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ABSTRACT
In this paper we describe a fully-dynamic data structure that sup-

ports point location queries in a connected planar subdivision with

𝑛 edges. Our data structure uses 𝑂 (𝑛) space, answers queries in
𝑂 (log𝑛) time, and supports updates in𝑂 (log𝑛) time. Our solution

is based on a data structure for vertical ray shooting queries that

supports queries and updates in 𝑂 (log𝑛) time.
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1 INTRODUCTION
Planar point location is a fundamental problem with applications

ranging from computer graphics to computer aided design. In this

problem we store a connected planar subdivision in a data structure

so that for any query point 𝑞 the polygon that contains 𝑞 can be

found efficiently. The static data structure that uses 𝑂 (𝑛) space,
where 𝑛 is the number of edges in the subdivision, and answers

point location queries in optimal 𝑂 (log𝑛) time was presented by

Sarnak and Tarjan [27]. In the dynamic scenario the subdivision

can be updated by inserting or removing edges. The dynamic planar

point location problem has been studied extensively over the last

three decades [1, 3, 6, 8, 14, 15, 18, 19, 21, 26]. The existence of a

dynamic data structure supporting queries and updates in𝑂 (log𝑛)
time is a major problem in geometric data structures [10, 11, 16, 28].

In the vertical ray shooting problem we keep a set of non-

intersecting segments in a data structure, so that for an arbitrary

query point 𝑞 the first segment hit by a vertical downward ray from

𝑞 can be found. Point location in a connected subdivision can be

reduced to the vertical ray shooting problem: if we know the edge
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immediately below 𝑞, we can identify the polygon that contains

𝑞 by keeping the segments in a union-split-find data structure. In

this paper we present a data structure that answers dynamic ver-

tical ray shooting queries in 𝑂 (log𝑛) time and supports segment

insertions and deletions in 𝑂 (log𝑛) time. This result immediately

implies the point location data structure that supports queries and

updates in logarithmic time. Thus our result provides an answer to

the long-standing open question [10, 11, 16, 28].

Main results on this problem are listed in Table 1. Optimal time

for both updates and queries was previously achieved only for the

special case of the orthogonal subdivision [19]. As will be explained

later, the orthogonal case is arguably easier to handle. In all other

scenarios the most efficient previously known data structures were

described by Chan and Nekrich [8]. In order to achieve the optimal

query time, the data structure from [8] requires an extra 𝑂 (log𝜀 𝑛)
factor in update cost. Other trade-offs presented in [8] are even

closer to the optimal solution. However, as stated in [8], “Removing

all the log log𝑛 factors in the query and update time of our main

result remains very challenging.”.

Our Approach. The main challenge in the vertical ray shooting

data structures is the lack of global order on the set of segments.

Even a single insertion or deletion can significantly change the order

of segments; see Fig. 1 on p. 4. The only exception is the special

case of horizontal segments (corresponding to point location in

an orthogonal subdivision). In this special case segments can be

ordered by their 𝑦-coordinates. This is also the only case for which

the 𝑂 (log𝑛)-time solution was known previously [19].

Solutions of the general vertical ray shooting problem rely on the

segment tree data structure or its variants. In these solutions every

segment must be stored circa 𝑂 (log𝑛) times in different nodes

of the segment tree. Since the global order of segments cannot

be maintained, most previous methods with nearly-logarithmic

query time require roughly 𝑂 (log2 𝑛) time for either insertions

or deletions. Two exceptions are the data structure of Cheng and

Janardan[13] with𝑂 (log2 𝑛) query time and the result of Chan and

Nekrich [8].

Chan and Nekrich [8] partially solve the issue of segment order

by assigning categories
1
to segments. We can maintain the order

among segments with the same category, even though they are

stored in different nodes. On the other hand, segments stored in the

same node can be assigned different categories. Therefore the list of

segments stored in each node must be divided into multiple sublists

that must be queried independently; this increases the time needed

to answer a query. Different trade-offs between query and update

time can be achieved with the approach of Chan and Nekrich [8],

1
In [8] the authors used the term color. In this paper we speak of segment categories

to avoid confusing notation.

https://doi.org/10.1145/3406325.3451100
https://doi.org/10.1145/3406325.3451100
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Table 1: Previous and new results on dynamic planar point location. Entries marked M and C show results for monotone
subdivisions and connected subdivisions respectively; O denotes an orthogonal subdivision and G denotes data structures
for vertical ray shooting among non-intersecting segments. Entries marked † and ‡ require amortization and (Las Vegas)
randomization respectively. In this table 𝜀 is an arbitrarily small positive constant.

Reference Space Query Time Insertion Time Deletion Time

Bentley [6] 𝑛 log𝑛 log
2 𝑛 log

2 𝑛 log
2 𝑛 G

Fries [18] 𝑛 log
2 𝑛 log

4 𝑛 log
4 𝑛 C

Preparata–Tamassia [26] 𝑛 log
2 𝑛 log

2 𝑛 log
2 𝑛 M

Chiang et al. [14] 𝑛 log𝑛 log𝑛 log
3 𝑛 log

3 𝑛 C

Chiang–Tamassia [15] 𝑛 log𝑛 log𝑛 log
2 𝑛 log

2 𝑛 M

Cheng–Janardan [13] 𝑛 log
2 𝑛 log𝑛 log𝑛 G

Baumgarten et al. [3] 𝑛 log𝑛 log log𝑛 log𝑛 log log𝑛 log
2 𝑛 G

†

Goodrich–Tamassia [21] 𝑛 log
2 𝑛 log𝑛 log𝑛 M

Arge et al. [1] 𝑛 log𝑛 log
1+𝜀 𝑛 log

2+𝜀 𝑛 G
†

Arge et al. [1] 𝑛 log𝑛 log𝑛(log log𝑛)1+𝜀 log
2 𝑛/log log𝑛 G

†‡

Giyora–Kaplan [19] 𝑛 log𝑛 log𝑛 log𝑛 O

Chan–Nekrich [8] 𝑛 log𝑛(log log𝑛)2 log𝑛 log log𝑛 log𝑛 log log𝑛 G

Chan–Nekrich [8] 𝑛 log𝑛 log
1+𝜀 𝑛 log

1+𝜀 𝑛 G

Chan–Nekrich [8] 𝑛 log𝑛 log
1+𝜀 𝑛 log𝑛(log log𝑛)1+𝜀 G

Chan–Nekrich [8] 𝑛 log
1+𝜀 𝑛 log𝑛 log𝑛 G

Chan–Nekrich [8] 𝑛 log𝑛 log log𝑛 log𝑛 log log𝑛 log𝑛 log log𝑛 G
‡

this paper 𝑛 log𝑛 log𝑛 log𝑛 G

see Table 1. However, it seems that obtaining𝑂 (log𝑛) time for both

queries and updates is not possible with this approach.

In this paper we demonstrate that it is sufficient to maintain

a partial order of segments in selected nodes of the segment tree.

Our solution embeds a macro-tree with large node degree into the

segment tree, as explained in Section 3. Segments stored in a node

of the macro-tree are assigned categories as in [8]. The main idea of

our approach is re-ordering the segments in each macro-tree node

and attempting to insert the segments into the segment tree nodes.

We can show that the majority of segments in a macro-tree node

can be quickly inserted into the appropriate nodes of the segment

tree. When a query is answered we can identify and process the

“missed” segments (i.e., the segments that are not inserted into the

segment tree) without increasing the query time. In order to obtain

the final solution with optimal update and query time additional

ideas are necessary. We modify the weighted telescoping search

approach from [25] by limiting the height of the weighted search

trees. This approach is then combined with other techniques, such

as fractional cascading and segment categories.

We describe the macro-tree and the partial order of segments in

the macro-tree nodes in Sections 3 and 4 respectively. We explain

how segments are inserted from a macro-tree node into the nodes

of the segment tree in Section 5. The remaining parts of our con-

struction are presented in Sections 6 and Section D. In Section 2 we

provide some preliminary definitions and sketch some previously

designed techniques used in this paper.

Throughout this paper 𝑛 will denote the total number of seg-

ments stored in a data structure. We will denote by ray(𝑞, 𝑆) the
answer to a vertical ray shooting query for a point 𝑞 on a set of

segments 𝑆 . Our result is valid in the standard RAM model. We

assume that random access to memory cells, coordinate-wise com-

parisons of points, and point–segment comparisons can be executed

in constant time. The input can be real-valued. Some parts of our

construction also require "non-standard" operations, such as finding

the most significant bit. However, these operations are performed

on small integers only and we can implement them using a look-

up table of size 𝑜 (𝑛). The look-up table can be initialized using

additions and subtractions of small integers.

2 PRELIMINARIES
Segment Tree. Vertical ray shooting queries are answered using

the segment tree data structure. In this paper we will employ the

segment tree with node degree log
𝜀 𝑛. Leaves of the segment tree

𝑇 contain 𝑥-coordinates of segment endpoints; all leaves in 𝑇 have

the same depth. We associate a vertical slab [𝑋,𝑋next) × R with

every node ℓ , where 𝑋 is the 𝑥-coordinate stored in ℓ and 𝑋next is

the 𝑥-coordinate stored in its right neighbor. The slab associated

to an internal node is the union of slabs associated to its children.

A segment 𝑠 spans (the slab of) a node 𝑢 ∈ 𝑇 if it intersects the
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left and the right boundaries of the slab associated to a node 𝑢. We

will say that a segment 𝑠 is relevant for a node 𝑢 (resp a node 𝑢 is

relevant for a segment 𝑠) if 𝑠 does not span 𝑢 but 𝑠 spans at least

one of its children. We keep every segment 𝑠 in all nodes 𝑢 of the

segment tree that are relevant for 𝑠 . Thus each segment is stored

in at most two nodes 𝑢 on every level of 𝑇 . Hence every segment 𝑠

must be stored in𝑂 (ℎ) nodes, where ℎ is the height of the segment

tree 𝑇 .

In order to answer a vertical ray shooting query for a point 𝑞, we

visit all nodes that contain 𝑞. All such nodes are on one root-to-leaf

path of the segment tree. In every visited node we can find the first

segment hit by a vertical ray from 𝑞 using binary search in𝑂 (log𝑛)
time.

Union-Split-Find. Let 𝐴 be an ordered set of elements and 𝐵 ⊆ 𝐴.

An ordered Union-Split-Find (USF) data structure finds, for any

query element 𝑞 ∈ 𝐴, the largest 𝑒 ∈ 𝐵 such that 𝑒 ≤ 𝑞. A dynamic

USF data structures supports insertions and deletions of elements

into and from 𝐴 (an inserted or deleted element can be also an

element of 𝐵). We can support both updates and USF queries in

𝑂 (log log𝑛) time where 𝑛 is the size of 𝐴.

Finger Search. For an ordered set 𝐴, the predecessor of 𝑞 in 𝐴 is

the largest element 𝑥 ∈ 𝐴 such that 𝑥 ≤ 𝑞, pred(𝑞,𝐴) = max{ 𝑥 ∈
𝐴 | 𝑥 ≤ 𝑞 }. If we are given a pointer to an element 𝑒 ∈ 𝐴 and

a query 𝑞, we can find 𝑥 = pred(𝑞,𝐴) in 𝑂 (log𝑑) time, where 𝑑

is the distance (i.e., the number of elements in 𝐴) between 𝑒 and

𝑥 , 𝑑 = |{ 𝑒 ′ ∈ 𝐴 | min(𝑥, 𝑒) ≤ 𝑒 ′ ≤ max(𝑥, 𝑒) } is the number of

elements in𝐴 between 𝑒 and 𝑥 [22].We canmodify the finger search

and specify𝑑 as the search parameter: If we are given a pointer to an

element 𝑒 ∈ 𝐴, a query 𝑞, and an integer 𝑑 , we can find pred(𝑞,𝐴) in
𝑂 (log𝑑) time provided that the distance between 𝑒 and pred(𝑞,𝐴)
is at most 𝑑 ; if the distance between 𝑞 and pred exceeds 𝑑 the finger

search terminates after𝑂 (log𝑑) time.We can also find the successor

within the same time, where the successor of 𝑞 in 𝐴 is the smallest

element 𝑥 ∈ 𝐴 such that 𝑥 ≥ 𝑞, succ(𝑞,𝐴) = min{ 𝑥 ∈ 𝐴 | 𝑥 ≥ 𝑞 }.

