Parallel VLSI CAD Algorithms

Lecture 7
Iterative methods for IC thermal analysis
Zhuo Feng
- We’ve talked about using LU to solve a sparse linear matrix problem

- Another way of dealing with sparse matrix problems is to solve them iteratively

- There are no fill-ins with iterative solution methods!

- But the challenge is ensuring efficient convergence
Iterative methods are great for sparse system storage
- if they converge

\[A\bar{x} = \bar{b} \]

Most popular iterative methods are:
- Gauss-Jacobi
- Gauss-Seidel

We will talk about some more complicated methods later
\[A\vec{x} = \vec{b} \]
\[A\vec{x} + \vec{x} - \vec{x} = \vec{b} \]
\[\vec{x} = (1 - A)\vec{x} + \vec{b} \]

Iteratively solve for \(\vec{x} \)

\[\vec{x}_{i+1} = (1 - A)\vec{x}_i + \vec{b} \]

Define: \(\vec{e}_i = \vec{x}_i - \vec{x}_t \)

True solution

\[\text{and } \vec{e}_{i+1} = \vec{x}_{i+1} - \vec{x}_t \]
\[\vec{e}_{i+1} = B\vec{x}_i + \vec{b} - (B\vec{x}_t + \vec{b}) = B\vec{e}_i \]

For an initial guess \(\vec{x}_1 \)

\[\vec{e}_{i+1} = B^i (\vec{x}_1 - \vec{x}_t) \]

It follows that a necessary and sufficient condition for convergence is:

\[\lim_{i \to \infty} (B^i \vec{y}) = \vec{0} \quad \text{for all } \vec{y} \]
- OR: \[\lim_{i \to \infty} \|B^i\| = 0 \]

- The eigenvalues of \(B^i \) are the \(i \)-th powers of the eigenvalues of \(B \)

- Another necessary and sufficient condition for convergence is that all of the eigenvalues of \(B \) have a magnitude less than 1 (all eigenvalues lie within the unit circle)

- We also want \(\|B\| \) to be small so that iterations converge rapidly
Calculating eigenvalues is more difficult than solving original problem!

Matrix Norms:

\[\|B\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |b_{ij}|^2} \]

\[\|B\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |b_{ij}| \]

\[\|B\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |b_{ij}| \]

Euclidean norm is fairly high complexity, therefore \(\infty \)-norm is most commonly used

But \(\infty \)-norm is sufficient but **NOT** necessary
\(\ell_\infty \)-norm < 1 follows from diagonal dominance condition

- Sufficient but not necessary:

\[
A\tilde{\mathbf{x}} = \tilde{\mathbf{b}} \quad \left\| 1 - A \right\|_\infty < 1 \quad ?
\]

\[
\left\| a_{ii} \right\| > \sum_{j=1, j \neq i}^{n} \left\| a_{ij} \right\| \quad \text{for } i = 1, 2 \ldots n
\]
Normalize each row of A by diagonal element

\[
\begin{bmatrix}
1 & \frac{a_{12}}{a_{11}} & \frac{a_{13}}{a_{11}} & \ldots \\
\frac{a_{21}}{a_{11}} & 1 & \frac{a_{23}}{a_{22}} & \ldots \\
\vdots & \vdots & \frac{a_{22}}{a_{22}} & \ddots \\
\end{bmatrix}
\]
\[B = 1 - A \]

\[
\begin{bmatrix}
0 & a_{12} & a_{13} & \cdots \\
-a_{11} & 0 & a_{13} & \cdots \\
a_{21} & -a_{11} & 0 & a_{23} & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
a_{22} & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
\]

\[\|B\|_\infty < 1 \quad \text{if} \quad \sum_{j=1}^{n} \frac{\|a_{ij}\|}{\|a_{ii}\|} < 1 \]
Gauss - Jacobi

\[A\bar{x} = \bar{b} \]

\[\begin{align*}
 k & \leftarrow 0; \\
 \text{guess} & \begin{array}{l}
 \bar{x}^{0} \\
 \text{repeat} \quad \{ \end{array} \\
 \begin{array}{l}
 k & \leftarrow k + 1; \\
 \text{for all} \quad (i \in \{1,2,\ldots,n\}) \\
 x_i^k & = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k-1} - \sum_{j=i+1}^{n} a_{ij} x_j^{k-1} \right]; \\
 \end{array} \\
 \} \quad \text{until} \quad \left| x_i^k - x_i^{k-1} \right| \leq \varepsilon, \quad i = 1,2,\ldots,n \\
\end{align*} \]

