∗ n) space
and answers a query in O(log3 n log log n + k) time [21]. Can the 4d data structures presented in this paper be
useful in resolving the orthogonal rectangle stabbing problem in 4d?

References

[1] Peyman Afshani. On dominance reporting in 3d. In 16th Annual European Symposium on Algorithms (ESA), pages
41–51, 2008.

[2] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting in three and higher dimensions.
In 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 149–158, 2009.

[3] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting: query lower bounds, optimal
structures in 3-d, and higher-dimensional improvements. In 26th ACM Symposium on Computational Geometry
(SoCG), pages 240–246, 2010.

[4] Peyman Afshani, Lars Arge, and Kasper Green Larsen. Higher-dimensional orthogonal range reporting and rectangle
stabbing in the pointer machine model. In 28th ACM Symposium on Computational Geometry (SoCG), pages 323–
332, 2012.

[5] Peyman Afshani, Timothy M. Chan, and Konstantinos Tsakalidis. Deterministic rectangle enclosure and offline
dominance reporting on the RAM. In 41st International Colloquium on Automata, Languages, and Programming
(ICALP), pages 77–88, 2014.

[6] Peyman Afshani and Konstantinos Tsakalidis. Optimal deterministic shallow cuttings for 3-d dominance ranges.
Algorithmica, 80(11):3192–3206, 2018.

[7] Pankaj K. Agarwal. Range searching. In Handbook of Discrete and Computational Geometry, 3rd Edition, pages
809–837. 2017.

[8] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for orthogonal range searching. In
41st Annual Symposium on Foundations of Computer Science (FOCS), pages 198–207, 2000.

[9] Jon Louis Bentley. Decomposable searching problems. Information Processing Letters, 8(5):244–251, 1979.
[10] Timothy M. Chan. Persistent predecessor search and orthogonal point location on the word RAM. ACM Transactions

on Algorithms, 9(3):22:1–22:22, 2013.
[11] Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching on the RAM, revisited.

In 27th ACM Symposium on Computational Geometry (SoCG), pages 1–10, 2011.
[12] Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM Journal on Computing, 15(3):703–

724, 1986.
[13] Bernard Chazelle. A functional approach to data structures and its use in multidimensional searching. SIAM Journal

on Computing, 17(3):427–462, 1988.
[14] Bernard Chazelle. Lower bounds for orthogonal range searching: I. the reporting case. Journal of the ACM (JACM),

37(2):200–212, 1990.
[15] Bernard Chazelle. Lower bounds for orthogonal range searching II. the arithmetic model. Journal of the ACM,

37(3):439–463, 1990.
[16] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica,

1(2):133–162, 1986.
[17] Kurt Mehlhorn, Stefan Näher, and Helmut Alt. A lower bound on the complexity of the union-split-find problem.

SIAM Journal on Computing, 17(6):1093–1102, 1988.
[18] Yakov Nekrich. Four-dimensional dominance range reporting in linear space. In 36th International Symposium on

Computational Geometry (SoCG 2020), pages 59:1–59:14, 2020.
[19] Yakov Nekrich. New data structures for orthogonal range reporting and range minima queries. In 31st ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1191–1205, 2021.
[20] Mihai Patrascu. Unifying the landscape of cell-probe lower bounds. SIAM Journal on Computing, 40(3):827–847,

2011.

Copyright © 2023
Copyright for this paper is retained by authors

[21] Saladi Rahul. Improved bounds for orthogonal point enclosure query and point location in orthogonal subdivisions
in R3. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 200–211, 2015.

[22] Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. Journal of
Computer and System Sciences, 18(2):110–127, 1979.

Copyright © 2023
Copyright for this paper is retained by authors

	Introduction
	Preliminaries
	Top and bottom structures
	Restricted 4d 5-sided structure
	The emptiness query
	The reporting query

	General 4d orthogonal range reporting and higher dimensions
	Construction Algorithm
	Proof of Lemma 4.1
	Conclusion and future work