Fractional Cascading. Suppose that we store an ordered list𝐶 (𝑢)
in every node 𝑢 of a tree 𝑇 with node degree log

𝜀 𝑛. We can search

in all lists 𝐶 (𝑢) along a root-to-leaf path in 𝑇 using a fractional

cascading technique. The dynamic variant [23] of the fractional cas-

cading [12] supports searching in every 𝐶 (𝑢) in time 𝑂 (log log𝑛).
If we apply fractional cascading to lists of segments in a segment

tree, then we can answer ray shooting queries in each node in

𝑂 (log log𝑛) time. Thus the overall query time is𝑂 (log𝑛). We refer

to [1, 3, 8] for the description of fractional cascading adopted to

the vertical ray shooting problem. However, fractional cascading

cannot be used for updates. When a new segment is inserted into

𝑂 (ℎ) different nodes, we must spend 𝑂 (ℎ log𝑛) time.

Segment Categories. In order to speed-up the update and query

time , Chan and Nekrich [7] introduced the concept of segment

categorization (segment coloring).

Every segment stored in the data structure is assigned one or

several colors that satisfy the following properties: for any category

𝑗 , there is a vertical line 𝑙 𝑗 such that all segments with the same

category 𝑗 intersect 𝑙 𝑗 (ii) all segments that must be stored in a node

𝑢 of the segment tree are assigned 𝑂 (log𝜀 𝑛) different categories
(iii) each segment 𝑠 is assigned𝑂 (1) different categories (a segment

can be assigned different categories in different nodes 𝑢𝑖 where it

must be stored).

Segment categorization significantly improves the update-query

trade-offs. We classify all segments stored in a node 𝑢 according to

their categories; for each fixed 𝑗 , we store all category- 𝑗 segments

from a node 𝑢 in a separate list. Using fractional cascading, a new

segment 𝑠 can be inserted into all category- 𝑗 lists in 𝑂 (log𝑛) time.

Since a segment is assigned𝑂 (1) categories, the total insertion time

is logarithmic. However we must store 𝑂 (log𝜀 𝑛) independent lists
in each node. This increases the query time by an 𝑂 (log𝜀 𝑛) factor.

3 BASE TREE AND MACRO-TREE
Our base tree has node degree log

𝜀 𝑛. Leaves of 𝑇 contain projec-

tions of segment endpoints onto the 𝑥-axis. We associate vertical

slabs to nodes of 𝑇 in the same way as in the segment tree. Addi-

tionally we embed the tree with node degree 2
𝜀 log𝛿 𝑛

, further called

the macro-tree, into the base tree. Every node 𝜈 of the macro-tree

corresponds to a node 𝑢 ∈ 𝑇 , such that the height of 𝑢 divides

log
𝛿 𝑛/log log𝑛. Constants 𝜀 and 𝛿 are chosen in such way that

𝜀 ≤ 𝛿/3 and 𝛿 ≤ 1/4. The macro-tree is organized as a segment

tree with large node degree [1, 8, 25]: we keep a segment 𝑠 in every

node 𝜈 such that 𝑠 spans at least one child of 𝜈 , but 𝑠 does not span

𝜈 . If 𝑠 intersects the left boundary of 𝜈 , then we keep 𝑠 in the list of

left segments L(𝜈) (in this case the right endpoint of 𝑠 must be in

the slab of 𝜈 by definition of the segment tree). If 𝑠 intersects the

right boundary of 𝜈 , we keep 𝑠 in the set of right segments R(𝜈).
If 𝑠 intersects neither the right nor the left boundary of 𝜈 (i.e., 𝑠 is

entirely contained in the slab of 𝜈), we keep it in the set of middle

segmentsM(𝜈). Each segment is stored in at most one listM(𝜈)
and in 𝑂 (ℎ) lists L(𝜈𝑖 ) (resp. R(𝜈 𝑗 )) where ℎ = 𝑂 (log1−𝛿 𝑛) is the
height of the macro-tree.

Segments in list L(𝜈) are assigned categories using the method

from [8], sketched in Section 2. LetL 𝑗 (𝜈) denote the set of category-
𝑗 segments in L(𝜈). When a new segment is inserted, we can insert

it into all appropriate lists L 𝑗𝜈 (𝜈) in 𝑂 (log𝑛) time, as explained

in [8]. Since the macro-tree has very large node degree, we cannot

directly answer ray shooting queries on L 𝑗 (𝜈). We could insert

segments from L 𝑗 (𝜈) into relevant nodes 𝑢 of the base tree, but

then the overall query time would grow by 𝑂 (log𝜀 𝑛) factor.
Our solution is based on re-ordering segments in L 𝑗 (𝜈) that will

be described in Section 4. Using this re-ordering we then insert

segments from ∪𝑗L 𝑗 (𝜈) into selected relevant nodes of the subtree
𝑇𝜈 . An interesting feature of our method is that we do not have to

maintain the total order of all segments in L(𝜈). We also do not

need to maintain the list of all relevant segments in a node 𝑢. We

insert a segment into a node only if it can be done in 𝑂 (log log𝑛)
time. We show that it is possible to answer ray shooting queries

even though only a partial order of segments in L(𝜈) is known
and lists of segments in the base tree nodes are incomplete. The

insertion and query procedures are described in Section 5. Deletions

and some technical details are deferred to Sections A and D. The

set of right segments is processed in the same way.

Every middle segment 𝑠 ∈ M(𝜈) is inserted into lists𝑀 (𝑢) for
all relevant nodes 𝑢 of 𝑇 , such that 𝜈 is the lowest ancestor of 𝑢 in

the macro-tree. Segments in𝑀 (𝑢) are also assigned categories. A

query is answered using a new variant of the weighted telescoping
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Figure 1: Example of a volatile segment order. A deletion and an insertion of one new segment in a multi-slab changes the
order of segments from 𝑠1≺𝑠2≺𝑠3≺𝑠4≺𝑠5≺𝑠6≺𝑠7≺𝑠8≺𝑠9 (left) to 𝑠7≺𝑠8≺𝑠9≺𝑠0≺𝑠1≺𝑠2≺𝑠3≺𝑠4≺𝑠5 (right).

search[25] combined with the approach of [8]. Details can be found

in Section 6.

4 ALMOST ORDERED LIST
The following problem plays an important role in our construc-

tion. Suppose that we are given a sequence of dynamic ordered

lists L1, L2, . . ., L𝑓 . Let 𝑝𝑟𝑒𝑑 (𝑒, 𝑋 ) denote the predecessor of an
element 𝑒 in a set 𝑋 . We assume that for every new element 𝑒 ,

we know 𝑝𝑟𝑒𝑑 (𝑒,L 𝑗 (𝑒) ) in some list L 𝑗 (𝑒) . We will say that a list

L = ∪𝑓

𝑗=1
L 𝑗 is almost ordered if we can represent L as a union of

𝑓 + 1 disjoint ordered lists, L = L𝑔 ∪ (∪𝑓

𝑗=1
L′

𝑗
), so that (i) every

list L′
𝑗
⊆ L 𝑗 is divided into groups 𝐺𝑖 (L′

𝑗
) of 𝑂 (log2 𝑛) elements

and (ii) for each𝐺𝑖 (L′
𝑗
) we know its range [𝑒𝑙 , 𝑒𝑓 ] in L𝑔

satisfying

𝑒𝑙 < 𝑒 < 𝑒𝑓 iff 𝑒 ∈ 𝐺𝑖 (L′
𝑗
) for every 𝑒 ∈ L′

𝑗
. Elements in L𝑔

are

further called good elements and elements in all L′
𝑗
are further

called bad elements. For a group𝐺𝑖 (L 𝑗 ) we denote by last (𝐺𝑖 ) the
largest element in𝐺𝑖 (L 𝑗 ); plast (𝐺𝑖 ) denotes the largest element in

the group 𝐺𝑖−1 (L 𝑗 ) that precedes 𝐺𝑖 (L 𝑗 ).

Lemma 4.1. The union of 𝑓 ordered lists L = ∪𝑓

𝑗=1
L 𝑗 can be

maintained as an almost-ordered list under insertions and deletions in
time 𝑂 (𝑓 · log log𝑛) per update, so that (i) for every good element 𝑒
and for each 𝑗 , 1 ≤ 𝑗 ≤ 𝑓 , we can find in𝑂 (log log𝑛) time the group
𝐺𝑖 of L′

𝑗
satisfying plast (𝐺𝑖 ) < 𝑒 ≤ last (𝐺𝑖 ) and (ii) for every bad

element 𝑒 ′ we can find its group and its range in 𝑂 (log log𝑛) time.

Proof. We split each list L 𝑗 into groups of log
2 𝑛 elements. For

an element 𝑒 ∈ L 𝑗 , we can find its group 𝐺𝑖 and plast (𝐺𝑖 ) in
𝑂 (log log𝑛) time using the dynamic USF data structure [23]. For

all groups, a copy of the element last (𝐺𝑖 ) is stored in the list L𝑔
.

See Fig. 2 for an example.

Suppose that a new element 𝑒 is inserted into a list L 𝑗 . For the

group 𝐺𝑖 that contains 𝑒 , we find plast (𝐺𝑖 ) and its position in L𝑔
.

Next we look for the predecessor of 𝑒 inL𝑔
among log

5 𝑛 elements
2

that follow plast (𝐺𝑖 ) in L𝑔
using finger search. If pred(𝑒,L𝑔) is

2
This choice of the power of log will be clear from the description in the following

sections.

found, we insert a copy of 𝑒 into L𝑔
. Otherwise we insert a copy of

𝑒 into L′
𝑗
. This step takes 𝑂 (log log𝑛) time. Since the position of

𝑒 in L 𝑗 is known, we can find its position in L′
𝑗
using a USF data

structure in 𝑂 (log log𝑛) time.

Using standard techniques, we can guarantee that the size of

each group 𝐺𝑖 (L 𝑗 ) is Θ(log2 𝑛). When a group 𝐺𝑖 is split into two

groups, we find last (𝐺 ′
𝑖
) and last (𝐺 ′′

𝑖
) and insert them intoL𝑔

. The

cost of inserting two new elements into L𝑔
is 𝑂 (log𝑛); it can be

distributed among Θ(log2 𝑛) updates of 𝐺𝑖 . Hence the total cost

of an insertion is 𝑂 (log log𝑛). When an element is deleted from

a list L 𝑗 we delete its copy from L′
𝑗
or L𝑔

. The only exception is

last (𝐺𝑖 ). When the last element 𝑒 in a group 𝐺𝑖 is removed and its

predecessor in𝐺𝑖 is a bad element, we keep 𝑒 in L 𝑗 and L𝑔
, but we

mark it as deleted; if the predecessor 𝑒 ′ of 𝑒 is a good element, we

remove 𝑒 and set 𝑙𝑎𝑠𝑡 (𝐺𝑖 ) = 𝑒 ′. SinceL′
𝑗
⊆ L 𝑗 ,𝐺𝑖 (L′

𝑗
) = 𝑂 (log2 𝑛)

where𝐺𝑖 (L′
𝑗
) = 𝐺𝑖 (L 𝑗 ) ∩L′

𝑗
. Thus each L′

𝑗
is divided into groups

of 𝑂 (log2 𝑛) elements.