Only makes sense for parallel processing applications – otherwise Gauss-Seidel is faster
Gauss - Seidel

\[k \leftarrow 0; \]

\[\text{guess } x^0 \]

\[\text{repeat } \left\{ \right. \]

\[k \leftarrow k + 1; \]

\[\text{for all } (i \in \{1,2,\ldots,n\}) \]

\[x_i^k = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^k - \sum_{j=i+1}^{n} a_{ij} x_j^{k-1} \right]; \]

\[\} \text{ until } \left(\left| x_i^k - x_i^{k-1} \right| \leq \varepsilon, \ i = 1,2,\ldots,n \right), \]
Successive overrelaxation (SOR) can improve the rate of convergence “sometimes”

- Use G-S to calculate \tilde{x}_i^{k+1} -- $K+1^{th}$ G-S iteration

- But use weighted average of it and for actual update

$$\tilde{x}_i^{k+1} = (1 - \omega)x_i^k + \omega\tilde{x}_i^k$$

- Selection of ω is nontrivial!!
Matrix interpretations

\[A = D + L + U \]

- **Diagonal**
- **Lower Triangular**
- **Upper Triangular**

Guass-Jacobi

\[D\bar{x}^{k+1} + (L + U)\bar{x}^k = \bar{b} \quad \Rightarrow \quad \bar{x}^{k+1} = -D^{-1}(L + U)\bar{x}^k + D^{-1}\bar{b} \]

Guass-Seidel

\[(D + L)\bar{x}^{k+1} + U\bar{x}^k = \bar{b} \quad \Rightarrow \quad \bar{x}^{k+1} = -(D + L)^{-1}U\bar{x}^k + (D + L)^{-1}\bar{b} \]
How would the iterative solution methods apply to some problems other than circuits?

Thermal analysis of ICs is becoming extremely important

Temperature gradients on a chip can substantially impact the performance
Heat conduction is governed by the following PDE:

\[\rho c_p \frac{\partial T(x,y,z,t)}{\partial t} = \nabla \cdot [k\nabla T(x,y,z,t)] + p(x,y,z,t) \]

- Material density
- Specific heat
- Thermal conductivity
- Power density of heat sources

The PDE can be numerically solved using finite element/difference discretization.
A control volume

\[T_{i,j,k} \]

\[\Delta z \quad \Delta x \quad \Delta y \]

Discretize the PDE over all control volumes

\[
\rho C_p \frac{\partial T(i, j, k, t)}{\partial t} = \kappa \left(\frac{\partial^2 T(i, j, k, t)}{\partial x^2} + \frac{\partial^2 T(i, j, k, t)}{\partial y^2} + \frac{\partial^2 T(i, j, k, t)}{\partial z^2} \right) + p(i, j, k, t)
\]

\[
\frac{\{T(i+1, j, k, t) - T(i, j, k, t)\} - \{T(i, j, k, t) - T(i-1, j, k, t)\}}{\Delta x} \frac{\Delta x}{\Delta x}
\]
Rewrite the finite difference discretization

\[C \frac{d}{dt} T(i, j, k) + G_x (T(i, j, k) - T(i + 1, j, k)) + G_x (T(i, j, k) - T(i - 1, j, k)) + G_y (T(i, j, k) - T(i, j + 1, k)) + G_y (T(i, j, k) - T(i, j - 1, k)) + G_z (T(i, j, k) - T(i, j, k + 1)) + G_z (T(i, j, k) - T(i, j, k - 1)) = I(i, j, k) \]

where:

\[G_x = \frac{\kappa (\Delta y \cdot \Delta z)}{\Delta x}, \quad G_y = \frac{\kappa (\Delta x \cdot \Delta z)}{\Delta y}, \quad G_z = \frac{\kappa (\Delta x \cdot \Delta y)}{\Delta z} \]

