
ScaleUPC: A UPC Compiler for Multi-Core Systems

Weiming Zhao
Department of Computer Science
Michigan Technological University

wezhao@mtu.edu

Zhenlin Wang
Department of Computer Science
Michigan Technological University

zlwang@mtu.edu

ABSTRACT
Since multi-core computers began to dominate the market,
enormous efforts have been spent on developing parallel pro-
gramming languages and/or their compilers to target this
architecture. Although Unified Parallel C (UPC), a parallel
extension to ANSI C, was originally designed for large scale
parallel computers and cluster environments, its partitioned
global address space programming model makes it a natu-
ral choice for a single multi-core machine, where the main
memory is physically shared. This paper builds a case for
UPC as a feasible language for multi-core programming by
providing an optimizing compiler, called ScaleUPC, which
outperforms other UPC compilers targeting SMPs.

As the communication cost for remote accesses is removed
because all accesses are physically local in a multi-core, we
find that the overhead of pointer arithmetic on shared data
accesses becomes a prominent bottleneck. The reason is
that directly mapping the UPC logical memory layout to
physical memory, as used in most of the existing UPC com-
pilers, incurs prohibitive address calculation overhead. This
paper presents an alternative memory layout, which effec-
tively eliminates the overhead without sacrificing the UPC
memory semantics. Our research also reveals that the com-
piler for multi-core systems needs to pay special attention
to the memory system. We demonstrate how the compiler
can enforce static process/thread binding to improve cache
performance.

1. INTRODUCTION
With the advance in manufacturing technologies and con-
cerns of physical limitations of microelectronics, multi-core
computing becomes an inevitable trend in the computer in-
dustry. A natural use of a multi-core computer is to explore
thread level parallelism (TLP) to speed up an application,
requiring the application be multi-threaded. Current multi-
threaded programming often uses a conventional impera-
tive language plus the Pthread library, which is notorious
for its high complexity, low productivity, and poor porta-

bility. A high-level parallel programming language aiming
at multi-core computing is thus more desirable in terms of
easy programming and programmer productivity, although
it requires more compilation support. An example in this
regard is OpenMP which adds parallel directives to C/C++
and Fortran and is an industrial standard for SMPs. How-
ever, the directives in OpenMP only serve as hints for paral-
lelization that should instead be an integral part of the host
language [25]. The languages with the partitioned global ad-
dress space (PGAS) address this issue by integrating parallel
syntax into existing sequential languages. PGAS languages
have already shown advantages in large-scale parallel com-
puters and cluster environments [10, 14]. This paper instead
investigates compilation support targeting a single multi-
core computer for UPC, a representative PGAS language.

UPC, a parallel extension to C, delivers high programmer
productivity via its shared memory model, allowing pro-
grammers to be less concerned with low-level synchroniza-
tion and communication across processors. In addition, UPC
offers high performance via a partitioned memory space that
provides effective parallelism and the inheritance of a well-
developed software base from C. However UPC was designed
for large-scale parallel computers or clusters. The compila-
tion implementation often relies on MPI to implement the
communication and parallelism. In a single multi-core ma-
chine, where the memory is both logically and physically
shared, remote accesses and communication are no longer
necessary. We propose a UPC compiler, ScaleUPC, which
directly translates a UPC program to a C program with
Pthreads.

For a UPC compiler under a cluster environment, commu-
nication and UPC pointer arithmetic are two key perfor-
mance considerations. While C is already difficult to op-
timize due to pointers and aliases, UPC brings additional
complexity by differentiating pointers pointing to shared ob-
jects (pointers-to-shared) from pointers pointing to private
objects (pointers-to-private). Dereferencing a pointer often
requires complicated calculations and even run-time func-
tion calls. An optimizing compiler can reduce this complex-
ity by casting a pointer-to-shared to a local pointer, called
privatization. A UPC compiler can reduce communication
cost through software caching, remote prefetching, and mes-
sage coalescing [13, 16]. Our study shows that UPC pointer-
to-shared arithmetic remains a significant part of overall ex-
ecution time in a multi-core system. The pointer arithmetic
overhead comes from the process of mapping the UPC global

shared address space to the physical memory space. This
paper presents a novel memory layout for shared objects,
which can significantly reduce the extra computation cost
and still maintain the compatibility to the UPC shared mem-
ory semantics. By using this new memory layout, ScaleUPC
outperforms two peer UPC compilers, Berkley UPC [1] and
Intrepid UPC [6], which can compile UPC for SMPs.

It was our original intent to design a compiler for a high level
programming language such that the compiler can statically
analyze parallel application’s memory behavior and opti-
mize for the multi-core memory system performance. This
paper demonstrates the importance of memory system opti-
mization by proposing a profile-driven static process binding
scheme. Our compiler can statically bind a thread or pro-
cess to a specific core. We show that there is up to a 66%
performance gap among several simple binding policies and
the compiler can help to find an optimal policy with the
assistance of profiling.

2. BACKGROUND AND RELATED WORK
2.1 Unified Parallel C
This section briefly introduces UPC. We focus on the parallel
language features to which our compiler pays attention.

Execution Model. UPC adopts the single program multi-
ple data (SPMD) execution model. Each execution unit ex-
ecutes an identical program, denoted as a UPC thread. Each
UPC thread can identify itself by an identifier MYTHREAD.
UPC compilers typically implement a UPC thread as a pro-
cess. Our compiler instead implements it as a Pthread for
efficient multi-core execution.