We alsomaintain a separate USF data structure for good elements

from L 𝑗 \ L′
𝑗
, 𝑗 = 1, . . ., 𝑓 , and their positions in L𝑔

. For every

L 𝑗 , 1 ≤ 𝑗 ≤ 𝑓 , and for any good element 𝑒 ∈ L𝑔
we can find the

largest element 𝑒 ′ ∈ L 𝑗 \L′
𝑗
such that 𝑒 ′ ≤ 𝑒 . When a new element

is inserted into or deleted from L𝑔
, we update all such USF data

structures in 𝑂 (𝑓 log log𝑛) time. □

Thus the union of 𝑓 ordered lists L 𝑗 is divided into a list of good

elements L𝑔
and 𝑓 lists L′

𝑗
⊆ L 𝑗 of bad elements. For every good

element 𝑒 and for every L′
𝑗
, we can quickly find the group 𝐺𝑖 (L 𝑗 ),

such that plast (𝐺𝑖 ) < 𝑒 ≤ last (𝐺𝑖 ). The majority of elements in

the re-ordered lists are good elements: for every group of Θ(log5 𝑛)
good elements there are 𝑂 (log2+𝜀 𝑛) bad elements. We will use the

notation plast (𝑒) = plast (𝐺) and last (𝑒) = last (𝐺) where 𝐺 is the

group containing 𝑒 .

5 LEFT SEGMENTS IN MACRO-TREE
Let L(𝜈) denote the list of left segments stored in a macro-tree

node 𝜈 . All segments in L(𝜈) are assigned categories using the

method from [7], as explained in Section 2. Thus L(𝜈) is a union of

𝑂 (log𝜀 𝑛) ordered lists L1 (𝜈), . . ., L𝑓 (𝜈). We apply the re-ordering
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log5 n elements in Lg

L1 L2 Lg

Figure 2: Example of list re-ordering. For simplicity, we assume in this example that each group 𝐺𝑖 contains six elements. Only
elements of lists L1 and L2 and their copies in L𝑔 are shown. Last elements in each group are shown with squares, other good
elements are shown with empty circles. The portion of L𝑔 shown in red contains log5 𝑛 elements. Only bad elements, depicted
with filled circles, are kept in L′

𝑖
for 𝑖 = 1, 2. Good elements are connected with their copies in L𝑔 by dashed lines.

method from Lemma 4.1 to segments in L1 (𝜈), . . ., L𝑓 (𝜈). Thus
each segment is either a good segment stored in L𝑔 (𝜈) or a bad
segment stored in some L′

𝑗
(𝜈) for 1 ≤ 𝑗 ≤ 𝑓 . Let 𝑇𝜈 denote the

subtree of𝑇 with height log
𝛿 𝑛/log log𝑛 rooted in 𝜈 . Nodes of𝑇𝜈 are

nodes 𝑢 ∈ 𝑇 , such that 𝜈 is the lowest macro-node ancestor of 𝑢. In

order to support queries and updates, we store most segments from

L(𝜈) in the nodes of the subtree𝑇𝜈 . All segments in L(𝜈) intersect
the left vertical boundary ℓ𝜈 of 𝜈 . We will say in this section that a

segment 𝑠1 is larger than 𝑠2 if 𝑝1 is above 𝑝2, where 𝑝𝑖 , 𝑖 = 1, 2, is

the point where 𝑠𝑖 intersects ℓ .

Our method is similar but not equivalent to the segment tree: not

all segments that would be stored in a standard segment tree are

kept in the nodes of 𝑇𝜈 . We will say that a segment 𝑠 is relevant for
a node 𝑢 (resp. a node 𝑢 is relevant for 𝑠) if 𝑠 spans at least one child

of 𝑢, but 𝑠 does not span 𝑢. We maintain two lists, 𝐿(𝑢) and 𝐿𝑏 (𝑢),
in a node 𝑢 ∈ 𝑇𝜈 . All segments from L𝑔 (𝜈) that are relevant for a
node 𝑢 are stored in 𝐿(𝑢). If 𝑠 is a bad segment that is relevant for a

node 𝑢, then (1) 𝑠 can be stored in 𝐿(𝑢) or (2) 𝑠 can be stored in one

or several lists 𝐿𝑏 (𝑢 𝑗 ), where 𝑢 𝑗 is a child of 𝑢 that is spanned by

𝑠 , or (3) it is possible that 𝑠 is stored in neither 𝐿(𝑢) nor in 𝐿𝑏 (𝑢 𝑗 ) .
When a new segment 𝑠𝑛 is inserted, we attempt to find its position

in 𝐿(𝑢) for each relevant node 𝑢, but we spend𝑂 (log log𝑛) time in

each relevant node. If the proper position of 𝑠𝑛 is found, we insert

𝑠𝑛 into 𝐿(𝑢). In one special case, we also attempt to insert 𝑠𝑛 into

lists 𝐿𝑏 (𝑢𝑖 ) for children 𝑢𝑖 of a relevant node 𝑢. In this case, we will

say that the node𝑢 is special. We will show that there is at most one

special node 𝑢 ∈ 𝑇𝜈 for each segment inserted into L(𝜈). Although
not all segments from L(𝜈) are stored in all relevant nodes, we are

able to process all “missed” segments when a query is answered.

For every set of bad segments in a group𝐺𝑖 of L′
𝑗
(𝜈), we store a

data structure that supports vertical ray shooting queries. All seg-

ments in𝐺𝑖 cross the same vertical line, i.e., the left vertical bound-

ary of 𝜈 . Since𝐺𝑖 contains a poly-logarithmic number of bad seg-

ments, both queries and updates can be supported in 𝑂 (log log𝑛)
time [13].

Insertions. Each list 𝐿(𝑢) and 𝐿𝑏 (𝑢) is divided into blocks of

Θ(log5 𝑛) segments so that the lowest segment in every block is a

good segment. Blocks can be maintained using standard techniques;

a more detailed description is provided in Section A.

When a new segment is inserted into L(𝜈), we distinguish be-

tween two cases. If the new segment is in L𝑔 (𝜈), we insert it into
all 𝐿(𝑢) for all relevant nodes 𝑢 ∈ 𝑇𝜈 . Since all segments in L𝑔 (𝑢)
are ordered, we can use fractional cascading and find the segment

𝑠 ′(𝑢) = pred(𝑠, 𝐿(𝑢)) for all relevant nodes 𝑢 in 𝑂 (log log𝑛) time

per node. We then insert 𝑠 into 𝐿(𝑢) immediately after 𝑠 ′(𝑢) for all
relevant 𝑢. If 𝑠 is a bad segment, we identify the segment plast (𝑠)
and find the segments 𝑠𝑝 (𝑢) = 𝑝𝑟𝑒𝑑 (plast (𝑠), 𝐿(𝑢)) for all rele-
vant nodes 𝑢. Using fractional cascading all 𝑠𝑝 (𝑢) can be found in

𝑂 (log log𝑛) time per node. Finally we search among log
5 𝑛 seg-

ments that follow 𝑠𝑝 (𝑢) for the segment 𝑠 ′(𝑢) = 𝑝𝑟𝑒𝑑 (𝑠, 𝐿(𝑢)). If
𝑠 ′(𝑢) is found (i.e., if 𝑠 ′(𝑢) is among the log

5 𝑛 segments that follow

𝑠𝑝 (𝑢)), we insert 𝑠 after 𝑠 ′(𝑢). If 𝑠 ′(𝑢) is not found (i.e., if 𝑠 ′(𝑢) is
not among the log

5 𝑛 segments that follow 𝑠𝑝 (𝑢)), we proceed as

follows.

We will say that a segment 𝑠 has span index 𝑖𝑠 in a node 𝑢 if

𝑠 spans the 𝑖𝑠 leftmost children 𝑢1, . . ., 𝑢𝑖𝑠 of 𝑢. Let 𝐿(𝑢, 𝑗) de-
note the set of segments 𝑠 ∈ 𝐿(𝑢) with span index 𝑗 . We find

𝑠 (𝑢, 𝑗) = pred(𝑠𝑝 (𝑢), 𝐿(𝑢, 𝑗)) and search for the predecessor of 𝑠

among log
5 𝑛 segments that follow 𝑠 (𝑢, 𝑗) in 𝐿(𝑢, 𝑗). If the prede-

cessor of 𝑠 in 𝐿(𝑢, 𝑗) is found, we insert 𝑠 into 𝐿(𝑢, 𝑗) and repeat the
following procedure for 𝑗 = 𝑖𝑠 , 𝑖𝑠 − 1, . . ., 1: We find the segment

𝑠 𝑗 (𝑢) = pred(𝑠𝑝 (𝑢), 𝐿𝑏 (𝑢 𝑗 )), i.e., the largest segment 𝑠 𝑗 (𝑢) ≤ 𝑠𝑝 (𝑢)
in 𝐿𝑏 (𝑢 𝑗 ). Next we search among log

5 𝑛 segments that follow 𝑠 𝑗 (𝑢)
for the segment 𝑠 ′

𝑗
(𝑢) = 𝑝𝑟𝑒𝑑 (𝑠, 𝐿𝑏 (𝑢 𝑗 )). If 𝑠 ′𝑗 (𝑢) is found, we insert

𝑠 after 𝑠 ′
𝑗
(𝑢) into 𝐿𝑏 (𝑢 𝑗 ), decrement 𝑗 , and repeat the same proce-

dure for the new value of 𝑗 . We stop when 𝑗 = 0 or when 𝑠 ′
𝑗
(𝑢) is

not found.

The following lemma bounds the number of lists 𝐿𝑏 (𝑣) in 𝑇𝜈
where a segment 𝑠 is stored. A node 𝑣 is special for segment 𝑠 if 𝑠 is

stored in a list 𝐿𝑏 (𝑣𝑖 ) for at least one child 𝑣𝑖 of 𝑣 .
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Figure 3: Implicit bad segment 𝑠 in a list 𝐿(𝑢). The leftmost vertical line is the left boundary of 𝜈 . Two other vertical lines depict
the left and the right vertical boundaries of the node 𝑢. When we attempt to insert 𝑠 into 𝐿(𝑢), there are at least log5 𝑛 segments
between 𝑠𝑝 (𝑢) and 𝑠 in 𝐿(𝑢) (only a part of segments stored in L𝑔 (𝜈) and 𝐿(𝑢) are shown).

Lemma 5.1. For every segment 𝑠 ∈ L(𝜈) there is at most one
special node 𝑢 ∈ 𝑇𝜈 .

Proof. Let 𝜋𝑠 denote the path from the root of the subtree𝑇𝜈 to

the leaf of 𝑇𝜈 that contains the right endpoint of a segment 𝑠 . The

𝑖-signature of a segment 𝑠 consists of span indices of the 𝑖 highest

nodes on 𝜋𝑠 (listed in top-to-bottom order). If a segment 𝑠 does not

span any children of a node 𝑢, then the span index of 𝑠 in 𝑢 is 0. An

𝑖-signature uniquely specifies the path to a node 𝑢 of depth 𝑖 in 𝑇𝜈 .

Therefore all segments relevant for a node 𝑢, such that the depth

of 𝑢 in 𝑇𝜈 is equal to 𝑟 , have the same (𝑟 − 1)-signature.
Suppose that a bad segment 𝑠 ∈ L 𝑗 (𝜈) is inserted. By a slight

misuse of notation, we will say that a node 𝑢 is relevant if it is

relevant for the segment 𝑠 . For a relevant node 𝑢 on the path 𝜋𝑠 we

define 𝑆 (𝑢) as the set of segments 𝑠 ′ ∈ 𝐿(𝑢), such that plast (𝑠) <
𝑠 ′ ≤ 𝑠 . All segments in 𝑆 (𝑢), where 𝑢 is a depth-𝑟 node, have the

same (𝑟 − 1)-signatures. Hence 𝑆 (𝑤) ⊂ 𝑆 (𝑣) for any two relevant

nodes 𝑤 and 𝑣 on 𝜋𝑠 such that 𝑤 is a descendant of 𝑣 . As follows

from the insertion procedure we insert a bad segment into 𝐿(𝑢) if
and only if 𝑆 (𝑢) contains at most log

5 𝑛 segments.