\[C = \rho C_p \Delta x \cdot \Delta y \cdot \Delta z \]

\[I(i, j, k) = p(i, j, k) \Delta x \cdot \Delta y \cdot \Delta z \]
Translates into a linear circuit of thermal resistance, capacitance, and heat sources

\[
C \frac{dT(i, j, k)}{dt} + G_x(T(i, j, k) - T(i + 1, j, k)) + G_x(T(i, j, k) - T(i - 1, j, k)) \\
+ G_y(T(i, j, k) - T(i, j + 1, k)) + G_y(T(i, j, k) - T(i, j - 1, k)) \\
+ G_z(T(i, j, k) - T(i, j, k + 1)) + G_z(T(i, j, k) - T(i, j, k - 1)) = I(i, j, k)
\]
Creates an extremely large “circuit” problem

Generally interested only in the steady state -- thermal capacitance is not considered

Direct solution of these large problems can be impractical due to problem size

Iterative methods are very appealing due to sparsity

\[
\rho C_p \frac{\partial T(x,y,z,t)}{\partial t} = \nabla \cdot [k \nabla T(x,y,z,t)] + p(x,y,z,t)
\]
Gauss Jacobi/Seidel can often be applied to these linear problems due to special matrix properties

- Diagonally dominant or symmetric positive definite (SPD)

We previously discussed the matrix condition of diagonal dominance

\[
A\vec{x} = \vec{b} \quad \Rightarrow \quad \vec{x}_{i+1} = (1 - A)\vec{x}_i + \vec{b}
\]

Necessary and sufficient condition for convergence is:

\[
\lim_{i \to \infty} (B^i \vec{y}) = \vec{0} \quad \text{for all } \vec{y}
\]
OR: \(\lim_{i \to \infty} \| B^i \| = 0 \)

\[
\| B \|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |b_{ij}|
\]

Sufficient but not necessary (diagonal dominance):

\[
A\bar{x} = \bar{b} \quad \| 1 - A \|_\infty < 1 \ ?
\]

\[
\| a_{ii} \| > \sum_{j=1}^{n} \| a_{ij} \| \quad \text{for } i = 1, 2 \ldots n
\]

We also want \(\| B \| \) to be small so that iterations converge rapidly
Strict diagonal dominance is not a necessary condition

Another *sufficient* condition for convergence is a *near diagonally* dominant M-matrix:

- A is an M-matrix if
 1. $a_{i,i} > 0, i = 1, \ldots, n$
 2. $a_{i,j} \leq 0, i \neq j, i, j = 1, \ldots, n$
 3. A is nonsingular
 4. $A^{-1} > 0$, every element of the inverse is nonnegative
It can be shown that A is an M-matrix if it satisfies the following conditions:

1. $a_{i,j} \leq 0, i \neq j, i, j = 1,\ldots,n$

2. $a_{i,i} > 0, i = 1,\ldots,n$

3. $|a_{jj}| \geq \sum_{i=1}^{i=n} |a_{ij}|, j = 1,\ldots,n$

4. $|a_{jj}| > \sum_{i=1}^{i=n} |a_{ij}|$ for at least one j

The matrix from our thermal problem -- with boundary conditions -- is an M-matrix.
- Even with diagonal dominance or an M-matrix, G-S and G-J methods do not scale well with problem size
 - Excessive simulation runtime

- Multi-level approaches such as multigrid can be an ideal option

 - Method for solving large linear matrix problems iteratively
A simple thermal problem example

1-d Poisson equation to describe the steady-state temperature distribution along a uniform rod

\[u \equiv T \]

\[u(0) = u(1) = 0 \]

\[\rho C_p \frac{\partial T(x,y,z,t)}{\partial t} = \nabla \cdot [k \nabla T(x,y,z,t)] + p(x,y,z,t) \]