Partitioned Shared Memory. The PGAS model of UPC
gives programmers an illusion of logically shared memory
space. Data objects in a UPC program can be either private
or shared. A UPC thread has exclusive access to the private
objects that reside in its private memory. A thread also has
accesses to all of the objects in the shared memory. UPC
partitions the global (shared) address space through the con-
cept of affinity. The entire global address space is equally
partitioned among all threads. The block of the global ad-
dress space associated with a thread is said to have affinity
to that thread. The concept of affinity captures the reality
that on most modern parallel architectures the latencies of
accessing different shared objects are different. It is assumed
that for a shared object, an access from a thread that affili-
ates with that object is much faster than accesses from other
threads. However, in a multi-core machine, this assumption
no longer holds and affinity may be treated logically. Affinity
does have impact on the performance of memory hierarchy,
depending on the implementation.

The distribution of shared data objects among threads can
be determined by specifying the block size, the number of
objects in a block. The data in the same block are physically
contiguous and have the same affinity and the blocks will be
distributed to each UPC thread in a round-robin fashion.
The offset of an object within a block is called a phase.

Based on the location of the pointed-to objects, there are two
types of pointers in UPC: pointer-to-private and pointer-to-
shared. The former one points to a private object and its

arithmetic follows the same semantics as a pointer in ANSI
C. A pointer-to-shared targets a shared object. The pointer
arithmetic of a pointer-to-shared requires the knowledge of
the type of the shared object and its attributes: affinity,
block, and phase. To reduce the complexity of pointer-to-
shared arithmetic, privatization can be applied by casting a
pointer-to-shared to a pointer-to-private with certain trans-
formations. In a multi-core environment, privatization can
still have a notable impact on overall application perfor-
mance, depending upon the memory layout chosen by the
compiler as discussed in Sections 3 and 5.

2.2 Related Work
There are quite a few UPC compilers available in academia
and industry. However, to our knowledge, none of them di-
rectly targets multi-core systems. Some of them may com-
pile UPC to run on a multi-core machine, but they use slower
communication mechanisms such as message passing or im-
plement a UPC thread as a process, which is more expensive
in terms of context switching and inter-process communica-
tion than the kernel thread implementation.

UPC is part of the Cray C compiler for the Cray X1 [15]. A
development version of UPC has been used for performance
measurement on the IBM BlueGene/L at Lawrence Liver-
more National Laboratories [10]. Michigan Tech has devel-
oped a public domain UPC compiler with a run-time sys-
tem that uses MPI as the transportation layer [2, 26]. The
most widely used public domain UPC compiler is Berkeley
UPC [1]. It has a highly portable run-time system because
it provides a multi-layered system design that interposes the
GASNet communication layer between the run-time system
and the network [5]. GASNet works with various types of
network, such as Myrinet and Quadrics. Berkeley UPC in-
cludes a UPC-to-C translator based on the Open64 open
source compiler. Various optimizations, mainly for generat-
ing shared memory latency tolerant code, are done at the
UPC source code level. Translator-level optimizations for
Berkeley UPC are described in [12]. Though Berkeley UPC
includes a SMP conduit and utilizes Pthreads as an opti-
mization for SMP systems, it suffers from the overhead of
address arithmetic. Intrepid Technology provides a UPC
compiler [6] as an extension to the GNU GCC compiler. In-
trepid implements a UPC thread as a process when running
on Intel SMPs and uses memory map (mmap) as the mech-
anism of inter-process communication. Campaq offered the
first commercially available UPC compiler [4]. The current
version of this compiler targets Tru64 UNIX, HP-UX, and
XC Linux clusters.

In the area of process scheduling on multi-core, cache-fair
algorithms [9] and cache partitioning [21] address the fair
cache allocation problem. Parekh et al. [22] propose al-
gorithms to identify the best set of workloads to run to-
gether. Nakajima and Pallipadi use hardware event counters
to guide the scheduling [19]. Hardware solutions on shared
cache management have also been proposed [20, 11]. All of
them aim at scheduling multiple standalone workloads on
shared resources. Our solution explores inter-thread local-
ity of multi-threaded applications and focuses on identify-
ing a specific process binding policy for SPMD programs to
achieve better cache performance without hardware or OS-
wide modification.

3. COMPILER DESIGN
In this section, we present the details of the construction of
our UPC-to-C compiler.

3.1 Extensions to Scale Research Compiler
Our UPC compiler, ScaleUPC, is based on Scale (A Scalable
Compiler for Analytical Experiments) [24], a compiler in-
frastructure developed by the University of Massachusetts,
Amherst and the University of Texas, Austin. Scale pro-
vides C and Fortran frontends, a middle-end with most con-
ventional compiler optimizations, and SPARC, Alpha, and
Trips backends.

The Scale frontend transforms C or Fortran source code to
an abstract syntax tree, called Clef. We extend Scale’s C
frontend and Clef-to-C module to translate a UPC program
to a multi-threaded C program, where each UPC thread
is mapped to a POSIX thread (Pthread). Alternatively, a
UPC thread can be implemented as a process as usually
implemented in distributed systems. The primary moti-
vation for the use of Pthreads instead of processes is that
it results simpler design and better performance. Com-
pared with a process-based design, our Pthread-based de-
sign allows shared data be allocated directly by C constructs
without run-time shared memory mapping. In addition, it
can avoid TLB flushing during switching between threads.
Though all the threads of a process share attributes such as
open file descriptor, signal handling state, and user IDs, the
sharing does not break UPC thread semantics.