Consider a relevant node 𝑣 such that 𝑆 (𝑣) contains more than

log
5 𝑛 segments. Suppose further that the span index of 𝑠 in 𝑣 is

equal to 𝑙 and 𝑆 (𝑣) contains less than log
5 𝑛 segments with span

index 𝑙 .

Since 𝑆 (𝑣) ⊆ 𝑆 (𝑤) for any ancestor𝑤 of 𝑣 , all 𝑆 (𝑤) contain more

than log
5 𝑛 segments. Hence 𝑠 is inserted into neither 𝐿(𝑣) nor 𝐿(𝑤)

for any ancestor𝑤 of 𝑣 . There are at most log
5 𝑛 segments in 𝑆 (𝑣)

that have the same 𝑟 -signature as 𝑠 . Hence for any descendant𝑤 ′

of 𝑣 , 𝑆 (𝑤 ′) contains at most log
5 𝑛 segments. Hence 𝑠 is inserted

into 𝐿(𝑤 ′) for all relevant descendants𝑤 ′
of 𝑣 .

□

Thus a new segment 𝑠 , inserted into L(𝜈), is inserted into

𝑂 (log𝛿 𝑛/log log𝑛) lists 𝐿(𝑢) where each node 𝑢 is on a path in 𝑇𝜈
and 𝑂 (log𝜀 𝑛) lists 𝐿𝑏 (𝑣𝑖 ) where all 𝑣𝑖 are sibling nodes. Since we

spend 𝑂 (log log𝑛) time in each node, the total insertion time is

𝑂 (log𝛿 𝑛).
As already mentioned, we divide the lists 𝐿(𝑢) and 𝐿𝑏 (𝑢) into

blocks of Θ(log5 𝑛) consecutive segments and guarantee that the

lowest segment in each block is a good segment. The maximum

block size in all lists does not exceed (1/4) log5 𝑛. Lists 𝐿(𝑢, 𝑗) are
divided into blocks in the same way.

Queries. If a bad segment 𝑠 is stored in 𝐿(𝑢) (or 𝐿𝑏 (𝑢)) we will
say that 𝑠 is a bad explicit segment in 𝐿(𝑢) (resp. 𝐿𝑏 (𝑢)). If 𝑠 is not
stored in 𝐿(𝑢) we will say that 𝑠 is a bad implicit segment in 𝑢. We

observe that not all relevant segments are stored in 𝐿(𝑢). Neverthe-
less vertical ray shooting queries can be answered correctly. The

following facts outline the strategy that will be used to answer a

query.

Lemma 5.2. Suppose that a segment 𝑠 , with span index 𝑙 ≥ 𝑓 , is a
bad implicit segment in 𝐿(𝑢) and a bad implicit segment in 𝐿𝑏 (𝑢𝑓 ).
Then there is at least one good segment 𝑠𝑔 (𝑢) ∈ 𝐿(𝑢) with span index
𝑗 ≥ 𝑓 , such that plast (𝑠) < 𝑠𝑔 (𝑢) < 𝑠 .

Proof. Suppose that 𝑠 is a bad implicit segment in 𝐿(𝑢). Con-
sider the time when we attempted to insert 𝑠 into 𝐿(𝑢). Then there

aremore than log
5 𝑛 segments between 𝑠𝑝 (𝑢) = 𝑝𝑟𝑒𝑑 (plast (𝑠), 𝐿(𝑢))

and 𝑠 in 𝐿(𝑢). Additionally one of the two following conditions is

satisfied: (i) there are more than log
5 𝑛 segments with span index 𝑙

between 𝑠𝑝 (𝑢) = 𝑝𝑟𝑒𝑑 (plast (𝑠), 𝐿(𝑢)) and 𝑠 or (ii) there are more

than log
5 𝑛 segments in between 𝑠𝑓 (𝑢) = pred(𝑠𝑝 (𝑢), 𝐿𝑏 (𝑢𝑓 )) and

𝑠 in 𝐿𝑏 (𝑢𝑓 ). In both cases one segment between 𝑠𝑝 (𝑢) and 𝑠 (resp.
between 𝑠𝑓 (𝑢) and 𝑠) is a good segment: there is at least one block 𝐵

of 𝐿(𝑢, 𝑙) (resp. 𝐿𝑏 (𝑢𝑓 )), such that all segments in 𝐵 are larger than

plast (𝑠) and smaller than 𝑠 . The good segment 𝑠𝑔 (𝑢) in 𝐵 has span

index 𝑗 ≥ 𝑓 and satisfies plast (𝑠) < 𝑠𝑔 (𝑢) < 𝑠 . Hence the statement

of this lemma is true when a segment 𝑠 is inserted. See Fig. 3.

When two blocks in 𝐿𝑏 (𝑢𝑓 ) or 𝐿(𝑢, 𝑙) are merged, the resulting

block does not contain any implicit segments. When two blocks in



Dynamic Planar Point Location in Optimal Time STOC ’21, June 21–25, 2021, Virtual, Italy

L𝑔 (𝜈) are merged or split, the resulting block does not contain any

bad segments. See Section A. Hence there is always a good segment

between an implicit bad segment 𝑠 and plast (𝑠) in 𝐿𝑏 (𝑢𝑓 ).
□

Lemma 5.3. Suppose that 𝑠 = ray(𝑞,L(𝜈)) is a bad implicit seg-
ment and let 𝑠𝑔 = ray(𝑞,L𝑔 (𝜈)). Then plast (𝑠) < 𝑠𝑔 ≤ last (𝑠) where
last (𝑠) is the largest segment in the same group 𝐺𝑖 as 𝑠 and plast (𝑠)
is the largest segment in the group preceding 𝐺𝑖 .

Proof. Suppose that 𝑞 is contained in the slab of a node 𝑢 and

that 𝑠 = ray(𝑞,L(𝜈)) is a bad implicit segment in 𝑢. Suppose also

that𝑞 is contained in the slab of𝑢𝑓 for a child𝑢𝑓 of𝑢. The segment 𝑠

spans𝑢𝑓 . By Lemma 5.2, there is a good segment 𝑠 ′ ∈ 𝐿(𝑢)∪𝐿𝑏 (𝑢𝑓 )
such that 𝑠 ′ > plast (𝑠), 𝑠 ′ < 𝑠 , and 𝑠 ′ spans𝑢𝑓 . If there is more than

one such segment, let 𝑠 ′ be the largest one. If 𝑠𝑔 ≤ plast (𝑠), then
𝑠𝑔 < 𝑠 ′ < 𝑠 . Since 𝑠 ′ is below 𝑞, 𝑠𝑔 ≠ ray(𝑞,L𝑔 (𝜈)). If 𝑠𝑔 ≥ last (𝑠)
then 𝑠𝑔 > 𝑠 . Hence 𝑠𝑔 is not below 𝑞 and 𝑠𝑔 ≠ ray(𝑞,L𝑔 (𝜈)). In
both cases we obtain a contradiction. □

Now a query procedure can be implemented as follows. We

visit all nodes 𝑢 ∈ 𝑇𝜈 such that the vertical slab of 𝑢 contains 𝑞

and find 𝑠𝑒 (𝑢) = ray(𝑞, 𝐿(𝑢)) in every visited node. We will show

in Section D how vertical ray shooting queries on 𝐿(𝑢) can be

supported in average time 𝑂 (log log𝑛) per node. We re-visit all

nodes 𝑢 ∈ 𝑇𝜈 such that the vertical slab of 𝑢 contains 𝑞 and find

𝑠𝑏 (𝑢) = ray(𝑞, 𝐿𝑏 (𝑢)) in every visited node. This can be done using

the same method as in Section D or using the standard fractional

cascading. For each 𝑠𝑒 (𝑢), we find the largest good segment 𝑠𝑔 (𝑢) ≤
𝑠𝑒 (𝑢); for each 𝑠𝑏 (𝑢), we find the largest good segment 𝑠 ′𝑔 (𝑢) ≤
𝑠𝑏 (𝑢). Using a USF data structure, all 𝑠𝑔 (𝑢) and 𝑠 ′𝑔 (𝑢) can be found

in 𝑂 (log log𝑛) time per node. Let 𝑠𝑔 be the largest segment among

𝑠𝑔 (𝑢) and 𝑠 ′𝑔 (𝑢), 𝑢 ∈ 𝑇𝜈 . Next for all 𝑗 , 1 ≤ 𝑗 ≤ log
𝜀 𝑛, we identify

the group 𝐺𝑖 𝑗 of L 𝑗 (𝑢) that contains 𝑠𝑔 and answer the vertical

ray shooting query on that group. Finally we select the largest

segment among all segments 𝑠𝑒 (𝑢), all segments 𝑠𝑏 (𝑢), and all

𝑠 𝑗 = ray(𝑞,𝐺𝑖 𝑗 ) for 1 ≤ 𝑗 ≤ log
𝜀 𝑛. If 𝑠 = ray(𝑞,L(𝜈)) is a good

segment or a bad explicit segment in some 𝐿(𝑢) or 𝐿𝑏 (𝑢), then 𝑠 is
the largest segment among all 𝑠𝑒 (𝑢) and 𝑠𝑏 (𝑢). If 𝑠 is a bad implicit

segment in some 𝐿(𝑢) or 𝐿𝑏 (𝑢), then 𝑠 is contained in some group

𝐺𝑖 𝑗 by Lemma 5.3. Hence 𝑠 is the largest of all 𝑠 𝑗 in the latter case.

Deletions. We need to address several technical issues in order

to support deletions. We divide segments in 𝐿(𝑢) and 𝐿𝑏 (𝑢), 𝑢 ∈ 𝑇𝜈 ,

into blocks and update the blocks regularly in order to maintain the

property specified in Lemma 5.2. Additionally some good segments

are kept in lists 𝐿(𝑢) after a deletion. In order to handle the segments

that are marked as deleted, but still stored in 𝐿(𝑢) (resp. 𝐿𝑏 (𝑢)), we
have to slightly modify our search procedure. Details are provided

in Section A.

6 MIDDLE SEGMENTS IN A TREE
Every middle segment in the macro-tree must be inserted into

𝑂 (log𝛿 𝑛) nodes of the base tree.We cannot afford to spend𝑂 (log𝑛)
time in each node where a new segment is inserted. Fortunately

it is not necessary to order all segments stored in a node 𝑢. The

solution is based on the combination of two techniques: segment

categorization [8] support fast updates but require higher query

time; we can modify this approach so that ray shooting queries are

answered in selected nodes only. Weighted telescoping search [25]

supports queries efficiently, but has higher update time. In order

to obtain the optimal-time solution, we modify the weighted tele-

scoping search approach by truncating the weighted search trees.

The middle segments are stored in two independent data structures

that are described below.

6.1 Truncated Weighted Trees
We keep all middle segments in the segment tree that supports

weighted telescoping search [25]. A segment is stored in at most

one node of the macro-tree as a middle segment. We keep each

segment from M(𝜈) in 𝑂 (log𝛿+𝜀 𝑛) nodes of the base tree. If a

segment 𝑠 spans a node 𝑢 of 𝑇𝜈 , but 𝑠 does not span the parent

of 𝑢, then we store 𝑠 in the list 𝑀 (𝑢). All segments stored in a

list 𝑀 (𝑢) for each 𝑢 ∈ 𝑇 are divided into chunks. We construct a

separate weighted tree T𝑖 (𝑢) for each chunk. All segments in the

list𝑀 (𝑢𝑅) of the root node 𝑢𝑅 are kept in one chunk. Hence there

is one weighted tree T(𝑢𝑅). The chunks in a child 𝑢𝑘 of a node 𝑢

correspond to leaves in T𝑖 (𝑢): every leaf ℓ of T𝑖 (𝑢) corresponds
to an interval of segments [𝑠min (ℓ), 𝑠max (ℓ)]; if there are segments

𝑠 ∈ 𝑀 (𝑢𝑘 ), such that 𝑠min (ℓ) < 𝑠 < 𝑠max (ℓ), then there is a chunk

of𝑀 (𝑢𝑘 ) for the leaf ℓ . We can assign weights to leaves of all trees

in such way that the total weight of T(𝑢𝑅) for the root node 𝑢𝑅 is

polynomial in 𝑛.