Steady state

\[-G_x \cdot u''(x) = f(x), \quad 0 < x < 1 \]
Approximate the 2nd order derivative using finite difference (3-point stencil)

\[-G_x \cdot u''(x) = f(x), \quad 0 < x < 1\]

\[G_x \left(-u_{j-1} + 2u_j - u_{j+1}\right) = h^2 f_j, \quad 1 \leq j \leq N - 1\]

\[u_0 = u_N = 0\]

\[h \equiv \text{step size}\]
The linear system is:

\[A \cdot u = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & \ddots & -1 \\ & & & -1 & 2 \end{bmatrix} \cdot u = h^2 f / G_x \]

- A is an M-matrix, therefore Gauss Jacobi/Seidel will converge for any initial guess
- Efficient direct solution does exist for this tridiagonal system
- But we use this model problem to study the converge rates of iterative methods
Note: not strictly diagonally dominant, but an M-matrix with boundary conditions

\[
A \cdot u = \begin{bmatrix}
2 & -1 \\
-1 & 2 & -1 \\
& & \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & & \ddots & -1 \\
& & & & -1 & 2 \\
\end{bmatrix} \cdot u = h^2 f / G_x
\]
For our 1d thermal problem, G-J/G-S will converge since underlying matrix is a M-matrix

Direct application of GJ/GS can be slow due to the “geometric” distribution of the solution error

Consider the change in the error distribution along the rod as we iterative with basic GJ/GS

\[
\begin{align*}
 u & \equiv T \\
 u(0) &= u(1) = 0
\end{align*}
\]
Exact temperature distribution given a heat source of \(f(x) \) along the length of the rod

\[
\begin{align*}
 u &\equiv T \\
 u(0) &= u(1) = 0
\end{align*}
\]

Assume that the initial guess is:

\[
\hat{u}(x)
\]
Error can have different “frequency” components

\[e(x) = u(x) - \hat{u}(x) \]

“Low frequency” vs. “high frequency”
- GJ/GS acts differently on the error components of different frequencies

- “High frequency” errors can be removed rather quickly while “low frequency” ones cannot

- Fourier mode analysis can help us to understand the convergence rate of the model problem
Consider the following modes of the thermal response for our 1d model problem:

\[w_k = \sin\left(\frac{j k \pi}{N}\right), \quad 0 \leq j \leq N \text{ and } 1 \leq k \leq N - 1 \]
K is referred to as the “wavenumber”

The Fourier modes with a high wavenumber represent high frequency components of waveform

Gauss Jacobi/Seidel remove the error components of the initial guess at different rates
As an example, consider the case for which the RHS is set to zero ($f(x)=0$) and we solve:

\[-u_{j-1} + 2u_j - u_{j+1} = 0, \ 1 \leq j \leq N - 1\]

\[u_0 = u_N = 0\]

- N is the number of discretization points along the rod

Since the exact solution is zero for this case, then the error is equivalent to the initial guess.

We can decompose our initial guess u_{init} as a linear combination of different Fourier modes.
■ We would expect the error to decay much more quickly for the high frequency initial guesses
■ We’ll consider the error behavior for a weighted GJ iteration

\[u^{n+1} = (1 - \omega)u^n + \omega u_{GJ}^{n+1} \]

Solution obtained in the standard Gauss Jacobi

■ The use of relaxation parameter \(\omega \) can improve the convergence

■ We will see that \(\omega \) affects the damping rates for errors of different frequencies
Consider 3 different cases of initial guesses, namely w_1, w_3, w_6, respectively

$$u^{n+1} = (1 - \omega)u^n + \omega u_{GJ}^n \quad \omega = \frac{2}{3}, \ N = 64$$
Let the initial guess consist of all modes

\[w_k, 1 \leq k \leq 63 \]

Run the weighted Gauss Jacobi with \(\omega = 1 \) until the norm of each mode (error) is reduced by a factor of 100.
- The result gets better if we change to $\omega = \frac{2}{3}$

- However convergence is still slow for “smooth” (low frequency) modes
- Rapid decrease for early iterations is due to the fast elimination for high frequency modes of error.

- Convergence starts to stall once the high frequency modes are removed.

- The “smoothing” property of the basic iteration schemes is a severe limitation.