3.2 Shared, Global, and Private Data Objects
In ANSI C, data objects declared in the file scope are both
global to all routines and shared by all threads. In UPC,
data declared in the file scope without a shared qualifier are
still accessible to all routines, but each thread maintains a
separate instance. We call them global private (non-shared)
data.

In our implementation, local private data are treated as reg-
ular C local data, allocated on the stack. Shared data are
translated into C global variables and thus are accessible to
all threads. Global private data are allocated in thread-local
storage (TLS) by specifying the thread, a reserved keyword
of GCC.

To reference the local private data and global private data,
we can use regular C pointers. To reference a shared data
object, we use the following 5-tuple to describe a pointer-to-
shared in ScaleUPC:

1. block address: the physical address of the beginning of
a block that the pointed-to object resides in;

2. thread: the thread affinity of the pointed-to object;

3. phase: the offset within the block;

4. block number: the logical block number (This field is
not indispensable, but it facilitates the calculation of
the logical distance from one pointer-to-shared to the
other);

5. type: the type of the object that is pointed to, in-
cluding the block size specified in the declaration or
dynamic allocation, the size of each element, and the

9(a) the UPC logi-
cal layout of shared
memory

9(b) block-major layout in linear physical
memory

9(c) thread-major layout in linear physical memory

Figure 1: Logical and physical layouts of shared [2]
int a[10], THREADS = 3

number of elements in the static array or allocated
memory.

The physical memory address can be calculated as block ad-
dress + phase × element size. However, all five fields except
type need to be updated when pointers are manipulated. De-
pending on the underlying memory layout used for shared
data, there is significant variance in terms of the complexity
and cost of the pointer updating algorithm, which will be
detailed in the next section.

3.3 Memory Layouts for Shared Data
This section discusses two alternative memory layouts for
UPC shared data and their impacts on array references and
pointer-to-shared arithmetic.

We begin with an illustration, as shown in Figure 1(a), of a
shared array a of size 10, which is distributed across three
threads with block size 2. By the UPC semantics, thread
0 has two blocks: one contains a[0] and a[1]; the other a[6]
and a[7], similarly for threads 1 and 2. If a pointer-to-shared
pointer, p, points to a[1], the increment of p by 1 makes
it point to a[2]. However, if p is cast to a local pointer
q through privatization, the increment of q by 1 makes it
point to a[6].

We implement two memory layouts for a shared array: thread-
major and block-major. Thread-major follows a typical trans-
lation of a UPC compiler for a distributed shared memory
system. The shared data with the same affinity are assem-
bled as a one-dimensional array such that all local objects
are next to each other physically. In our compiler, we trans-
late array declaration a[10] to a′[3][4] where the first sub-
script denotes the thread affinity as shown in Figure 1(c).
For example, under thread-major, a′[1][2] refers to a[8].

Thread-major adds complexity to the arithmetic of pointer-
to-shared and shared array address calculations while pri-
vatization can simplify it. When a pointer-to-shared is cast
(privatized) to a pointer-to-private, the thread-major layout
would facilitate pointer arithmetic of the cast pointer, which
has the same semantics as a regular C pointer since the lo-

cal shared objects are physically mapped together. However,
the translation of pointer arithmetic for a pointer-to-shared
is much more expensive than the regular C pointer arith-
metic. Note that p + i in C is interpreted as the address
in pointer p plus i multiplied by the size of the type that
p points to. It only requires two arithmetic operations in
C. In UPC under the thread-major layout with a pointer-
to-shared p, p + i can cross a block and/or thread bound-
ary. A correct calculation would involve updating the first
four fields of a pointer-to-shared structure that requires at
least 15 basic operations in our implementation. The large
number of operations also implies a large number of tem-
poraries and possibly more register spills. When blocks are
not evenly distributed among threads, two more basic oper-
ations are needed to adjust the block address.

For a numeric application where arrays are frequently used,
the cost of shared array references is prohibitive due to the
overhead of pointer-to-shared arithmetic since an array ac-
cess like a[i] virtually implies a pointer arithmetic of a + i.
However, being different from a generic pointer-to-shared,
the phase and thread affinity of a are constantly 0. Tak-
ing advantage of this property, as long as the compiler can
identify that a points to the first element of a statically or
dynamically allocated array (usually a is the array name it-
self), the compile-time constant folding helps to reduce the
number of basic arithmetic operations from 15 to 8 in our
implementation and the need for temporary intermediate
variables is lowered as well.

To reduce the complexity of pointer-to-shared arithmetic,
we introduce an alternative layout, the block-major layout.
The block-major layout keeps the original declaration as it
is in the generated code, so a[i] will be physically adjacent
to a[i + 1] as shown in Figure 1(b). This layout greatly
simplifies the pointer arithmetic for a pointer-to-shared and
makes privatization a redundant optimization.

When the block major layout is applied, pointer-to-shared
arithmetic can have the same cost as regular C pointers. Al-
though for pointers-to-shared the attributes such as thread
affinity and phase still need to be maintained since they may
be used by some UPC-specific operations such as upc threadof()
and upc phaseof(), they can be computed with less opera-
tions than the thread-major layout. For a shared array ref-
erence, such as a[i], its address calculation is the same as
a regular C reference. We do not calculate any pointer-to-
shared attributes unless they are needed. For instance, when
the address of a[i] is taken, a pointer-to-shared structure will
be created by the compiler for future pointer references. By
leaving a shared array reference in the same form as it is
in the source code, a native C compiler can enjoy simpler
dependence testing and possibly perform more dependence-
related optimizations.