We modify this general approach of [25] so that the height of the

weighted tree for each chunk is bounded by 𝑂 (log𝛿 𝑛). Segments

with weights less than Θ( 1

2
log

𝛿 𝑛
)-fraction of the total tree weight

are lumped together in one leaf. We can insert a new segment into

truncated segment tree in 𝑂 (log𝛿 𝑛) time and remove a segment

from a truncated tree in the same time. For a new segment 𝑠 , we can

identify all 𝑂 (log𝛿 𝑛) nodes 𝑢 where it should be stored in 𝑀 (𝑢).
We can also find all chunks where 𝑠 must be stored in𝑂 (log𝑛) time

using the following procedure.

Let 𝑢𝑡 denote the highest node such that 𝑠 must be inserted into

𝑀 (𝑢𝑡 ). We can find the chunk where 𝑠 must be inserted in𝑂 (log𝑛)
time. Let 𝑇𝜇 denote the subtree rooted in a macro-node 𝜇, such

that 𝑇𝜇 contains 𝑢𝑡 . Let 𝜋𝑟 and 𝜋𝑙 denote the path from 𝑢𝑡 to the

child of 𝜇 in the macro-tree that contains the right (left) endpoint

of 𝑠 . If 𝑠 must be stored in 𝑀 (𝑣) then 𝑣 is a child of some node

on 𝜋𝑟 or 𝜋𝑙 . We visit all nodes 𝑢 on 𝜋𝑟 , starting with 𝑢𝑡 , and all

children of these nodes where 𝑠 must be inserted. When we visit a

node 𝑢, we already know the chunk and the tree T𝑗 (𝑢) (𝑢) where
𝑠 must be inserted. We find the appropriate leaf ℓ𝑢 where 𝑠 must

be stored. Then we continue in the children of 𝑢. In every child 𝑢𝑙
of 𝑢 where 𝑠 must be inserted, we insert 𝑠 into a leaf of T𝑗 (𝑢𝑙 ) (𝑢𝑙 ),
where T𝑗 (𝑢𝑙 ) (𝑢𝑙 ) is the weighted tree of the chunk corresponding

to ℓ𝑢 in a child 𝑢𝑙 of 𝑢. Nodes on the path 𝜋𝑙 are processed in

the same way. We visit 𝑂 (log𝛿+𝜀 𝑛) nodes and spend 𝑂 (log𝛿 𝑛)
time in each node, except for 𝑢𝑡 . The total time for an insertion is

𝑂 (log𝑛 + log
2𝛿+𝜀 𝑛) = 𝑂 (log𝑛).

When the total weight of a group leaf exceeds
2𝑊

2
log

𝛿 𝑛
, we split the

set of segments stored in this leaf into two parts of approximately

equal weight. The splitting procedure takes 𝑂 (log3 𝑛) time and
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relies on the representation of segments, described in Section 6.2.

This procedure is described in Section B.

6.2 Slow Searching among Middle Segments
We will also need the following simple modification of the method

used in [7].

Let𝑀𝑘 (𝑢) denote the set of segments with category 𝑘 in a node

𝑢; segment categories are defined in Section C. The set 𝐴𝑀𝑘 (𝑢) ⊃
𝑀𝑘 (𝑢) is the superset of 𝑀𝑘 (𝑢) augmented with segments from

sets 𝑀𝑘 (𝑤), where 𝑤 is an ancestor of 𝑢. The set 𝐴𝑀𝑘 (𝑢) is used
to support fractional cascading; we refer to [8] for a detailed de-

scription. All 𝐴𝑀𝑘 (𝑢) are divided into blocks of Θ(log2 𝑛) seg-
ments. We maintain a set 𝐴𝑀 ′

𝑘
(𝑢) that contains one selected seg-

ment from each block of Θ(log2 𝑛) segments in 𝐴𝑀𝑘 (𝑢) and a set

𝐴𝑀 ′(𝑢) = ∪𝑘𝐴𝑀 ′
𝑘
(𝑢). All segments of 𝐴𝑀 ′(·) are kept in a data

structure supporting colored predecessor queries: given a segment

𝑠 ∈ 𝐴𝑀 ′(·) and a color 𝑘 , we can find the largest 𝑠 ∈ 𝐴𝑀 ′
𝑘
(·) such

that 𝑠 ′ ≤ 𝑠 in 𝑂 (log log𝑛) time [24]. Since every segment 𝑠 is as-

signed 𝑂 (1) different categories, each 𝑠 can be inserted into𝑀𝑘 (𝑢)
for all relevant nodes 𝑢 in 𝑂 (log𝑛) time. The cost of maintaining

𝐴𝑀 ′(𝑢) is 𝑂 (1) time per inserted or deleted segment. A ray shoot-

ing query is answered in two stages.

Stage 1.We visit all nodes that contain the query point 𝑞 in the

bottom-to-top order. For each visited node 𝑢 we identify the small-

est segment above 𝑞 and the largest segment below 𝑞 in 𝐴𝑀 ′(𝑢).
Stage 2. Let 𝑢 be a node that contains 𝑞 and let the segment

𝑠𝑢 be the segment immediately below 𝑞 in 𝐴𝑀 ′(𝑢). For every

category 𝑘 , we find the largest segment 𝑠 ′
𝑘

∈ 𝑀 ′
𝑘
(𝑢), such that

𝑠 ′
𝑘
≤ 𝑠𝑢 . Using the colored predecessor search data structure, we

can find 𝑠 ′
𝑘
in 𝑂 (log log𝑛) time. Finally we search for the largest

segment 𝑠𝑘 ∈ 𝐴𝑀𝑘 (𝑢) such that 𝑠𝑘 is below 𝑞. By definition, 𝑠𝑘 is

among Θ(log2 𝑛) segments that follow 𝑠 ′
𝑘
in 𝐴𝑀𝑘 (𝑢). Using finger

search on 𝐴𝑀𝑘 (𝑢), 𝑠𝑘 can be found in 𝑂 (log log𝑛) time. Finally

𝑠𝑜 = ray(𝑞,𝐴𝑀 (𝑢)) is the largest segment among all 𝑠𝑘 . The total

time to find 𝑠𝑜 in each node 𝑢 is 𝑂 (log𝜀 𝑛 log log𝑛).
The total cost of a query is 𝑂 (log1+𝜀 𝑛 log log𝑛). However, this

modification has one interesting property: searches in nodes 𝑢

during the second stage are executed independently of each other.

In our method, that combines data structures from Sections 6.1 and

6.2, we will execute the second stage for only a small number of

nodes.

6.3 Queries on Middle Segments in a Tree
A ray shooting query on middle segments can be answered as

follows. We execute Stage 1 and find ray(𝑞,𝐴𝑀 ′(𝑢)) for all nodes𝑢
that contain 𝑞. Then we run the weighted search starting at the root

node. For every node 𝑢, we look for the segment 𝑠𝑢 immediately

below 𝑞 in 𝐴𝑀 (𝑢) using the truncated weighted tree. If the search

is finished and 𝑠𝑢 is found, we move down to the child of 𝑢 that

contains 𝑞. Otherwise, we say that 𝑢 is a difficult node. If 𝑢 is a

difficult node, we find 𝑠𝑢 using the algorithm of Stage 2.

Let 𝑢1, 𝑢2, . . ., 𝑢ℎ denote the sequence of nodes that contain the

query point 𝑞. Suppose that we search in a truncated weighted tree

T𝑢𝑖 when we visit the node 𝑢𝑖 . Let𝑊 (T𝑢𝑖 ) denote the total weight
of the tree T𝑢𝑖 and let𝑤 (𝑢𝑖 , 𝑠) denote the weight of the leaf where

the search in T𝑢𝑖 is finished. We spend 𝑂 (log 𝑊 (T𝑢𝑖+1 )
𝑤 (𝑢𝑖 ,𝑠) + log log𝑛)

time in each node 𝑢𝑖 and
𝑤 (𝑢𝑖 ,𝑠)

𝑊 (T𝑢𝑖+1 )
= 𝑂 (log4 𝑛); see Section B.

Hence, ignoring the time we spend in difficult nodes, the total time

is 𝑂 (log𝑊 (T𝑢1
) + log𝑛) = 𝑂 (log𝑛).

The number of difficult nodes is𝑂 (log𝑛/log𝛿 𝑛). Since we spend
𝑂 (log𝜀 𝑛 log log𝑛) = 𝑂 (log2𝜀 𝑛) additional time in every difficult

node, the total cost of finding 𝑠𝑢 in all difficult nodes is bounded by

𝑂 (log1+2𝜀−𝛿 𝑛) = 𝑜 (log𝑛) time. The total cost of finding 𝑠𝑢 in all

nodes is 𝑂 (log𝑛).

7 PUTTING ALL PARTS TOGETHER
Using the data structures from Sections 5, 6, and D, we can answer

a vertical ray shooting query on a dynamic set of segments. Let 𝜋𝑞
denote the set of all nodes 𝑢 that contain the query point 𝑞. First,

we find 𝑠1 (𝑢) = ray(𝑞, 𝐿(𝑢)) for all nodes 𝑢 in 𝜋𝑞 . As shown in

Section D, this step takes𝑂 (log𝑛) time. Next, we examine all macro-

nodes 𝜈 that contain 𝑞. As explained in Section 5, we can answer a

query ray(𝑞,L(𝜈)), provided we know ray(𝑞, 𝐿(𝑢)) for all 𝑢 ∈ 𝑇𝜈

such that 𝑢 contains 𝑞. This step takes 𝑂 (log𝛿 𝑛) time per node 𝜈

or 𝑂 (log𝑛) time in total. Queries on right segments are answered

in the same way. Finally, we answer queries ray(𝑞,𝑀 (𝑢)) for all 𝑢
that contain 𝑞. This step also takes 𝑂 (log𝑛) time as described in

Section 6. Hence the total query time is 𝑂 (log𝑛).
Since each segment can be stored in 𝑂 (log𝑛) nodes, our data

structure uses 𝑂 (𝑛 log𝑛) space. The space usage can be reduced to

linear using the method of Chan and Nekrich [8, Section 3.2]. In

our description we assumed for simplicity that the 𝑥–coordinates

of segment endpoints are fixed. We can get rid of this assumption

by implementing the base tree 𝑇 as a weighted B-tree [2].

Theorem 7.1. There exists an 𝑂 (𝑛)-space data structure that sup-
ports point location queries in𝑂 (log𝑛) time and updates in𝑂 (log𝑛)
time.

A DELETIONS ON LEFT MACRO-SEGMENTS
In this section we explain how the method from Section 5 is mod-

ified to support deletions. We also provide details of maintaining

blocks in this section.