- An effective remedy is multigrid methods.
Since the basic iteration methods struggle with smooth errors, alter the discretization to increase high freq errors.

\[\Omega^h: \]

\[\Omega^{2h}: \]

\[k = 4 \text{ wave on } N = 12 \text{ grid} \]

\[k = 4 \text{ wave on } N = 6 \text{ grid} \]
- This suggests that we should move to a coarser grid once the relaxation on the fine grid stalls.

- Relaxations on a coarser grid can also be much cheaper since the problem size is smaller.

- This idea is systematically explored in multigrid by solving the problem at a hierarchy of grids.

- Two grid cycle for a 2D problem:
Two grid cycle for our 1D rod problem

- Incomplete relaxation of $Au = b$ on fine grid, Ω^h, to obtain an approximation of $u \to v^h$

\[
\begin{pmatrix}
2 & -1 \\
-1 & 2 & -1 \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & -1 \\
& & & & -1 & 2
\end{pmatrix}
\cdot u = b \\
b = h^2 f / G_x
\]
Relaxation of $A\mathbf{u}=b$ on fine grid, Ω^h, to obtain intermediate variable \mathbf{v}^h

Compute the residue $r = b - A\mathbf{v}^h$

- Relaxation of the residual equation $A\mathbf{e} = r$ on Ω^{2h} (coarser grid) to get an approximation of the error \mathbf{e}^{2h}
- Map \mathbf{e}^{2h} back to \mathbf{e}^h on Ω^h
- Correct the solution on Ω^h by:
 $$\mathbf{v}^h \leftarrow \mathbf{v}^h + \mathbf{e}^h$$

Restart the first step until convergence

Could extend this to more than the two levels described here…
Typically, the grid spacing of a coarse grid is the twice of that of the immediate fine grid.

Transfer of e^{2h} from Ω^{2h} to Ω^{h} is done by interpolation: I_{2h}^h

Interpolation operator $v^h = I_{2h}^h v^{2h}$ maps a coarse grid operator to a fine grid operator:

$$v_{2j}^h = v_j^{2h}$$

$$v_{2j+1}^h = \frac{1}{2} \left(v_j^{2h} + v_{j+1}^{2h} \right) \quad 0 \leq j \leq \frac{N}{2} - 1$$

Linear interpolation among grid points for any number of levels of hierarchy.
Linear interpolation

- Average of two neighboring points
- Take the point directly from the coarse grid

\(\Omega \)

\(\Omega^{2h} \)

\(\Omega^h \)
Can express the interpolation operator in a matrix form

For our specific model problem with $N=6$ and zero endpoint boundary conditions:

\[
\begin{bmatrix}
1 \\
2 \\
1 & 1 \\
2 \\
1 & 1 \\
2 \\
1 & 1 \\
2 \\
1 \\
1
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5 \\
v_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
1 & 1 \\
2 \\
1 & 1 \\
2 \\
1 & 1 \\
2 \\
1 \\
1
\end{bmatrix}
\]

\[
v^h = I^h_{2h} v^{2h} = \frac{1}{2}
\]
Using interpolation implies that the error (on the fine grid) must be smooth enough.

Interpolation that produces a good approximation of error on the fine grid.

Interpolation that produces a rather poor approximation.

Coarse grid correction can only be used after high frequency errors are sufficiently damped on the fine grid.
We also need to define the transfer from the fine grid to the coarse one

The restriction operator I_{h}^{2h} defines the mapping from Ω^{h} to Ω^{2h}: $v^{2h} = I_{h}^{2h} v^{h}$

The simplest restriction operator is injection

- Points which are not on the coarse grid are simply removed
■ Injection

Discard this point from the fine grid

Retain this point from the fine grid

\(\Omega^h \)

\(\Omega^{2h} \)
A more popular restriction operator is *full weighting*

Full weighting in 1D

- For specific model problem with N=12:
- Can express the full weighting operator in a matrix form:

\[v_{j}^{2h} = \frac{1}{4}(v_{2j-1}^{h} + 2v_{2j}^{h} + v_{2j+1}^{h}), \quad 1 \leq j \leq \frac{N}{2} - 1 \]

\[v^{2h} = I_{h}^{2h} v^{h} \]

\[I_{h}^{2h} = \frac{1}{4} \begin{bmatrix}
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1 \\
\end{bmatrix} \]

\[v^{h} = \begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5 \\
v_6 \\
v_7 \\
v_8 \\
v_9 \\
v_{10} \\
v_{11} \\
\end{bmatrix} \quad N=12 \]

- Full weighting operator is proportional to the transpose of linear interpolator (a factor of 2 difference in this case)
We want to iterate on the residue equation on the coarse grid to adjust the fine grid solution.

