Ong Lab Research

Journal Publications

Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and Recovery from Black Liquor.

Andeme Ela RC, Spahn L, Safaie N, Ferrier RC, and Ong RG. ACS Sustain. Chem. Eng. (2020). 10.1021/acssuschemeng.0c03692. [Link]


Ammonia Fiber Expansion (AFEX) Pretreatment of Lignocellulosic Biomass.

Chundawat SPS, Pal RK, Zhao C, Campbell T, Teymouri F, Videto J, Nielson C, Wieferich B, Sousa L, Dale BE, Balan V, Chipkar S, Aguado J, Burke E, and Ong RG. JoVE (2020). 10.3791/57488(158):e57488. [Link]


Integration of Pretreatment With Simultaneous Counter-Current Extraction of Energy Sorghum for High-Titer Mixed Sugar Production.

Williams DL, Ong RG, Mullet JE, and Hodge DB. Front. Energ. Res. (2019). 6(133). [Link]


Diverse lignocellulosic feedstocks can achieve high field-scale ethanol yields while providing flexibility for the biorefinery and landscape-level environmental benefits.

Zhang Y, Oates LG, Serate J, Xie D, Pohlmann E, Bukhman YV, Karlen SD, Young MK, Higbee A, Eilert D, Sanford GR, Piotrowski JS, Cavalier D, Ralph J, Coon JJ, Sato TK, and Ong RG. Glob. Change Biol. Bioenergy (2018). 10(11):825-840. [Link]


Pre-senescence harvest of switchgrass inhibits xylose utilization by engineered yeast.

Ong RG, Shinde S, da Costa Sousa L, and Sanford GR. Front. Energ. Res. (2018) 6(52). [Link]


Cellulose-hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion.

Kumar R, Bhagia S, Smith MD, Petridis L, Ong RG, Cai CM, Mittal A, Himmel MH, Balan V, Dale BE, Ragauskas AJ, Smith JC, and Wyman CE. Green Chem. (2018).20(4):921-934. [Link]


Water sorption in pretreated grasses as a predictor of enzymatic hydrolysis yields.

Williams DL, Crowe JD, Ong RG, and Hodge DB. Bioresource Technol. (2017).245:242-249. [Link]


Identification of developmental stage and anatomical fraction contributions to cell wall recalcitrance in switchgrass.

Crowe JD, Feringa N, Pattathil S, Merritt B, Foster C, Dines D, Ong RG, and Hodge DB. Biotechnol. Biofuels (2017).10(1):184. [Link]


Greenhouse gas emissions of electricity and biomethane produced using the Biogasdoneright™ system: Four case studies from Italy.

Valli L, Rossi L, Fabbri C, Sibilla F, Gattoni P, Dale BE, Kim S, Ong RG, and Bozzetto S. Biofuel. Bioprod. Bior. (2017).11(5):847-860. [Link]


Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate.

Ong RG, Higbee A, Bottoms S, Dickinson Q, Xie D, Smith SA, Serate J, Pohlmann E, Jones AD, Coon JJ, Sato TK, Sanford GR, Eilert D, Oates LG, Piotrowski JS, Bates DM, Cavalier D, and Zhang Y.Biotechnol. Biofuels (2016).9(1):237. [Link]


Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production.

Park S-H, Ong RG, and Sticklen M. Plant Biotechnol. J. (2016).14(6):1329-1344. [Link]


Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation.

Serate J, Xie D, Pohlmann E, Donald C, Shabani M, Hinchman L, Higbee A, Mcgee M, Reau A, Klinger GE, Li S, Myers CL, Boone C, Bates DM, Cavalier D, Eilert D, Oates LG, Sanford G, Sato TK, Dale B, Landick R, Piotrowski J, Ong RG, and Zhang YP. Biotechnol. Biofuels (2015).8(1):1-17. [Link]


Balancing energy, conservation, and soil health requirements for plant biomass.

Karlen DL, Beeler LW, Ong RG, and Dale BE. J. Soil Water Conserv. (2015).70(5):279-287. [Link]


Lignin down-regulation of Zea mays via dsRNAi and klason lignin analysis.

Park S-H, Ong RG, Mei CS, and Sticklen M. JoVE (2014). [Link]


Design, implementation, and evaluation of sustainable bioenergy production systems.

Dale BE and Ong RG. Environ. Sci. Technol. (2014) 8(4):487-503. [Link]


Take a closer look: Biofuels can support environmental, economic and social goals.

Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G, Jackson RD, Jordan N, Kaffka S, Kline KL, Lynd LR, Malmstrom C, Ong RG, Richard TL, Taylor C, and Wang MQ. Environ. Sci. Technol. (2014) 48(13):7200-7203. [Link]


Hydrogen peroxide presoaking of bamboo prior to AFEX pretreatment and impact on enzymatic conversion to fermentable sugars.

Shao QJ, Cheng C, Ong RG, Zhu L, and Zhao C. Bioresource Technol. (2013) 142:26-31. [Link]


Energy, wealth, and human development: Why and how biomass pretreatment research must improve.