We divide each set 𝐿(𝑢) into blocks of Θ(log5 𝑛) consecutive
segments. A block can contain many good segments, but there is

exactly one good segment in each block that is called the anchor
segment. When an anchor segment 𝑠𝑎 is deleted, we mark 𝑠𝑎 as

deleted and keep it in 𝐿(𝑢). For each block, we count the number 𝑏𝑢
of updates and run the following background process: we identify

the block 𝐵 with the largest value of 𝑏𝑢 ; if the anchor segment in 𝐵

is marked as deleted, we remove it from 𝐿(𝑢); next, we select the
smallest segment 𝑠𝐵 in 𝐵 and make 𝑠𝐵 a good segment. That is, we

insert the segment 𝑠𝐵 into L𝑔 (𝜈), and insert 𝑠𝐵 into all appropriate

nodes 𝑢. Finally we declare 𝑠𝐵 to be the anchor segment. The new

anchor segment is computed in 𝑂 (log𝑛) time. Additionally we

purge the block 𝐵. The purging procedure finds all segments 𝑠 , such

that 𝑠 is an implicit bad segment in the node 𝑢 and 𝑙1 < 𝑠 < 𝑙2
where 𝑙1 and 𝑙2 are the smallest and the largest segments in 𝐵. We

turn every such segment 𝑠 into a good segment; each 𝑠 is inserted

into L𝑔 (𝜈) and into lists 𝐿(𝑣) for all relevant nodes 𝑣 ∈ 𝑇𝜈 . We

can find all such segments 𝑠 in 𝑂 (log𝑛) time per segment. The
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number of affected bad implicit segments is𝑂 (log2+𝜀 𝑛): consider a
bad segment 𝑠 in L 𝑗 (𝜈) such that 𝑠 is relevant for 𝑢 and 𝑙1 < 𝑠 < 𝑙2.

If plast (𝑠) > 𝑙1, then 𝑠 is a bad explicit segment because there are

𝑂 (log5 𝑛) segments between 𝑠 and the predecessor of plast (𝑠) in
𝐿(𝑢). There is only one group𝐺 in each L 𝑗 (𝜈), such that plast (𝑠) <
𝑙1 < last (𝑠). Since each group contains 𝑂 (log2 𝑛) segments, there

are 𝑂 (log2+𝜀 𝑛) bad implicit segments 𝑠 , such that 𝑙1 < 𝑠 < 𝑙2 and

𝑠 is relevant for 𝐿(𝑢). The total time needed to purge a block is

𝑂 (log3+𝜀 𝑛).
By [17, Theorem 5], the anchor segment of a block is re-computed

after 𝑂 (log4+𝜀 𝑛) updates of a block. We can choose the constants

in such way, that the anchor segment is re-computed and a block

is purged after less than (log4+𝜀 𝑛)/4 updates in a block. We also

guarantee that the maximum block size is (1/4) log5 𝑛 and the

minimum block size is (1/12) log5 𝑛 by splitting large blocks and

merging a small block with its neighbor in a standard way. Lists

𝐿𝑏 (𝑢) and lists 𝐿(𝑢, 𝑘) are maintained in the same way.

We also divide the global list L𝑔 (𝜈), that contains all good seg-

ments, into blocks ofΘ(log3 𝑛) consecutive elements. When a block

of L𝑔 (𝜈) is updated log
2 𝑛 times, we erase the deleted segments

from that block: if a segment 𝑠𝑎 ∈ L 𝑗 (𝜈) is marked as deleted,

we identify the predecessor 𝑠𝑏 of 𝑠𝑎 in L 𝑗 (𝜈), delete 𝑠𝑎 , and insert

𝑠𝑏 into L𝑔 (𝜈). Since each block intersects at most two groups of

L′
𝑗
(𝜈) for any fixed 𝑗 , each block contains at most two anchor seg-

ments from L 𝑗 (𝜈) for any fixed 𝑗 . Hence each block contains at

most𝑂 (log𝜀 𝑛) anchor segments in total. We need𝑂 (log𝑛) time to

update one anchor segment and all anchor segments in a block of

L𝑔 (𝜈) can be updated in 𝑂 (log1+𝜀 𝑛) time. By Theorem 5 in [17]

each block is re-built after 𝑂 (log2+𝜀 𝑛) updates. We can choose

constants in such a way that every block is updated after at most

(log3 𝑛)/3 segment insertions and deletions.

When a new segment 𝑠 is inserted, we find the segment plast (𝑠)
and the largest segment 𝑠 ′ ≤ plast (𝑠) in L𝑔 (𝜈) that is not marked

as deleted. Next we find the segment 𝑠𝑝 (𝑢) = 𝑝𝑟𝑒𝑑 (𝑠 ′, 𝐿(𝑢)) in each

relevant node 𝑢 ∈ 𝑇𝜈 . Then we proceed with insertion as described

in Section 5. If 𝑝𝑟𝑒𝑑 (𝑠, 𝐿(𝑢)) is among log
5 𝑛 segments that follow

𝑠𝑝 (𝑢) in 𝐿(𝑢), then we insert 𝑠 into 𝐿(𝑢). If 𝑝𝑟𝑒𝑑 (𝑠, 𝐿(𝑢)) is among

log
5 𝑛 segments that follow 𝑠𝑝 (𝑢) in 𝐿(𝑢, 𝑙), where 𝑙 is the span

index of 𝑠 , we insert it into lists 𝐿𝑏 (𝑢 𝑗 ) for some children 𝑢 𝑗 of 𝑢,

1 ≤ 𝑗 ≤ 𝑙 . When a segment 𝑠 is deleted, we remove it from all lists

𝐿(𝑢) and 𝐿𝑏 (𝑢), such that 𝑠 is stored in 𝐿(𝑢) (resp. in 𝐿𝑏 (𝑢)), but 𝑠
is not an anchor segment in 𝐿(𝑢) (𝐿𝑏 (𝑢)). If 𝑠 is removed from all

nodes 𝑢 ∈ 𝑇𝜈 , we also remove it from L𝑔 (𝜈).
A query is answered in almost the same way as described in Sec-

tion 5. We visit all nodes 𝑢 ∈ 𝑇𝜈 , such that the slab of 𝑢 contains the

query point 𝑞. In every visited node we find 𝑠𝑒 (𝑢) = ray(𝑞, 𝐿(𝑢))
and 𝑠𝑏 (𝑢) = ray(𝑞, 𝐿𝑏 (𝑢)). Both 𝑠𝑒 (𝑢) and 𝑠𝑏 (𝑢) can be good seg-

ments that are marked as deleted. Let 𝑠𝑟 (𝑢) be the largest non-

deleted segment in 𝐿(𝑢) such that 𝑠𝑟 (𝑢) ≤ 𝑠𝑒 (𝑢) and let 𝑠 ′𝑟 (𝑢) be
the largest non-deleted segment in 𝐿𝑏 (𝑢) such that 𝑠 ′𝑟 (𝑢) ≤ 𝑠𝑏 (𝑢).
We also find the largest good segment 𝑠𝑔 (𝑢) ≤ 𝑠𝑟 (𝑢) in 𝐿(𝑢) and
the largest good segment 𝑠 ′𝑔 (𝑢) ≤ 𝑠 ′𝑟 (𝑢) in 𝐿𝑏 (𝑢). We identify the

largest segment 𝑠𝑔 among all 𝑠𝑔 (𝑢) and 𝑠 ′𝑔 (𝑢),𝑢 ∈ 𝑇𝜈 . For every 𝑗 we

find the group 𝐺𝑖 𝑗 of L′
𝑗
(𝜈), such that plast (𝐺𝑖 𝑗 ) < 𝑠𝑔 ≤ last (𝐺𝑖 𝑗 )

and answer the vertical ray shooting query on that group. Finally

we select the largest segment among all segments 𝑠𝑟 (𝑢), 𝑠 ′𝑟 (𝑢) and
𝑠 𝑗 = ray(𝑞,𝐺𝑖 𝑗 ), 1 ≤ 𝑗 ≤ log

𝜀 𝑛.

If the answer to a query is a good segment or a bad explicit

segment, then the answer is the largest segment among all 𝑠𝑟 (𝑢)
and 𝑠 ′𝑟 (𝑢). If the answer to a query is a bad implicit segment 𝑠 , then

this segment is contained in one of the groups 𝐺𝑖 𝑗 : Suppose that 𝑠

spans a node 𝑢. As follows from the proof of Lemma 5.2, there are

at least two blocks in 𝐿(𝑢) (resp. 𝐿𝑏 (𝑢)) such that all segments in

these blocks are between 𝑝𝑙𝑎𝑠𝑡 (𝑠) and 𝑠 . Hence one of the segments

𝑠𝑟 (𝑢) and 𝑠 ′𝑟 (𝑢) is larger than plast (𝑠); this segment is also smaller

than 𝑙𝑎𝑠𝑡 (𝑠). And at least one of 𝑠𝑔 (𝑢) and 𝑠 ′𝑔 (𝑢) is also between

plast (𝑠) and last (𝑠). Hence 𝑠 is in one of the groups𝐺𝑖 𝑗 , such that

plast (𝐺𝑖 𝑗 ) < 𝑠𝑔 ≤ last (𝐺𝑖 𝑗 ).

B WEIGHTED TELESCOPING SEARCH ON
𝑀 (𝑢)

We explain how weighted search is implemented on lists 𝑀 (𝑢),
𝑢 ∈ 𝑇 . Weighted search on 𝐿(𝑢) is implemented in a similar way.

Let𝑀𝑗 (𝑢) denote the list of category- 𝑗 segments stored in a node

𝑢. First, we explain how the weighted search trees T𝑖 (𝑢) can be

constructed when all lists 𝑀𝑗 (𝑢) are known. We construct the

list 𝑀 (𝑢) = ∪𝑗𝑀𝑗 (𝑢) for each node 𝑢 by merging the lists 𝑀𝑗 (𝑢).
Next we create augmented lists 𝐴𝑀 (𝑢), such that𝑀 (𝑢) ⊆ 𝐴𝑀 (𝑢)
and each segment from 𝐴𝑀 (𝑢) \ 𝑀 (𝑢) is a copy of a segment

stored in 𝑀 (𝑣) for some ancestor 𝑣 of 𝑢. Lists 𝐴𝑀 (𝑢) satisfy the

following properties: if a node 𝑣 is a parent of a node𝑤 , then there

are 𝑂 (log4 𝑛) segments of 𝐴𝑀 (𝑣) between any two consecutive

segments of 𝐴𝑀 (𝑣) ∩𝐴𝑀 (𝑤); second, every segment from 𝑀 (𝑣)
is stored in at most two lists 𝐴𝑀 (𝑢) where 𝑣 is an ancestor of

𝑢. Augmented lists with these properties are used in fractional

cascading; see e.g.,[1] or [8]. We refer to [8] for an explanation how

𝐴𝑀 (𝑢) can be constructed and maintained.

Next we assign weights to segments in all lists𝐴𝑀 (𝑢) as follows.
All segments stored in the leaf nodes are assigned weight 1. To

compute the weight of a segment 𝑠 in 𝐴𝑀 (𝑢) for an internal node

𝑢, we identify the preceding and the following down-bridges to a

child𝑢𝑖 and compute the total weight of all segments between these

down-bridges in 𝑢𝑖 . The sum over all children 𝑢𝑖 of 𝑢 divided by

log
2 𝑛 is the weight assigned to 𝑠 . To be precise, let 𝐷𝑂𝑊𝑁 (𝑢,𝑢𝑖 ) =

𝐴𝑀 (𝑢) ∩𝐴𝑀 (𝑢𝑖 ) and let𝑊𝑖 (𝑠) =
∑
weight(𝑠 ′) where the sum is

computed over all segments 𝑠 ′ in 𝐴𝑀 (𝑢𝑖 ) satisfying 𝑙𝑖 < 𝑠 ′ < ℎ𝑖 , 𝑙𝑖
is the largest segment in𝐷𝑂𝑊𝑁 (𝑢,𝑢𝑖 ) that is smaller than 𝑠 , and ℎ𝑖
is the smallest segment in 𝐷𝑂𝑊𝑁 (𝑢,𝑢𝑖 ) that is larger than 𝑠 . Then
weight(𝑠) = (∑𝑖𝑊𝑖 (𝑠))/log4 𝑛 where the sum is over all children

𝑢𝑖 of 𝑢.

