MTU

Publications
  1. Pant, D., Pokharel, S., Mandal, S., KC B Dukka, Pati, R. DFT-aided machine learning based discovery of magnetism in Fe-based bimetallic chalcogenides. Scientific Reports 13 , 3277 (2023).

  2. Pant, D., Pati, R. Phase transition from a nonmagnetic to a ferromagnetic state in a twisted bilayer graphene nanoflake: the role of electronic pressure on the magic twist. Nanoscale (Communication) 14 , 11945 (2022).

  3. Aryal, S., Pati, R. PbTe (core)/PbS(shell) Nanowire: Electronic Structure, Thermodynamic Stability, and Mechanical and Optical Properties. J. Phys. Chem. C 125 , 22660 (2021).

  4. Pant, D., Aryal, S., Mandal, S., Pati, R. Emergence of Ferromagnetism due to Spontaneous Symmetry Breaking in a Twisted Bilayer Graphene Nanoflake. Nano Letters 21 , 7548 (2021).

  5. Geng, L., Dhoka, S., Goldfarb, I., Pati, R., Jin, Y. M. Origin of Magnetism in γ-FeSi2/Si (111) Nanostructures. Nanomaterials 11 , 849 (2021).

  6. Aryal, S., Paudyal, D., Pati, R. Cr-Doped Ge-Core/Si-Shell Nanowire: An Antiferromagnetic Semiconductor. Nano Letters 21 , 1856 (2021).

  7. Geng, L., Pati, R., Jin, Y. M. Electric field control of magnetism at the γ-FeSi2/Si (001) interface. Journal of Materials Science 56 , 3804 (2020).

  8. Aryal, S., Pati, R. Spin Filtering with Mn-doped Ge-core/Si-shell Nanowires. Nanoscale Advances 2 , 1843 (2020).

  9. Dascalu, M., Dieguez, O., Geng, L. D., Pati, R., Jin, Y. M., Goldfarb, I. Tomographic layer-by-layer analysis of epitaxial iron-silicide nanostructures by DFT-assisted STS. Applied Surface Science 496 , 143583 (2019).

  10. Sahoo, M., Kushwaha, A., Pati, R., Ajayan, P., Nayak, S. First-principles study of a vertical spin switch in atomic scale two-dimensional platform. J. of Mag. and Mag. Materials 484 , 462 (2019).

  11. Jaishi, M.; Pati, R. Oscillatory Tunnel Magnetoresistance in a Carbon Nanotube Based Three-Terminal Magnetic Tunnel Junction J. Phys. Chem. C DOI: 10.1021/acs.jpcc.8b10458

  12. Chen, T.; Zhang, S.; Jaishi, M.; Adhikari, R.; Bi, J.; Fang, M.; Xia, S.; Zhang, Y.; Luck, R.; Pati, R.; Lee, H.; Luo, F.; Tiwari, A.; Liu, H. New near-infrared fluorescent probes with single-photon Anti-Stokes-Shift fluorescence for sensitive determination of pH variances in Lysosomes with a double-checked capability ACS Appl. Bio Mater. 1, 549 (2018).

  13. Jaishi, M.; Pati, R. Catching the electron in action in real space inside a Ge-Si core-shell nanowire transistor Nanoscale 9, 13425 (2017).

  14. Zhang, S; Adhikari, R.; Fang, M.; Dorh, N.; Li, C.; Jaishi, M.; Zhang, J.; Tiwari, A.; Pati, R.; Luo, F.; Liu, H. Near-Infrared Fluorescent Probes with Large Stokes Shifts for Sensing Zn(II) Ions in Living Cells ACS Sensors 1(12) ,1408 (2016).

  15. Dhungana, Kamal B; Jaishi, M.; Pati, R. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor Nano Letters 16(7), 3995(2016).

  16. Dorh, N.;Zhu, S.; Dhungana, Kamal B.; Pati, R.; Luo FT.; Liu, H.; Tiwari, A. BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity Scientific Reports 5, 18337(2015).