Though it is unnecessary to perform pointer privatization
on a single multi-core computer with block-major, the pro-
grammer who does not know this layout optimization may
still cast a pointer-to-shared to a pointer-to-private. The
pointer arithmetic of the cast pointer can be erroneous if the
pointer crosses block boundary. We propose a conservative
compiler solution to solve this problem. When the priva-
tization is detected by the compiler, there are three cases:

(1) the pointer-to-private and its aliases (denoted as set P)
are only used in the current procedure. The cast pointer
and its aliases can be handled as special UPC pointers. We
provide corresponding run-time support so that the UPC se-
mantics are not broken. (2) any member of P is passed as a
parameter to another routine whose source code is exposed
to the compiler. The solution is similar to case (1), but it
requires inter-procedural pointer analysis, which is not cur-
rently included in our implementation. We simply suspend
block-major layout. (3) any member of P is passed as a pa-
rameter to an external library routine which is not subject to
recompilation. We revert to the conservative thread-major
layout.

4. PROFILING-BASED PROCESS SCHEDUL-
ING

UPC was designed for a cluster environment where commu-
nication cost is a major concern. To achieve high perfor-
mance in a single multi-core machine, a UPC compiler must
instead consider the impact of the memory hierarchy. This
section discusses how process scheduling affects memory sys-
tem performance and proposes a preliminary profiling-driven
static thread binding scheme that explores inter-thread lo-
cality. We target a SMP machine with multiple multi-core
processors.

In a hybrid system of SMP, CMP and/or SMT, caches and
memory bus interfaces can be either shared or private. For
a multi-threaded application, scheduling of the threads by
the operating system can significantly affect the memory
system performance [23]. Given a pair of threads in a multi-
threaded application, when the two threads are scheduled
on two cores with dedicated caches and memory bus inter-
faces, there is no bus contention between the two threads nor
inter-thread cache conflict. However, this scheduling fails to
explore inter-thread locality and also increases bus traffic
and likely latency for maintaining cache coherence. On the
other hand, when the two threads are scheduled on the same
die or domain with a shared cache, the two threads will com-
pete for cache and system bus, and may cause inter-thread
conflicts. However, the scheduling has potential to improve
the hit rate depending on the inter-thread locality.

By default, the thread scheduler in the current Linux ker-
nel prefers to bind each thread to a core with dedicated
resources, which may benefit some benchmarks but hurt the
others [23]. Ideally, to achieve optimal performance for every
workload, threads need to be scheduled dynamically based
on their memory behavior. We propose a simple, profiling-
based algorithm to determine the process/thread binding
policy statically. The profiler compares the miss rates be-
tween the two scheduling policies for a training input. For
each pair of threads, it suggests binding the two threads into
two cores with a shared cache only when the profiler finds it
would improve the cache hit rates over a threshold. The pro-
filer then feeds back this hint to the compiler which inserts
OS API calls to enforce the binding. Given two threads, we
profile their miss rates assuming a shared cache and their
miss rates under separate caches. We calculate the miss
rate as the total L2 misses of the two threads divided by
their total L2 accesses. Assume that the miss rates are x
and y respectively for the two settings and also assume the
cache hit latencies are H1 and H2 and miss latencies are M1

and M2. The average cache access latencies of one access
are (1− x) ∗H1 + x ∗M1 and (1− y) ∗H2 + y ∗M2 respec-
tively. Binding two threads to the same cache would benefit
if (1 − x) ∗ H1 + x ∗ M1 < (1 − y) ∗ H2 + y ∗ M2 which is
reduced to x

y
< M2−H

M1−H
when H1 = H2 = H. When the num-

ber of threads of an application is large, profiling the miss
rates for the threads pair by pair would require a large num-
ber of profiling runs. Fortunately, in a SPMD program, the
data access patterns of all thread are usually similar to each
other. We thus only need to profile a pair of representative
threads in most cases.

5. EXPERIMENTAL EVALUATION
In this section, we first present the effect of our new UPC
shared memory layout and compare our compiler with Berke-
ley UPC, Intrepid UPC, and GNU OpenMP. We then show
how the memory system influences the UPC application per-
formance and thus future compiler design for multi-core sys-
tems by evaluating our profile-driven process binding opti-
mization. Note that Berkeley UPC and Intrepid UPC were
specially designed for distributed shared memory systems.
It is not our goal to simply show the advantage of Scale-
UPC over the two compilers since ScaleUPC focuses on the
multi-core architecture. Instead, our evaluation in this sec-
tion shows that it is worth consideration for the UPC com-
munity and programmers to take data layout into account
when compiling a UPC program for a multi-core machine or
a cluster of multi-cores.

We use George Washington University’s Matrix Multipli-
cation (MM), N-Queen (NQ) and the UPC implementa-
tion of the NAS NPB benchmark suite [3]. MM computes
C = A×B by a basic 3-loop algorithm (O(n3)). We choose
an array size of 2048×2048 for A, B and C. We intentionally
transpose B for simple cache and locality analysis. Arrays
A, B and C are all declared as shared arrays with a block
size of 2048, denoting round-robin distribution of rows across
UPC threads. For NQ, we use a 16 × 16 chess board. The
UPC version of the NAS NPB benchmark suite includes CG,
EP, FT, IS, and MG. Each benchmark has a basic, untuned
version (O0). The O0 set will be referred as NPB O0 later
on 1. All NPB benchmarks except EP have hand-optimized
versions that implement privatization (O1) and/or remote
prefetching (O2) [16] at the UPC source code level. Since
the O2 version implies O1, it is called O3 instead, which
means O1 plus O2. We choose the versions with the highest
optimization option from the suite and refer to the set as
NPB O3. It is expected that an optimizing compiler can
match the performance of the O3 set by optimizing the O0
set. Each benchmark has a class parameter to specify the
problem size. The parameter, in increasing order of problem
size, can be S, W, A, B, C or D. In our experiments, we use
class B, the maximum problem size that enables all NPB
benchmarks to run in our test multi-core machine without
exceeding the limit of its physical memory size.