Whenwe know theweights of all segments in a tree, we construct

the weighted trees T𝑖 (𝑢). For every chunk, starting with the chunk

at the root node, we proceed as follows. First we compute the total

weight𝑊 of all segments 𝑠 ∈ 𝐴𝑀 (𝑢) in the chunk. Next we divide

the chunk into subsets of consecutive segments 𝐶𝑖 so that: (i) if a

chunk𝐶𝑖 contains more than one segment, then the weight of𝐶𝑖 is

at most 2𝑊 /𝑑 ; (ii) if the weight of a chunk𝐶𝑖 is less than𝑊 /𝑑 , then
both 𝐶𝑖−1 and 𝐶𝑖+1 have weight at least 2𝑊 /𝑑 . Here 𝑑 = 2

log
𝛿 𝑛

.

When subsets of a chunk and their weights are known, we create

a weighted search tree, such that the weight of the 𝑖-th leaf is the

weight of 𝐶𝑖 . We can construct and maintain a tree in such a way



STOC ’21, June 21–25, 2021, Virtual, Italy Yakov Nekrich

that the depth of the leaf corresponding to𝐶𝑖 is𝑂 (log 𝑊
𝑤 (𝐶𝑖 ) ) where

𝑤 (𝐶𝑖 ) is the total weight of all segments in the chunk 𝐶𝑖 . If 𝐶𝑖
contains more than one segment, then the 𝑖-th leaf is a pseudo-leaf.

When the leaves of T𝑘 (𝑢) in a node 𝑢 are known, we create

the trees in the children 𝑢 𝑗 of 𝑢. Leaves of each tree T𝑘 (𝑢) for
𝑘 = 1, 2, . . . are visited in the left-to-right order. For each leaf

𝐶𝑖 we find the successor 𝑠max (𝐶𝑖 ) of max(𝐶𝑖 ) in 𝐷𝑂𝑊𝑁 (𝑢,𝑢 𝑗 )
and the predecessor 𝑠min (𝐶𝑖 ) of min(𝐶𝑖 ) in 𝐷𝑂𝑊𝑁 (𝑢,𝑢 𝑗 ), where
max(𝐶𝑖 ) and min(𝐶𝑖 ) denote the smallest and the largest segments

in 𝐶𝑖 (unless 𝐶𝑖 is a pseudo-leaf, min(𝐶𝑖 ) = max(𝐶𝑖 )). The set of
segments in 𝑀 (𝑢 𝑗 ) between the copies of 𝑠min (𝐶𝑖 ) and 𝑠max (𝐶𝑖 )
is a chunk of 𝑀 (𝑢 𝑗 ). For each chunk, we identify the leaves and

pseudo-leaves and construct the weighted search tree. We proceed

in the same manner and construct chunks and weighted trees for

all nodes of 𝑇 .

Using truncated weighted telescoping search, we can answer

ray shooting queries in all nodes 𝑢 that contain the query point

𝑞. Suppose that we already know the leaf 𝐶𝑊 of the weighted

tree T𝑖𝑤 (𝑤) that contains the segment 𝑠𝑎 (𝑤) = ray(𝑞,𝐴𝑀 (𝑤))
in the parent 𝑤 of 𝑢. We move to the chunk that is bounded by

𝑠min (𝐶𝑊 ) and 𝑠max (𝐶𝑊 ). Then we search in the weighted tree

T𝑖𝑢 (𝑢) for the segment that is immediately below 𝑞 or for the

pseudo-leaf 𝐶𝑢 that contains 𝑠𝑎 (𝑢) = ray(𝑞,𝐴𝑀 (𝑢)). The time

we spend in a node 𝑢 is 𝑂 (log 𝑊 (T𝑖𝑢 (𝑢))
𝑤 (𝑢) ). If the leaf 𝐶𝑢 is not a

pseudo-leaf, then we have found the segment 𝑠 ′ = ray(𝑞,𝐴𝑀 (𝑢)).
The segment 𝑠 ′′ = ray(𝑞,𝑀 (𝑢)) is the largest segment in 𝑀 (𝑢)
that is smaller than 𝑠 ′. We can find 𝑠 ′′ in 𝑂 (log log𝑛) time using a

USF data structure.

Insertions and Deletions. Now we explain in more detail how

weighted trees on chunks and updates of these trees are imple-

mented. Let𝑊 denote the total weight of a chunk. Following [20],

we define approximate weights of leaves. Let 𝜏 =
⌈
𝑊
2𝑑

⌉
where

𝑑 = 2
log

𝛿 𝑛
. Let 𝑤𝑖 denote the weight of the 𝑖-th leaf ℓ𝑖 . Then

𝑤 ′
𝑖
=
⌈𝑤𝑖

𝑑

⌉
is the approximate weight of ℓ𝑖 . We maintain a weighted

search tree for a chunk, so that the depth of ℓ𝑖 is 𝑂 (log(𝑊 ′/𝑤 ′
𝑖
))

where𝑊 ′ =
∑
𝑖 𝑤

′
𝑖
is the total approximate weight of all leaves

using e.g., the method of [20].

Since 𝑊 ′ = Θ(𝑑) and 𝑤 ′
𝑖
≥ 1 for all 𝑖 , every leaf has depth

bounded by 𝑂 (𝑑). Since𝑊 ′ · 𝜏 ≤ 2𝑊 and 𝑤 ′
𝑖
· 𝜏 ≥ 𝑤𝑖 , we have

𝑊 ′
𝑤′
𝑖
≤ 2𝑊

𝑤𝑖
and log(𝑊 ′/𝑤 ′

𝑖
) ≤ log(𝑊 /𝑤𝑖 ) +𝑂 (1). Thus the depth

of every leaf is bounded by 𝑂 (min(𝑑, log(𝑊 /𝑤𝑖 ))).
An insertion procedure for a new segment 𝑠 , that is described in

Section 6.1, identifies the leaf ℓ that stores 𝑝𝑟𝑒𝑑 (𝑠, 𝑀 (𝑢)). If ℓ is a
pseudo-leaf, we add 𝑠 to ℓ . Otherwise, let ℓ ′ denote the leaf that is
the right neighbor of ℓ . If ℓ ′ is pseudo-leaf, we add 𝑠 to ℓ ′. If both ℓ

and ℓ ′ are pseudo-leaves, we insert a new leaf ℓ ′′ between ℓ and ℓ ′.
The weight of ℓ ′′ is set to 1.When a new leaf is inserted into T, we
also divide the chunk stored in a child of 𝑢.

Representation of Pseudo-Leaves. All segments in the pseudo-

leaf can be classified as in Section 6.2. Let G𝑘 (ℓ) denote the list of
segments with category 𝑘 in the leaf ℓ . Since we know the order

of all segments with a fixed category we know the smallest and

the largest segment in G𝑘 (ℓ). We can represent G𝑘 (ℓ) as a sub-list

of 𝐴𝑀𝑘 (ℓ). When a pseudo-leaf is split, we can divide it into two

pseudo-leaves of almost equal weight by a binary search in G𝑘 (ℓ).

Splitting and Merging Trees T𝑘 (𝑢). When a new down-bridge

𝑠 ∈ 𝐴𝑀 (𝑢) ∩ 𝐴𝑀 (𝑢𝑖 ) is inserted into some tree T𝑗 (𝑢), we split

the corresponding tree T𝑘 (𝑢𝑖 ) into two trees T′
𝑘
(𝑢𝑖 ) and T′′𝑘 (𝑢𝑖 ).

The cost of splitting two trees is bounded by their height; hence,

the cost of splitting T𝑘 (𝑢𝑖 ) into T′𝑘 (𝑢𝑖 ) and T
′′
𝑘
(𝑢𝑖 ) is bounded by

𝑂 (log𝛿 𝑛).

C FRACTIONAL CASCADING AND SEGMENT
CATEGORIES ON𝑀 (𝑢)

We assign categories to segments of 𝑀 (𝑢) using the following

scheme. Each segment 𝑠 ∈ M(𝜈) is stored in three different struc-

tures: if 𝑠 crosses the left vertical boundary of a node 𝑢 ∈ 𝑇𝜈 , then

we keep 𝑠 in the list𝑀 (𝑙) (𝑢) of the left middle segments. If 𝑠 crosses

the right vertical boundary of 𝑢, we keep 𝑠 in the list𝑀 (𝑟 ) (𝑢) of the
right middle segments. Finally if 𝑠 crosses neither the left nor the

right boundary of 𝑢, we keep it in the list 𝑀 (𝑚) (𝑢) of the middle

middle segments.

Consider a segment 𝑠 ∈ 𝑀 (𝑙) (𝑢). We identify the highest 𝑗 such

that 𝑠 crosses the left vertical boundary of some node 𝑤 and the

height of 𝑤 divides log
𝑗𝜀 𝑛. Next we find the highest 𝑘 , such that

𝑠 crosses the left vertical boundary of some node 𝑤 ′
with height

𝑘 · log𝑗𝜀 𝑛. The category of 𝑠 is the pair ( 𝑗, 𝑘). Since 0 ≤ 𝑗 < ⌈1/𝜀⌉
and 1 ≤ 𝑘 < log

𝜀 𝑛, there are 𝑂 (log𝜀 𝑛) different categories. All
segments in a category ( 𝑗, 𝑘) cross the same vertical line; hence all

segments in a list𝑀 (𝑢) with the same category ( 𝑗, 𝑘) are elements

of an ordered set. We can assign categories to segments in𝑀 (𝑟 ) (𝑢)
in the same way.

Now consider a middle middle segment 𝑠 ∈ 𝑀 (𝑚) (𝑢). We assign

a category 𝑙 to 𝑠 , where𝑢𝑙 is the leftmost sibling of𝑢 that is spanned

by 𝑠 . All segments are stored in a colored USF data structure of

Mortensen [24]. We assign
3
a color 𝑟 to a segment 𝑠 ∈ 𝑀

(𝑚)
𝑙

(𝑢𝑙 )
if 𝑢𝑟 is the rightmost child of 𝑢 spanned by 𝑠 . In other words a

segment 𝑠 ∈ 𝑀
(𝑚)
𝑙

(𝑢) with color 𝑟 spans children 𝑢𝑙 , . . ., 𝑢𝑟 of 𝑠 .

For any 𝑘 > 𝑙 , 𝑀
(𝑚)
𝑙

(𝑢𝑘 ) ⊆ 𝑀
(𝑚)
𝑙

(𝑢𝑙 ); 𝑀
(𝑚)
𝑙

(𝑢𝑘 ) consists of seg-
ments in 𝑀

(𝑚)
𝑙

(𝑢𝑙 ) with color 𝑗 ≥ 𝑘 . Using the data structure of

Mortensen [24], we can find, for any 𝑠 ∈ 𝑀 (𝑙) (𝑢), the largest seg-
ment 𝑠 ′ ∈ 𝑀 (𝑙) (𝑢) with color 𝑗 ≥ 𝑘 such that 𝑠 ′ ≤ 𝑠 (i.e., the largest

segment 𝑠 ′ ≤ 𝑠 in𝑀 (𝑙) (𝑢) that spans𝑢𝑘 ); insertions and deletions of
segments into𝑀 (𝑙) (𝑢) are also supported. Insertions, deletions, and
queries on a colored USF data structure take 𝑂 (log log𝑛) time [24].

Consider a middle middle segment 𝑠 in that spans children𝑢𝑙 , . . .,

𝑢𝑟 of some node 𝑢. We can insert a new segment 𝑠 into𝑀
(𝑚)
𝑙

(𝑢𝑙 )
in 𝑂 (log𝑛) time. Using a colored USF data structure [24], we can

insert 𝑠 into 𝑀
(𝑚)
𝑙

(𝑢 𝑗 ), for all right siblings 𝑢 𝑗 of 𝑢𝑙 such that 𝑠

spans 𝑢 𝑗 , in 𝑂 (log log𝑛) time per node. Thus the total insertion

time is 𝑂 (log log𝑛 · log𝜀 𝑛 + log𝑛) = 𝑂 (log𝑛). When a segment

is deleted, we delete it from every list 𝑀
(𝑚)
𝑗

(𝑢) and update the

corresponding USF data structure.