  17. Dhungana, Kamal B; Pati, R. Boron Nitride Nanotubes for Spintronics (Review) SENSORS 14(9), 17655(2014).

  18. Dhungana, Kamal B; Pati, R. Fluorinated Boron Nitride Nanotube Quantum Dots: A Spin Filter J. Am. Chem. Soc. 136, 11494(2014).

  19. Dhungana, Kamal B; Pati, R. Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor App. Phys. Lett. 104, 16204(2014).

  20. Dhungana, Kamal B; Pati, R.Electrical tuning of spin current in a boron nitride nanotube quantum dot Phys. Chem. Chem. Phys 16, 7996(2014).

  21. Dhungana, Kamal B; Mandal, S; Pati, R.Switching of Conductance in a Molecular Wire: Role of Junction Geometry, Interfacial Distance, and Conformational Change J. Phys. Chem. C 116, 17268(2012).

  22. Mandal, S; Pati, R.What determines the sign reversal of magnetoresistance in a molecular tunnel junction? ACS Nano 6, 3580 (2012).

  23. Mandal,S; Pati, R. Mechanism behind the switching of current induced by a gate field in a semiconducting nanowire junction Phys. Rev. B 84, 115306 (2011).

  24. Pal, P. P.; Pati, R. Charge Transport in Strongly Coupled Molecular Junctions: "In-Phase" and "Out-of-Phase" Contribution to Electron Tunneling J. Phys. Chem. C 115, 17564 (2011).

  25. Mandal,S; Pati, R. Codoping in a single molecular junction from first principles Phys. Rev. B 83, 195420 (2011).

  26. Pal, P. P.; Pati, R. First-principles study of the variation of electron transport in a single molecular junction with the length of the molecular wire. Phys. Rev. B 82, 045424 (2010).

  27. Bandyopadhyay, A.; Pati, R.; Sahu, S.; Peper, F.; Fujita, D. Massively parallel computing on an organic molecular layer Nature Physics 6, 369-375 (2010); see also News and Views Molecular computing: Aromatic arithmatic by Andy Adamatzky Nature Physics 6, 325-326 (2010).

  28. Pati, R.; Panigrahi, P.; Pal, P.; Akdim, B.; Pachter, R. Gate field induced electronic current modulation in a single wall boron nitride nanotube: Molecular scale field effect transistor. Chem. Phys. Lett. 482, 312 (2009).

  29. Mandal,S.; Pati, R. Quantum confinement and phase transition in PbS nanowire: A first principles study. Chem. Phys. Lett. 479, 244 (2009).

  30. Panigrahi, P.; Pati, R. Controlling interlayer exchange coupling in one-dimensional Fe/Pt multilayered nanowire. Phys. Rev. B 79, 014411 (2009).

  31. Bandyopadhyay, A.; Fujita, D; Pati, R. Architecture of a Massively Parallel Processing Nano-Brain Operating 100 Billion Molecular Neurons Simultaneously. International Journal of Nanotechnology and Molecular Computation, 1(1), 50 (2009).

  32. Valavala, P. K.; Banyai, D.; Seel, M.; Pati, R. Self-consistent calculations of strain-induced band gap changes in semiconducting (n,0) carbon nanotubes. Phys. Rev. B 78, 235430 (2008).

  33. Pati, R.; McClain, M.; Bandyopadhyay, A. Origin of Negative Differential Resistance in a Strongly Coupled Single Molecule-Metal Junction Device. Phys. Rev. Lett. 100, 246801 (2008).

  34. Pal, P. P.; Pati, R. Magnetic properties of one-dimensional Ni/Cu and Ni/Al multilayered nanowires: Role of nonmagnetic spacers. Phys. Rev. B 77, 144430 (2008).

  35. Senapati, L.; Pati, R.; Erwin, S. Controlling spin-polarized electron transport through a molecule: The role of molecular conformation. Phys. Rev. B 76, 024438 (2007).