We run the benchmarks on a Linux 2.6 based 8-core server,
which is equipped with two Intel Xeon 5345 2.33 GHz Quad-
Core processors and 4 GB DRAM composed of 667 MHz
dual ranked, fully buffered DIMMs. Each processor con-

91MM and NQ are untuned too. So in our analysis, we discuss
them with the O0 group.

sists of two dual-core dies. The processor has 2-level caches:
32KB private L1 data cache per core and 4 MB shared L2
cache per die (8MB total cache per processor) [8]. The Mem-
ory Controller Hub on the server board supports an indepen-
dent 1333 MHz front side bus interface for each processor [7].
Figure 2 illustrates the topology of the machine.

Figure 2: Topology of the 8 cores

5.1 Performance Comparison
In this section, we compare the performance of ScaleUPC
with Intrepid UPC 4.0.3.4 and Berkeley UPC 2.6.0. We turn
on -O3 and -O options, for Intrepid UPC and Berkeley UPC
respectively, to generate optimized target code. For refer-
ence purposes, we also measure the performance of NPB’s
OpenMP implementations [17]. The NPB OpenMP bench-
marks are compiled using GNU’s OpenMP compiler 4.1.2.
All OpenMP benchmarks except IS are hosted in Fortran
while IS is in C. Since OpenMP and UPC are two differ-
ent languages, the performance gap between them can help
reveal the potential performance profit that the slower one
can exploit.

When compiled by Berkeley UPC and Intrepid UPC, FT ex-
periences exceptionally long execution time, and so does IS
under Intrepid UPC. We exclude those outliers in our statis-
tics. ScaleUPC is able to compile all benchmarks correctly.

5.1.1 Block Major vs. Thread Major

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

MM NQ CG EP FT IS MG

Execution Time (normalized to block-major)

5.4 23.5
19

19.4

Block-Major
Thread-Major

Intrepid UPC
Berkeley UPC

9(a) MM, NQ and NPB O0
on Xeon / 8 threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CG FT IS MG

Execution Time (normalized to block-major)

4.8

Block-Major
Block-Major (O0)

Thread-Major

Intrepid UPC
Berkeley UPC

OpenMP

9(b) NPB O3 on Xeon / 8
threads

Figure 3: Comparison on execution time

Figure 3 displays the normalized execution times when each
benchmark is compiled to eight threads. The code generated
by ScaleUPC using the block-major layout shows the best
overall performance. The degree of improvement largely de-
pends upon the frequency of pointer-to-shared arithmetic.
NQ and EP are embarrassingly parallel and have few shared
memory access, so the difference in performance for each
compiler is small. For the programs with intensive shared
memory accesses including MM and all NPB O0, except EP,
block major layout has a significant advantage due to its
simple pointer arithmetic. For MM, the block-major layout

is 5.4 times faster as the thread-major layout. The block
major layout brings an average of 3.16 speedup over the
thread major layout for NPB O0. However, as shown in
Figure 3(b), the gap between block-major and thread-major
becomes barely noticeable for NPB O3 because privatization
and remote prefetching essentially eliminate shared accesses.

Under the block-major layout, the difference in execution
times between each O0 and O3 version is within 1% except
IS whose O0 version is 4.8 times slower than the O3 ver-
sion. The IS O0 source code uses a different way to store
keys than the code in the O3 version, which involves extra
calculations for every access to the keys. In other words,
the IS O3 version not only applies privatization and remote
prefetching, but also changes the data structure and algo-
rithm. When we modified the IS O0 code to use the same
algorithm and structure as used in the O3 set for fair com-
parison, the gap was reduced to a few percent. In general,
when the block major layout is applied by ScaleUPC, the
non-optimized O0 can deliver comparable performance to
the hand-optimized O3 set. The thread major still needs
privatization and remote prefetching to compete.

5.1.2 ScaleUPC vs. Berkeley and Intrepid UPC
As shown in Figure 3(a), for MM, NQ, and NPB O0, Scale-
UPC block major outperforms Berkeley UPC and Intrepid
UPC. On average, ScaleUPC/block-major delivers a speedup
of 2.24 and 2.25 over Berkeley UPC and Intrepid UPC, re-
spectively. The performance gap is largely from the over-
head of shared data layout as implied by comparing with
ScaleUPC/thread-major and the performance of NPB O3.
Both Intrepid UPC and Berkeley UPC maintain the memory
layout in a thread-major like style. The average performance
of Berkley UPC and Intrepid UPC is more comparable to
that of ScaleUPC/thread-major for MM, NQ, and NPB O0:
ScaleUPC/thread-major still gains a 7% speedup over In-
trepid UPC, but loses to Berkeley UPC by 30%.