3
We observe that colors are not synonymous with categories in this section.
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Every list 𝑀 (𝑢) is a union of 𝑂 (log𝜀 𝑛) lists 𝑀 (𝑙)
𝑗

(𝑢) of middle

left segments, 𝑂 (log𝜀 𝑛) lists 𝑀 (𝑟 ) (𝑢) of middle right segments,

and 𝑂 (log𝜀 𝑛) lists 𝑀 (𝑚)
𝑗

(𝑢) of middle middle segments. Thus all

segments in𝑀 (𝑢) can be assigned 𝑂 (log𝜀 𝑛) categories. To avoid
tedious notation, we denote all segments in 𝑀 (𝑢) with the same

category by𝑀𝑘 (𝑢).

D DATA STRUCTURES FOR LISTS 𝐿(𝑢)
The order of segments in a list 𝐿(𝑢) is already known. However

each segment is inserted into up to𝑂 (log𝑛/log log𝑛) lists 𝐿(𝑢). We

can therefore spend only 𝑂 (log log𝑛) time in a node 𝑢 when 𝐿(𝑢)
is updated. Again we use two different data structures to represent

segments in every 𝐿(𝑢). Our first approach is based on weighted

telescoping search. All lists 𝐿(𝑢), 𝑢 ∈ 𝑇 , are divided into chunks.

We assign weights to chunks as sketched in Section 6.1. We store a

truncated weighted tree with node degree log
𝜀 𝑛 and height log

2𝜀 𝑛

for each chunk. Our second approach is based storing all segments

in a data structure that answers queries in 𝑂 (log𝜀 𝑛) time per node

using fractional cascading.

D.1 Truncated Weighted Search on 𝐿(𝑢)
Recall that a span index of a segment 𝑠 in a node 𝑢 is the maximal

𝑗 such that 𝑠 spans the 𝑗-th child 𝑢 𝑗 of 𝑢. Since we store segments

with different span indices in the nodes of the weighted tree, we

would need𝑂 (log2𝜀 𝑛) time to update a tree in 𝐿(𝑢) after a segment

insertion or deletion. In order to reduce the update time, we combine

two techniques: assigning small integer labels to segments and

bufferization of updates. Both techniques were used separately

in numerous data structures. Recently, Chan and Tsakalidis [9]

combined both techniques to improve the update time of three-

sided range searching. Our approach is similar, but we need to

make some modifications because we apply bufferization to an

unbalanced weighted tree.

We assign integer labels to all segments that are used to guide

the search. We also assign labels to every inserted or deleted seg-

ment. Finally we assign labels to log
2 𝑛 largest and log

2 𝑛 smallest

segments in every tree leaf. Each segment label is a positive integer

bounded by 𝑂 (22 log2𝜀 𝑛); if 𝑠1 < 𝑠2, then the label 𝑙𝑎𝑏 (𝑠1) of the
segment 𝑠1 is smaller than the label 𝑙𝑎𝑏 (𝑠2) of the segment 𝑠2. After

each sequence of 2
2 log

2𝜀 𝑛
updates, we re-build the labeling scheme

from scratch.

We assign a unique integer id to every segment 𝑠 that is assigned

a label, so that 𝑖𝑑 (𝑠) < 2
log

2𝜀 𝑛
for each segment 𝑠 . We store a look-

up table𝑇𝑏𝑙 that contain pointers to all segments with labels,𝑇𝑏𝑙 [𝑖]
points to a segment 𝑠 with 𝑖𝑑 (𝑠) = 𝑖 . For every labeled segment 𝑠 in

𝐿(𝑢) we also store 𝑖𝑑 (𝑠). Unlike segment labels, segment ids are not

monotonous: if 𝑠1 < 𝑠2, it is possible that 𝑖𝑑 (𝑠1) > 𝑖𝑑 (𝑠2). When a

segment is assigned an id, it does not change (except for the case

when the labeling is re-built from scratch). When a segment 𝑠 with

𝑖𝑑 (𝑠) = 𝑥 is moved to a leaf node ℓ (i.e., when the buffer in the

parent of ℓ is flushed), we move the segment 𝑠 = 𝑇𝑏𝑙 [𝑥] to ℓ .
We keep a buffer with labels and ids of log

2𝜀 𝑛 segments in

every node of the weighted tree. All updates are implemented using

buffers. When a new segment 𝑠 is inserted into a tree, we find its

predecessor in the list of labeled segments in a chunk using a USF

data structure. Then we assign a label 𝑙𝑎𝑏 (𝑠) and an id 𝑖𝑑 (𝑠) to the

new segment 𝑠; 𝑙𝑎𝑏 (𝑠) and 𝑖𝑑 (𝑠) are inserted into the buffer of the

root node. When a segment is deleted, we also assign it a label and

an id (unless this segment already was assigned a label) and insert

this information into the buffer of the root node. When a buffer

of some node 𝑢 contains log
3𝜀 𝑛 segments, we flush the buffer, i.e.,

we move the segments from the buffer of 𝑢 into buffers associated

with the children of 𝑢. Since we store only the segment labels and

ids in a buffer node, the buffer fits into one word. Hence we can

flush the buffer in 𝑂 (log𝜀 𝑛) time using a look-up table. The total

amortized cost of an update is 𝑂 ( log
𝜀 𝑛 ·log2𝜀 𝑛
log

3𝜀 𝑛
) = 𝑂 (1). The update

cost can be de-amortized.

We also need to update some labels when new segments are

inserted. The standard method of label maintenance [4, 17] requires

that we change𝑂 (log4𝜀 𝑛) labels after each insertion.We can update

the labels in 𝑂 (1) time by storing multiple labels in the same word.

Labels of all segments are stored in a list, in increasing order. Every

element of a list stores the segment label and the segment id of

some segment. We divide the list of labels into blocks, such that

every block contains at most 𝑟 = log
4𝜀 𝑛 elements and at least

𝑟/4 elements. We employ a two-part labeling scheme: blocks are

assigned monotonously increasing labels using the method from [4,

5, 17]. Each segment 𝑠 is assigned a label 𝑙𝑎𝑏 (𝑠) = 𝑥 · 𝑟 + 𝑦, where
𝑥 is the label of the block 𝐵 that contains 𝑠 and 𝑦 is the number of

segments 𝑠 ′ < 𝑠 in the block 𝐵.

Each block fits into one word. When a new segment is inserted,

we find the block 𝐵 where it must be inserted. The 𝑦-components of

up to 𝑟 labels in 𝐵 must be changed. We update these labels in𝑂 (1)
time after inserting a new block. When the number of segments

in a block reaches 𝑟 , we split the block into two equal-size blocks.

In this case we change the block labels of log
4𝜀 𝑛 different blocks

and update all segment labels in these blocks. We can update the

segment labels in 𝑂 (log4𝜀 𝑛) time, i.e., in 𝑂 (1) time per affected

block.

One other issue related to dynamic labeling must be addressed:

when a segment label is changed, it is possible that the "old" label

of the same segment is stored somewhere in the tree. We update

segment labels in the tree using the same buffering strategy as used

for segment insertions/deletions. When the labels of segments in

a block are changed, we insert the updated labels into the update

buffer of the root node. For every segment we store its id, its new

label, and its old label. Buffers with updated labels are flushed in

the same way as buffers with inserted/deleted segments. When a

buffer is flushed and some labels are moved from a node 𝑢 to its

child𝑢𝑖 , then the labels of segments in (the buffer of)𝑢𝑖 are updated

accordingly.

In order to answer a query, we traverse a path in the tree and

examine the contents of the buffers in each node on the path. Since

the contents of all buffers on the path fit into one word, we can

answer a query or identify the group leaf that contains the answer

in 𝑂 (ℓ · log log𝑛) time, where ℓ is the path length.

D.2 Slow Data Structure
Let 𝐿(𝑢, 𝑗) denote the list of all segments in 𝐿(𝑢) with span index 𝑗 .

Let 𝐿′(𝑢, 𝑗) denote sub-list that contains one segment from every

block of log𝑛 segments in 𝐿(𝑢, 𝑗). Finally let 𝐿′(𝑢) = ∪𝑗𝐿(𝑢, 𝑗). We
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maintain a standard fractional cascading data structure on 𝐿′(𝑢).
Additionally we keep a USF data structure 𝑉 (𝑢, 𝑗) for every 𝑗 : for

every segment 𝑠 ∈ 𝐿′(𝑢) we can find the largest 𝑠 𝑗 ∈ 𝐿(𝑢, 𝑗) ∩
𝐿′(𝑢) such that 𝑠 ′ < 𝑠 . 𝑉 (𝑢, 𝑗) supports queries and updates in

𝑂 (log log𝑛) time. We also maintain a data structure that supports

finger searches on each 𝐿(𝑢, 𝑗).
A query is answered in two stages.

Stage 1. First, we identify the segment 𝑝 ′(𝑢) from 𝐿′(𝑢) directly
below the query point 𝑞 in every node 𝑢 that contains 𝑞. Stage 1

can be executed in 𝑂 (log𝑛) time.

Stage 2. For each 𝑗 , we find the largest 𝑝 𝑗 (𝑢) ∈ 𝐿(𝑢, 𝑗) ∩ 𝐿′(𝑢)
such that 𝑝 𝑗 (𝑢) ≤ 𝑝 (𝑢) . Next we search among log

2 𝑛 segments

that follow 𝑝 𝑗 (𝑢) in 𝐿(𝑢, 𝑗) and and find 𝑠 (𝑢, 𝑗) = ray(𝑞, 𝐿(𝑢, 𝑗)).
The answer to ray(𝑞, 𝐿(𝑢)) is the largest segment among all 𝑠 (𝑢, 𝑗).
Stage 2 takes 𝑂 (log𝜀 𝑛 log log𝑛) time per node.

Updates are supported as follows: when a new segment is in-

serted into 𝐿(𝑢, 𝑗) or a segment is deleted from 𝐿(𝑢, 𝑗), we update
the USF data structure 𝑉 (𝑢, 𝑗) and the data structure for finger

search queries on 𝐿(𝑢, 𝑗). This can be done in 𝑂 (log log𝑛) time.

We maintain the block sizes of each 𝐿(𝑢, 𝑗) using standard tech-

niques. When two blocks are merged or a block is split into two

parts, we update 𝐿′(𝑢) and data structures 𝑉 (𝑢, 𝑗) for all 𝑗 . The
total cost of splitting or merging blocks is𝑂 (log𝜀 𝑛 log log𝑛). It can
be distributed among 𝑂 (log𝑛) updates of 𝐿(𝑢, 𝑗).

D.3 Queries on 𝐿(𝑢)
Queries on left segments are answered using the combination of two

structures, described in Sections D.1 and D.2. We start by executing

Stage 1 of the slow method from Section D.2. Then we search in all

𝐿(𝑢) using the truncated weighted trees, as described in Section D.1.
Using the same analysis as in Section 6.3, this stage takes 𝑂 (log𝑛)
time. If the search in a node 𝑢 ends in a group leaf, we will say

that a node 𝑢 is difficult. If a node 𝑢 is difficult, we execute Stage 2

from Section D.2 and find 𝑠 (𝑢) = ray(𝑞, 𝐿(𝑢)). There are at most

𝑂 (log1−2𝜀 𝑛) difficult nodes and we spend 𝑂 (log𝜀 𝑛 log log𝑛) in
each difficult node. Hence the total time spent in all difficult nodes

is𝑂 (log𝑛). The total time needed to find ray(𝑞, 𝐿(𝑢)) in all visited

nodes 𝑢 is 𝑂 (log𝑛).
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