Recall that if \(\hat{x} \) is an approximate solution for:

\[
Ax = b
\]

Then residue is defined as \(Ae = r, \quad r = b - A\hat{x} \) such that:

\[
A(\hat{x} + e) = b
\]

We define an approximate coarse grid problem for the residue equation

\[
A^{2h} e^{2h} = r^{2h}
\]

to evaluate the error we want to evaluate from the fine grid solution.
r^{2h} is obtained by restricting (mapping) the residue of the fine grid to the coarse grid:

\[r^{2h} = I^{2h} r^h \]

Note that residue from fine grid is the only “input” to coarse grid problem.

A^{2h} must be a good approximation of the original matrix on the coarse grid:

► can be obtained by discretizing the PDE using a step size 2h

We can also approximate the coarse grid problem from the fine grid for better robustness:

► Galerkin coarse grid approximation
Recall on the fine grid the residue equation is:

\[A_h e_h = r_h, \quad r_h = b_h - A_h \hat{x}_h \]

Based on the above, we can say that the following inner product relationship must be satisfied:

\[(A_h e_h, v_h) = (r_h, v_h) \]

For any vector on \(\Omega^h \)

We can also relate the coarse grid errors and approximations to those of the fine grain model as follows:

\[e_h = I_{2h}^h e_{2h}, \quad v_h = I_{2h}^h v_{2h} \]

Note that these interpolation operators can be different in some cases, but are the same for us in these examples.
We get the approximate residue equation:

\[
(A_h I_{2h}^h e_{2h}, I_{2h}^h v_{2h}) = (r_h, I_{2h}^h v_{2h})
\]

\[
(I_{2h}^h A_h I_{2h}^h e_{2h}, v_{2h}) = (I_{2h}^h r_h, v_{2h})
\]

For our example, we can use:

\[
I_{2h}^h \equiv (I_{2h}^h)^T
\]

This suggests the Galerkin method to define the coarse grid problem:

\[
A_{2h} = I_{2h}^h A_h I_{2h}^h
\]

\[
r_{2h} = I_{2h}^h r_h
\]

Maps fine grid residue to coarse grid residue

\[
A_{2h} e_{2h} = r_{2h}
\]
Multigrid combines the benefits of fine grid and coarse grid relaxations rather nicely

- Fine grid iteration takes care of the “high frequency” errors
- Coarse grid one removes the “low frequency” errors
- Fast convergence is achieved by a proper interplay between different grids
- The basic two grid cycle can be applied recursively to lead to the multi-level iterations.

- The multigrid sequences to the coarsest grid for which direct solve is efficiently applied to a very small problem.
Recursive procedure until we reach a coarse grid size for which we can solve the problem via direct methods

Pre-smoothing: n_1 G-S iterations to obtain v_h

\[A_h u_h = b_h \]

\[r_{2h} = I_h^{2h} r_h \]

\[A_{2h} e_{2h} = r_{2h} \]

Solving for error since input fct is just residue from previous level

\[e_{4h} = I_{8h}^{4h} e_{8h} \]

Coarse grid correction

Post-smoothing: n_2 G-S iterations with corrected u_h

\[u_h = v_h + I_{2h}^h e_{2h} \]

\[h \ (k=1) \]

\[2h \ (k=2) \]

\[4h \ (k=3) \]

\[8h \ (k=4) \]
Multigrid cycle:

\[u_k = MG(k, u_k^0, A_k, b_k, m, n_1, n_2) \]