The performance gaps among all compilers are significantly
reduced for the benchmark set of NPB O3 as shown in Fig-
ure 3(b). As described early, NPB O3 is a hand-optimized
benchmark suite that applies privatization and remote prefetch-
ing so that the shared data accesses are transferred to lo-
cal accesses. With these two optimizations, the benefit of
block-major which reduces the cost of address arithmetic of
shared data accesses is cut down to the minimum. As a
result, ScaleUPC/block-major and ScaleUPC/thread-major
show almost the same performance. Intrepid UPC outper-
forms Scale UPC by 4% for CG, the single benchmark in
NPB O3 it can compile correctly. Berkeley UPC is still 23%
behind ScaleUPC, on average, for CG, IS and MG. Based on
the results in Figure 3, we conclude that privatization and
remote prefetching are still two indispensable optimizations
that a multi-core UPC compiler needs to implement if the
thread-major layout is taken. However, the two optimiza-
tions are redundant when the block-major layout is applied
at compile time.

5.1.3 ScaleUPC vs. OpenMP
The UPC benchmarks compiled by ScaleUPC/block-major
deliver comparable performance as their OpenMP counter-
parts compiled by GCC. On average, OpenMP gains merely
2% over ScaleUPC/block-major. It suggests that an ap-

plication written in UPC can compete with an application
written in OpenMP. Taking both Figure 3(a) and Figure
3(b) into account, we can observe a significant gap between
OpenMP and Intrepid UPC for NPB O0, both of which are
GNU based compilers. It suggests that the multi-threading
implementation and the block-major memory layout pro-
posed in this paper are two key parts for UPC to achieve
high performance in a multi-core environment.

5.2 Scalability

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9

S
pe

ed
up

Thread(s)

(a) MM, NQ and NPB O0 - Block Major

MM
NQ
CG
EP
FT
IS

MG

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9
Thread(s)

(b) MM, NQ and NPB O0 - Thread Major

MM
NQ
CG
EP
FT
IS

MG

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9

S
pe

ed
up

Thread(s)

(c) NPB O3 - Block Major

CG
FT
IS

MG

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9
Thread(s)

(d) NPB O3 - Thread Major

CG
FT
IS

MG

Figure 4: Scalability of UPC on Xeon 8-core Server

This section analyzes the scalability of UPC programs com-
piled by ScaleUPC. We run the benchmarks on the Xeon
8-core server with 1, 2, 4 and 8 thread(s) respectively. In
general, the scalability is limited by the intrinsic parallelism
of programs, memory bus throughput, and cache coherence
and locality. The block-major layout mostly reduces opera-
tions related to pointer arithmetic compared to the thread-
major layout. It therefore does not improve the parallelism
of programs. However, the two layouts may cause differ-
ent cache locality and thus affect scalability one way or the
other. As shown in Figure 4, the overall scalability by the
block major layout is actually close to that by the thread-
major layout despite that the block-major layout provides
a factor of 3 speedup over the thread-major layout as dis-
cussed in Section 5.1.1.

For the O0 set, as shown by Figures 4(a) and (b), NQ and
EP exhibit perfect linear speedup since they are both embar-
rassingly parallel and computation bound programs. Taking
IS out, the average speedups at 8 threads are 4.52 for block
major and 4.38 for thread major. The block-major layout
wins slightly. Block major shows better average speedup at
2 and 4 threads with 30% and 18% improvements respec-
tively. IS O0 shows slight performance degradation when
scaled to 2 and 4 threads under block major. The data
distribution used in IS O0 does not scale for block major.
With a block size of one used in IS O0, the block-major
layout results in poor intra-thread spatial locality when the
number of thread increases. However, although IS O0 gains
close to linear speedup under thread major, its performance
is still far behind block major with a 31% slowdown at 8

L2 Misses (%) Speedup
Benchmark

Sha. Sep.
Sha.
Sep. Sep. Same Sha.

L2 L2 Pac. Pac. L2
MM 50.0 99.9 0.50 1.06 0.90 1.21
NQ 0 0 – 1.00 1.00 1.00
CG O0 25.9 25.9 1.00 1.04 0.92 0.80
CG O3 25.9 25.9 1.00 1.05 0.94 0.79
EP O0 0.02 0.02 1.00 1.00 1.00 1.00
FT O0 12.8 12.8 1.00 1.04 0.97 0.94
FT O1 12.9 12.8 1.00 1.02 0.95 0.92
IS O0 28.4 42.4 0.67 1.01 1.01 1.67
IS O1 36.5 36.3 1.00 1.02 0.96 0.94
MG O0 62.9 43.3 1.45 1.06 0.99 0.93
MG O3 63.6 44.9 1.42 1.06 0.92 0.82

Mean 1.03 0.96 0.97

Table 1: Estimated L2 miss rates and speedups
against default scheduling

threads as the cost of pointer arithmetic in thread major is
still dominant. MM and FT experience slight performance
degradation from single-thread to 2-thread execution under
the thread-major layout. This is because when the thread
count is 1, most multiplication, division and modulo oper-
ations used for address calculation are removed at compile
time. From 2 threads to 4 and 8 threads, the speedups of
MM and FT come back. CG shows no speedup or even
1.5% slowdown from 4-thread to 8-thread for NPB O3 un-
der both layouts and NPB O0 under block major layout.
CG compiled by Intrepid UPC and Berkeley UPC does not
scale from 4 to 8 threads either. We thus suspect CG cannot
scale well beyond four threads.

For NPB O3, the block-major and thread-major layouts
show almost the same speedups where the difference is be-
low 1%. Also, the speedups of NPB O0 under block-major
are close to those of NPB O3 under both memory layouts
except for IS. IS O3 uses a large block size such that both
block major and thread major show similar spatial locality.

