next up previous
Next: The geometry Up: Class room note: Drawing Previous: History and motivation

   
The algebra

Consider five equally spaced line segments meeting at a point B. The angels formed will be $360/5 = 72^\circ$ angles. Thus we will need to construct $\cos(72^\circ)$ using our straight-edge, sring and chalk. Recall that in radians $72^\circ = \frac{2\pi}{5}$. Let

\begin{displaymath}\alpha = e^{\frac{2\pi}{5}i}
= \cos(\frac{2\pi}{5}) + \sin(\frac{2\pi}{5}),
\end{displaymath}

then $\alpha^5 = (e^{\frac{2\pi}{5}i})^5 = e^{2\pi i} = 1$. Hence $\alpha$ is a root of the polynomial X5-1 = (X-1)(1+X+X2+X3+X4). Thus, because $\alpha\neq 1$, we have

\begin{displaymath}1+\alpha + \alpha^2 + \alpha^3+ \alpha^4 = 0
\end{displaymath}

Also $\alpha^4 \alpha = \alpha^5 =1$, So

\begin{displaymath}\alpha^4 = \alpha^{-1} =
\cos(-\frac{2\pi}{5}) + \sin(-\frac{2\pi}{5})
=
\cos(\frac{2\pi}{5}) - \sin(\frac{2\pi}{5}),
\end{displaymath}

because $\cos(-x) = \cos(x)$ and $\sin(-x) = -\sin(x)$. Let $\beta = \alpha + \alpha^{4}$. Then

\begin{displaymath}\beta= 2\cos(\frac{2\pi}{5}) = 2\cos(72^\circ).
\end{displaymath}

We need to construct $\beta/2$. Now

\begin{displaymath}\beta^2+\beta - 1
=(\alpha + \alpha^{4})^2+(\alpha + \alpha^{...
...^{4} -1\\
=\alpha^2 + 1+ \alpha^{3}+\alpha + \alpha^{4}\\
=0
\end{displaymath}

Therefor $\beta/2$ and hence $\cos(72^\circ)$ is a root of

4X2+2X-1

a quadratic. Thus $\cos(72^\circ)$ can be drawn bye inscribing straight lines and circles. Note in particular applying the quadratic formula we have

\begin{displaymath}\cos(72^\circ) = \frac{\sqrt{5} -1}{4}.
\end{displaymath}

Thus we need to construct this length.



Donald L. Kreher
2002-10-01