- **k**: grid level, \(k=1 \) indicates the finest level
- **\(u_k^0 \)**: initial guess for \(k \)-th level based on boundary conditions
- **\(A_k \)**: linear problem (matrix) at the \(k \)th level
- **\(b_k \)**: RHS at the \(k \)-th level
- **\(m, n_1, n_2 \)**: iteration control parameters
Multigrid cycle flow: \(u_k = MG(k, u_k^0, A_k, b_k, m, n_1, n_2) \)

1. Pre-smoothing:
 - Compute \(v_k \) by performing \(n_1 \) smoothing steps with initial guess \(u_k^0 \)
 \[
v_k = \text{smooth}^{n_1}(u_k^0, A_k, b_k)
 \]

2. Coarse grid correction
 - Compute the residue: \(r_k = b_k - A_k v_k \)
 - Restrict the residue: \(r_{k+1} = I_k^{k+1} r_k \)
 - Compute the solution of residue equation on the \((k+1)\)-th grid:
 \[
 A_{k+1} e_{k+1} = r_{k+1}
 \]
 if at coarsest level, direct solve, otherwise: apply multigrid cycle \(m \) times with zero initial guess
 \[
e_{k+1} = MG^m(k+1,0, A_{k+1}, r_{k+1}, m, n_1, n_2)
 \]
- Interpolate the correction: \(e_k = I_{k+1} e_{k+1} \)

- Correct the approximation on the kth level: \(u_k = v_k + I_{k+1} e_{k+1} \)

3. Post-smoothing
 Perform smoothing steps \(n_2 \) times with initial guess \(u_k \)

 \[u_k = \text{smooth}^{n_2}(u_k, A_k, b_k) \]

- V-cycle corresponds to \(m=1 \) and W-cycle \(m=2 \)
Interpolation in 2D \rightarrow coarse grid to fine grid

Points on the coarse grid

$$I_{2h}^h \hat{v}_{2h}(x, y) = \begin{cases} \hat{v}_{2h}(x, y) & \text{for } \bullet \\ \frac{1}{2} [\hat{v}_{2h}(x, y + h) + \hat{v}_{2h}(x, y - h)] & \text{for } \square \\ \frac{1}{2} [\hat{v}_{2h}(x + h, y) + \hat{v}_{2h}(x - h, y)] & \text{for } \diamond \\ \frac{1}{4} [\hat{v}_{2h}(x + h, y + h) + \hat{v}_{2h}(x + h, y - h) + \hat{v}_{2h}(x - h, y + h) + \hat{v}_{2h}(x - h, y - h)] & \text{for } \circ \end{cases}$$
Full weighting in 2D \rightarrow Fine grid to coarse grid

The center point in the coarse grid is a nine-point weighted average

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}_h$$

Points on the boundary are slightly different

- fewer neighboring points in the average
Example: thermal problem in 2D

- Heat isolation along z direction and three sidewalls
- Kept at fixed temperature

Reflective boundary condition
We are dealing with a 2D discretization of the thermal PDE

\[
\rho C_p \frac{\partial T(x, y, z, t)}{\partial t} = \nabla \cdot [k \nabla T(x, y, z, t)] + p(x, y, z, t)
\]

Discretization in 2D

\[
2(g_x + g_y)T_{i,j} - g_x T_{i-1,j} - g_x T_{i+1,j} - g_y T_{i,j-1} - g_y T_{i,j+1} = p
\]

\[
g_x = \frac{K}{\Delta x^2} \quad \rightarrow \text{Thermal conductance in } \Delta x
\]

\[
g_y = \frac{K}{\Delta y^2} \quad \rightarrow \text{Thermal conductance in } \Delta y
\]

\[
p \rightarrow \text{power density in a box}
\]
There are fewer heat conduction paths at a reflective boundaries

\[(g_x + g_y)T_{i,j} - g_x T_{i+1,j} - g_y T_{i,j+1} = p\]
The multigrid technique we discussed is under the category of geometric multigrid.

Algebraic multigrid (AMG) follows a different philosophy where multigrid iteration is carried out completely based on a given matrix.

The principle of multigrid has also been adopted to analyze both IC thermal problems and "discrete" problems such as power grid.