  36. Panigrahi, P.; Pati, R. Tuning the ferromagnetism of one-dimensional Fe/Pt/Fe multilayer barcode nanowires via the barcode layer effect. Phys. Rev. B 76, 024431 (2007).

  37. Wei, B. Q.; Shima, M.; Pati, R.; Nayak, S. K; Singh D. J; Ma, R. Z.; Li, Y. B.; Bando, Y.; Nasu, S.; Ajayan, P. M. Room-temperature ferromagnetism in doped face-centered cubic Fe nanoparticles. SMALL 2, 804 (2006).

  38. He, H. Y.; Pandey, R.; Pati, R.; Karna, S. P. Spin-polarized electron transport of a self-assembled organic monolayer on a Ni(111) substrate: An organic spin switch. Phys. Rev. B 73, 195311 (2006).

  39. Lau, K. C.; Pandey, R.; Pati, R.; Karna, S. P. Theoretical study of electron transport in boron nanotubes. App. Phys. Lett. 88, 212111 (2006).

  40. Lau, K. C.; Pati. R.; Pandey. R.; Pineda, A. C. First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chem. Phys. Lett. 418, 549 (2006).

  41. Senapati, L.; Pati. R.; Mailman, M.; Nayak, S. K. First-principles investigation of spin polarized conductance in atomic carbon wires. Phys. Rev. B 72, 064416, (2005).

  42. Pati, R.; Pineda, A. C.; Karna, S. P.; Pandey, R. Ab Initio Calculations of Electron Transfer in Carboranes. Chem. Phys. Lett. 406 483, (2005).

  43. Lau, K.; Despande, M.; Pati, R.; Pandey, R. A theoretical study of electronic and vibrational properties of neutral, cationic and anionic B24 clusters. International Journal of Quantum Chemistry 103, 866, (2005).

  44. Pati, R.; Karna, S. P. Current switching by conformational change in a molecular wire. Phys. Rev. B 69, 155419, (2004).

  45. Pati, R.; Senapati, L.; Ajayan, P. M.; Nayak, S. K.Theoretical study of electrical transport in a fullerene-doped semiconducting carbon nanotubes. J. App. Phys. 95(2), 694, (2004).

  46. Pati. R.; Senapati, L.; Ajayan, P. M.; Nayak, S. K. First principles calculations of spin-polarized electron transport in a molecular wire: Molecular spin valve. Phys. Rev. B (R) 68, 1004071, (2003).

  47. Pati. R.; Mailman, M.; Senapati, L.; Ajayan, P. M.; Mahanti, S. D.; Nayak, S. K. Oscillatory spin-polarized conductance in carbon atom wires. Phys. Rev. B 68, 014412, (2003).

  48. Pati, R.; Senapati, L.; Zhang, Y.; Ajayan, P. M.; Nayak, S. K. Effect of molecular adsorbates on electron transport in carbon nanotube. Proceedings of SPIE 5118, 163, (2003).

  49. Pati. R.; Zhang, Y.; Nayak, S. K.; Ajayan, P. M. Effect of H2O adsorption on electron transport in a carbon nanotube. App. Phys. Lett. 81, 2638, (2002).

  50. Pati, R., and Karna, S. P. Length dependence of intramolecular electron transfer in-bonded rigid molecular rods: an ab initio molecular orbital study. Chem Phys. Lett. 351: 302-310, (2002).

  51. R. Woo; Pati, R.; Karna, S. P. Time-varying response of molecular electron devices: A fundamental requirement for organic nanoelectronics. App. Phys. Lett. 81, 1872, (2002).

  52. Pati. R.; Karna, S. P. Quantum mechanical theory and modeling of molecular transistors. Proceedings of the 2001 1st IEEE Conference on Nanotechnology, pp. 341-345.

  53. Pati. R.; Karna, S. P. Ab initio Hartree-Fock Study of Electron Transfer in organic molecules. J. Chem. Phys. 115 1703, (2001).




Before 2000




This page is best viewed with Mozilla Firefox browser. You may download it from here