CS4811 Artificial Intelligence

Spring 2006

Schedule, notes, and assignments

The lecture slides are provided in four different formats for your convenience:
  1. The ones labeled "4pp" are four slides per page, the format I hand out in class. These are in postscript (.ps)
  2. Postscript, one slide per page (.ps)
  3. Pdf, one slide per page (.pdf)
  4. Powerpoint, originals (.ppt)

 
W Date Topic Slides Assign Collect
1 M, 1/09 Brief course overview
Brief introduction to AI
Ch. 2: Predicate Calculus
ch01-4pp.ps
ch01.ps
ch01.pdf
ch01.ppt
   
  W, 1/11 Ch. 2: Predicate Calculus ch02-4pp.ps
ch02.ps
ch02.pdf
ch02.ppt
   
  F, 1/13     hw1: logic  
2 M, 1/16 no class (Martin Luther King, Jr. Day)      
  W, 1/19        
  F, 1/20 Ch. 13: Automated Reasoning ch13-4pp.ps
ch13.ps
ch13.pdf
ch13.ppt
   
3 M, 1/23     hw2: resolution hw 1 due
  W, 1/25 Ch. 3: Structures and Strategies for State Space Search ch03-4pp.ps
ch03.ps
ch03.pdf
ch03.ppt
hw3: search  
  F, 1/27 Ch. 3: Structures and Strategies for State Space Search
   The farmer, wolf, goat, and cabbage problem
The search tree:
  fwgc.pdf
  fwgc.ps
  fwgc.fig
   
4 M, 1/30       hw 2 due
  W, 2/01        
  F, 2/03        
5 M, 2/06 Ch. 4: Heuristic search ch04-4pp.ps
ch04.ps
ch04.pdf
ch04.ppt
   
  W, 2/08     hw4: α-β pruning hw 3 due
  F, 2/10 no class (Winter Carnival Recess)      
6 M, 2/13        
  W, 2/15 Ch. 6: Building Control Algorithms for State Space Search ch06-4pp.ps
ch06.ps
ch06.pdf
ch06.ppt
  hw4 due
  F, 2/17 Midterm 1    Good luck!   
7 M, 2/20 Ch. 7: Knowledge Representation ch7-4pp.ps
ch7.ps
ch7.pdf
ch7.ppt
   
  W, 2/22 Ch. 8: Strong Method Problem Solving
Part a: Expert Systems
ch8a-4pp.ps
ch8a.ps
ch8a.pdf
ch8a.ppt
   
  F, 2/24        
8 M, 2/27 Return exam 1, discuss the solutions
( grades )
ch8a class notes    
  W, 3/01 Ch. 8: Strong Method Problem Solving
Part b: Planning
ch8b-4pp.ps
ch8b.ps
ch8b.pdf
ch8b.ppt
   
  F, 3/03        
B 3/04-11 Spring Break      
9 M, 3/13     hw5: planning  
  W, 3/15        
  F, 3/17     hw6:
knowledge repr.
machine learning
 
10 M, 3/20 Ch. 10: Machine Learning: Symbol Based
Part a: Version Spaces
ch10a-4pp.ps
ch10a.ps
ch10a.pdf
ch10a.ppt
   
  W, 3/22 Ch. 10: Machine Learning: Symbol Based
Part b: Learning Decision Trees
ch10b-4pp.ps
ch10b.ps
ch10b.pdf
ch10b.ppt
   
  F, 3/24       hw6
(Questions 1 and 2)
due
11 M, 3/27 Ch. 10: Machine Learning: Symbol Based
Part c: Unsupervised Learning (Clustering)
ch10c-4pp.ps
ch10c.ps
ch10c.pdf
ch10c.ppt
  hw6
(Question 3)
due
  W, 3/29       hw5 due
  F, 3/31  Midterm 2   Good luck!   
12 M, 4/03 Ch. 10: Machine Learning: Symbol Based
Part c: Unsupervised Learning
(Clustering-continued)
ch10c2-4pp.ps
ch10c2.ps
ch10c2.pdf
ch10c2.ppt
   
  W, 4/05 Ch. 11: Machine Learning: Connectionist
Part 1
ch11a-4pp.ps
ch11a.ps
ch11a.pdf
ch11a.ppt

sample Lisp perceptron
sample output 1
sample output 2
   
  F, 4/07 Ch. 11: Machine Learning: Connectionist
Multilayered neural networks
handout.pdf
handout.ps
handout.tex
hw7: neural networks  
13 M, 4/10 Ch. 9: Reasoning in Uncertain Situations ch09-4pp.ps
ch09.ps
ch09.pdf
ch09.ppt
   
  W, 4/12     hw8: uncertainty  
  F, 4/15   example.pdf
example.ps
example.tex
   
14 M, 4/17 Ch. 5, Sec. 9.3: Stochastic Methods ch05-09-4pp.ps
ch05-09.ps
ch05-09.pdf
ch05-09.ppt
   
  W, 4/19       hw 8 due
  F, 4/21 Wrap up, AI research lastclass-4pp.ps
lastclass.ps
lastclass.pdf
lastclass.ppt
  hw 7 due
F W, 4/26 Final Exam
time:  12:45 pm - 2:45 pm 
place: Rekhi 214 (same as the classroom)
topics: list
grades: ( grade list )
  Good luck!