5.3 Effects of Profiling-Based Static Process
Scheduling

Section 5.1 shows that the block major memory layout can
bring a speedup up to a factor of five. Although we attribute
the speedup to simpler pointer arithmetic, we still believe
the memory hierarchy would play a key role for the per-
formance of multi-threaded applications and the compiler
should take it into account for optimization. This section
showcases the importance of the memory hierarchy by eval-
uating the effects of our profiling-based process scheduling
algorithm that we present in Section 4. ScaleUPC is able to
exploit the memory system by applying appropriate binding
schemes suggested by the profiler.

To profile the benchmarks, we develop a cache simulation
tool based on the PIN tool set [18] to simulate the cache
hierarchy of the Xeon Quad-Core processor and gather miss
rates for different thread binding policies. As our model only
requires the ratio of L2 miss rates, this profiling-based tech-
nique assumes that the ratio does not change significantly
when input changes. This assumption can be false for some
benchmarks and inputs. We are designing a cache miss pre-

diction model that can adapt to input changes. However, for
the benchmark suite we used in this paper, we find that the
profiling-based scheme show high accuracy and is sufficient.

We profile the benchmarks using small inputs: class A for
NPB O0 benchmarks, 1024×1024 arrays for MM and a 8×8
chess board for NQ. Each benchmark is first compiled to two
threads for profiling because two threads allow us to evaluate
all possible processor bindings on the 2-way Quad-Core Xeon
machine and we use block-major layout as it delivers the best
performance compared to thread-major and other compilers.
Later in this section we discuss four thread case.

The second and third columns of Table 1 report the pro-
filing results. The second column shows the miss rates in
percentage when the two threads share a 4M L2 cache, em-
ulating the scenario when the two threads are bound to the
same die. The third column shows the miss rates when the
two threads run on two separate 4M L2 caches, emulating
the case when the two threads are bound to separate dies or
processors. The fourth column shows the ratio of the two
miss rates. Note that only MM and IS O0 show significant
miss reduction when the two threads share L2 cache.

We measure the execution times of the benchmarks with
larger inputs: class B for NPB benchmarks, 2048 × 2048
arrays for MM and a 16 × 16 chess board for NQ. The last
three columns of Table 1 report the speedup under different
process binding schemes over the default Linux scheduling.
The shared-L2 scheme binds two threads to the same die
that shares the L2 cache. For the same-package scheme,
two threads are bound to two separate dies that reside in
same package, so each has full access to its own L2 cache.
The separate-package/processor scheme sends two threads to
two processors, which is most similar to the default Linux
thread scheduling and gives each thread full access to the
caches and memory bus interfaces.

Although, by geometric mean, the three binding schemes
are all within 4% of the default scheduler, there are signif-
icant variances in the individual benchmarks. The largest
gap is observed for IS O0 where the best scheme outper-
forms the worst by 66%. When two threads are bound to
separate packages, the overall performance is slightly bet-
ter than under Linux default scheduling because the OS
will migrate each thread between cores within the pack-
age even though the current core would be idle. For our
Quad-Core Xeon machine, when there are few shared-data
accesses, separate-package should perform better than both
shared-L2 and same-package since two threads have sepa-
rate caches and independent front side bus. Shared-L2 will
excel over separate-package only when inter-thread locality
improves the hit rate to the degree that overcomes the neg-
ative impact of bus contention between two threads. Same-
package can never outperform separate-package since both
have private caches but Same-package has bus contention.
Same-package can do better than shared-L2 when shared-L2
causes large cache conflicts.

Based on the heuristic equation developed in Section 4, we
calculate a threshold of 0.79 based on the machine configu-
ration we have. We estimate 9 front side bus cycles and an
average of 18 memory cycles for each non-contention mem-

ory access. The bus contention adds 9 front side bus cycles.
Based on the clock rate of the CPU core, FSB, and DRAM,
we estimate 72 CPU cycles for a non-contention memory
access and 88 cycles for a memory access with contention.
The L2 hit latency is 13 cycles. Substituting the numbers
into the equation produces 0.79. Only MM and IS O0 cross
the threshold, which suggests shared-L2 is the best choice
for the two benchmarks. The results in Table 1 confirm this
simple model. For MM and IS O0, shared-L2 outperforms
separate-package by 14% and 66% respectively.

To test our model, we further compile the applications into
four threads. Three binding schemes are worth considera-
tion, shared-L2/separate-package, shared-L2/same-package,
and dedicated-L2/separate-package. The shared-L2/separate-
package scheme distributes two threads into one die and the
other two threads into another die on the other package,
while shared-L2/same-package scheme would put all four
threads into one package where each pair is sent to a separate
die. Between these two schemes, the shared-L2/separate-
package can apparently perform better since each pair of
thread will have a dedicated bus. Finally, the dedicated-
L2/separate-package scheme assigns four threads into four
separate dies. The choice between shared-L2/separate-package
and dedicated-L2/separate-package can still use our profiling-
based model since we are essentially determining whether,
for each pair of threads, we should assign them to the same
die or two separate dies on the same package. Our profil-
ing results and model show that only MM and IS O0 can
benefit from a shared L2 cache with improved L2 hit rates.
Note that now in our model M1 = M2. Shared-L2 wins
as long as it improves hit rate. The execution time results
conform with this prediction. MM and IS O0 show 38%
and 11% speedups with the shared-L2/same-package scheme
compared with binding each thread to a separate die, while
all other benchmarks show 0 to 12% slowdown.