Dale BE and Ong RG. Biotechnol. Progr. (2012) 28(4):893-898. [Link]


Down-regulation of maize cinnamoyl-CoA reductase via RNAi technology causes brown midrib and improves AFEX-pretreated conversion into fermentable sugars for biofuels.

Park S-H, Mei C, Pauly M, Ong RG, Dale BE, Sabzikar R, Fotoh H, Nguyen T, and Sticklen M. Crop Sci. (2012) 52(6):2687-2701. [Link]


An alternative approach to indirect land use change: Allocating greenhouse gas effects among different uses of land.

Kim S, Dale BE, and Ong RG. Biomass Bioenerg. (2012) 46:447-452. [Link]


Influence of variable species composition on the saccharification of AFEX™ pretreated biomass from unmanaged fields in comparison to corn stover.

Garlock RJ, Bals B, Jasrotia P, Balan V, and Dale BE. Biomass Bioenerg. (2012) 37:49-59. [Link]


Optimization of AFEX™ pretreatment conditions and enzyme mixtures to maximize sugar release from upland and lowland switchgrass.

Garlock RJ, Balan V, and Dale BE. Bioresource Technol. (2012) 104:757-768. [Link]


AFEX pretreatment and enzymatic conversion of black locust (Robinia pseudoacacia L.) to soluble sugars.

Garlock RJ, Wong YS, Balan V, and Dale BE. Bioenergy Res. (2012) 5(2):306-318. [Link]


Effects of enzyme loading and β-glucosidase supplementation on enzymatic hydrolysis of switchgrass processed by leading pretreatment technologies.

Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra-Ramirez R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Donohoe BS, Vinzant TB, Elander RT, Hames B, Thomas S, and Warner RE. Bioresource Technol. (2011) 102(24):11115-11120. [Link]


Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass.

Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Hames B, Thomas S, and Warner RE. Bioresource Technol. (2011) 102(24):11105-11114. [Link]


Surface and ultrastructural characterization of raw and pretreated switchgrass.

Donohoe BS, Vinzant TB, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra-Ramirez R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Hames B, Thomas S, and Warner RE. Bioresource Technol. (2011) 102(24):11097-11104. [Link]


Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies.

Kim Y, Mosier NS, Ladisch MR, Ramesh Pallapolu V, Lee YY, Garlock R, Balan V, Dale BE, Donohoe BS, Vinzant TB, Elander RT, Falls M, Sierra R, Holtzapple MT, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, and Warner RE. Bioresource Technol. (2011) 102(24):11089-11096. [Link]


Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments.

Shi J, Ebrik MA, Yang B, Garlock RJ, Balan V, Dale BE, Ramesh Pallapolu V, Lee YY, Kim Y, Mosier NS, Ladisch MR, Holtzapple MT, Falls M, Sierra-Ramirez R, Donohoe BS, Vinzant TB, Elander RT, Hames B, Thomas S, Warner RE, and Wyman CE. Bioresource Technol. (2011) 102(24):11080-11088. [Link]


Investigation of enzyme formulation on pretreated switchgrass.

Falls M, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Garlock R, Balan V, Dale BE, Pallapolu VR, Lee YY, Kim Y, Mosier NS, Ladisch MR, Hames B, Thomas S, Donohoe BS, Vinzant TB, Elander RT, Warner RE, Sierra-Ramirez R, and Holtzapple MT. Bioresource Technol. (2011) 102(24):11072-11079. [Link]


Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars.

Garlock RJ, Balan V, Dale BE, Ramesh Pallapolu V, Lee YY, Kim Y, Mosier NS, Ladisch MR, Holtzapple MT, Falls M, Sierra-Ramirez R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Donohoe BS, Vinzant TB, Elander RT, Hames B, Thomas S, and Warner RE. Bioresource Technol. (2011) 102(24):11063-11071. [Link]


Optimizing harvest of corn stover fractions based on overall sugar yields following ammonia fiber expansion pretreatment and enzymatic hydrolysis.

Garlock RJ, Chundawat SPS, Balan V, and Dale BE. Biotechnol. Biofuels (2009) 2(29):1-14. [Link]


Book Chapters

Linking Plant Biology and Pretreatment: Understanding the Structure and Organization of the Plant Cell Wall and Interactions with Cellulosic Biofuel Production.

Ong RG, Chundawat SPS, Hodge DB, Keskar S, and Dale BE. in Plants and BioEnergy. McCann MC, Buckeridge MS, and Carpita NC, Editors. (2014) Springer New York. p. 231-253. [Link]


Primer on Ammonia Fiber Expansion Pretreatment.

Chundawat SPS, Bals B, Campbell T, Sousa L, Gao D, Jin M, Eranki P, Garlock R, Teymouri F, Balan V, and Dale BE. in Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals. (2013) John Wiley & Sons, Ltd. p. 169-200. [Link]


A Short Review on Ammonia-based Lignocellulosic Biomass Pretreatment.

Balan V, Bals B, da Costa Sousa L, Garlock R, and Dale BE. in Chemical and Biochemical Catalysis for Next Generation Biofuels. (2011) The Royal Society of Chemistry. p. 89-114. [Link]