6. CONCLUSION AND FUTURE WORK
UPC has been proved an effective language for large-scale
computing. This paper adds our efforts by compiling UPC
for a multi-core architecture. We show that, under the block-
major memory layout, our compiler can deliver comparable
performance against the hand optimized code by minimizing
the overhead of UPC pointer-to-shared arithmetic. As the
block-major layout shows its performance advantage over
the thread-major layout as used in Berkley UPC and In-
trepid UPC, we demonstrate that a high performance com-
piler of UPC must consider array layout when targeting
multi-core systems. We are making progress to expand our
compiler to support a cluster of multi-core machines. As
the block-major data layout shows its clear advantage in a
single multi-core machine while the thread-major layout has
it wide use and proved success in a cluster environment, the
compiler is expected to support a mixed data layout for a
shared array to exploit the benefits of the both layouts. In
addition, we plan to develop a code generator in the middle
end to take advantage of the existing analyses in the Scale
compiler infrastructure. The compilation for multi-core also
needs to consider the memory hierarchy. Our study shows
that processor bindings can impact performance greatly and
our profiling-based scheme can guide the bindings for opti-
mal performance. We plan to investigate a miss rate pre-
diction model for multi-threaded application to avoid the

drawback of the simulation based profiling strategy used in
this paper.

Acknowledgements
We would like to thank the anonymous reviewers for their
useful comments on this paper. This work is supported
by NSF Career CCF-0643664, NSF CCF-0811427, and NSF
CCF-0833082.

7. REFERENCES
[1] Berkeley UPC website.

[2] The MTU UPC website.

[3] UPC NAS benchmarks.

[4] Compaq UPC for Tru64 UNIX, 2004.

[5] GASNet website, 2004.

[6] The Intrepid UPC webiste, 2004.

[7] Intel 5000 series chipset server board family datasheet, 2007.

[8] Quad-core intel xeon processor 5300 series datasheet, 2007.

[9] Margo Seltzer Alexandra Fedorova and Michael D. Smith.
Improving performance isolation on chip multiprocessors via an
operating system scheduler, 2007.

[10] C. Barton, C. Carscaval, G. Almasi, Y. Zheng, M. Farrens, and
J. Nelson. Shared memory programming for large scale
machines. In Proceedings of the SIGPLAN 2006 Conference
on Programming Language Design and Implementation,
Ottawa, Ontario, Canada, June 2006.

[11] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin.
Predicting inter-thread cache contention on a chip
multi-processor architecture. In HPCA ’05: Proceedings of the
11th International Symposium on High-Performance
Computer Architecture, pages 340–351, Washington, DC, USA,
2005. IEEE Computer Society.

[12] W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and
K. Yelick. A performance analysis of the berkeley upc compiler,
June 2003.

[13] Wei-Yu Chen, C. Iancu, and K. Yelick. Communication
optimizations for fine-grained upc applications. In the 14th
International Conference on Parallel Architectures and
Compilation Techniques (PACT ’05), pages 267–278, 17-21
Sept. 2005.

[14] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey,
François Cantonnet, Tarek El-Ghazawi, Ashrujit Mohanti, Yiyi
Yao, and Daniel Chavarŕıa-Miranda. An evaluation of global
address space languages: co-array fortran and unified parallel c.
In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 36–47, New York, NY, USA, 2005. ACM
Press.

[15] Cray Inc. Cray X1 system overview, 2003.

[16] T. El-Ghazawi and S. Chauvin. UPC benchmarking issues. In
the 2001 International Conference on Parallel Processing
(ICPP), pages 365–372, 3-7 Sept. 2001.

[17] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation
of NAS parallel benchmarks and its performance. Technical
Report: NAS-99-011.

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages
190–200, New York, NY, USA, 2005. ACM Press.

[19] Jun Nakajima and Venkatesh Pallipadi. Enhancements for
hyper-threading technology in the operating system: seeking
the optimal scheduling. In WIESS’02: Proceedings of the 2nd
conference on Industrial Experiences with Systems Software,
pages 3–3, Berkeley, CA, USA, 2002. USENIX Association.

[20] Won-Taek Lim Nauman Rafique and Mithuna Thottethodi.
Architectural support for operating system-driven cmp cache
management. In PACT ’06: Proceedings of the 15th
international conference on Parallel architectures and
compilation techniques, pages 2–12, New York, NY, USA,
2006. ACM.

[21] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In MICRO 39:
Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 423–432, Washington,
DC, USA, 2006. IEEE Computer Society.

[22] S. Eggers S. Parekh and H. Levy. Thread-sensitive scheduling
for smt processors, 2000.

[23] Suresh Siddha, Venkatesh Pallipadi, and Asit Mallick. Process
scheduling challenges in the era of multi-core processors. Intel
Technology Journal, 11:361–369, 2007.

[24] University of Massachusetts Amherst. The Scale webiste.

[25] Katherine Yelick. Why UPC will take over OpenMP?, 2004.

[26] Zhang Zhang, J. Savant, and S. Seidel. A UPC runtime system
based on MPI and POSIX threads. In 14th Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing (PDP ’06), page 8pp., 15-17 Feb.
2006.

	Introduction
	Background and Related Work
	Unified Parallel C
	Related Work

	Compiler Design
	Extensions to Scale Research Compiler
	Shared, Global, and Private Data Objects
	Memory Layouts for Shared Data

	Profiling-Based Process Scheduling
	Experimental Evaluation
	Performance Comparison
	Block Major vs. Thread Major
	ScaleUPC vs. Berkeley and Intrepid UPC
	ScaleUPC vs. OpenMP

	Scalability
	Effects of Profiling-Based Static Process Scheduling

	Conclusion and Future Work
	References

